opsi manual opsi version 4.0.7

uib gmbh
<info@uib.de>

	Revision History
	Revision 4.0.7	19.10.2017	UG







1. Copyright



The Copyright of this manual is held by uib gmbh in Mainz, Germany.
This manual is published under the creative commons license
Attribution - ShareAlike (by-sa).
[image: CC by sa]

A German description can be found here:
http://creativecommons.org/licenses/by-sa/3.0/de/
The legally binding German license can be found here:
http://creativecommons.org/licenses/by-sa/3.0/de/legalcode
The English description can be found here:
http://creativecommons.org/licenses/by-sa/3.0/
The English license can be found here:
http://creativecommons.org/licenses/by-sa/3.0/legalcode
Most parts of the opsi software are open source.
The parts of opsi that are not open source are still under a co-funded development. Information about these parts can be found here:
opsi cofunding projects
All the open source code is published under the AGPLv3.
[image: agplv3]

The legally binding AGPLv3 license can be found here:
http://www.gnu.org/licenses/agpl-3.0-standalone.html
Some information around the AGPL:
http://www.gnu.org/licenses/agpl-3.0.en.html
For licenses to use opsi in the context of closed software please contact the uib gmbh.
The names opsi, opsi.org, open pc server integration and the opsi logo are registered trade marks of uib gmbh.

2. Introduction



2.1. Who should read this manual?



This manual is written for all who want to gain a deeper insight into the mechanisms and the tools of the client management system opsi ("open pc server integration").
It presents a complete HOWTO for the use of opsi while emphasizing the understanding of the technical background. The decision maker who decides on using opsi as well as the system administrator who works with it will get a solid foundation for their tasks.

2.2. Notations



Angle brackets < > mark abstract names. In a concrete context any marked <abstract name> must be replaced by some real name. Example: The file share, where opsi places the software packets, may abstractly be noted as <opsi-depot-share>. If the real fileshare is /var/lib/opsi/depot, then you have to replace the abstract name by exactly this string. The location of the packet <opsi-depot-share>/ooffice becomes
/var/lib/opsi/depot/ooffice.
Example snippets from program code or configuration files use a Courier font, with a background color:
depoturl=smb://smbhost/sharename/path


3. Overview of opsi



Tools for automated software distribution and operating system installation are
important and necessary tools for standardization, maintainability and cost saving of larger PC networks. Normally the application of such tools comes along with substantial royalties, whereas opsi as an open source tool affords explicit economics. Expenses thereby arise only from performed services like consulting, training and maintenance, and perhaps from low cofunding rates if you like to use some of the non free modules.
Although the software itself and the handbooks are free of charge, the process of introducing any software distribution tool is still an investment. To get the benefit without throwbacks and without a long learning curve consulting and education of the system administrators by a professional partner is recommended. uib offers all these services around opsi.
The opsi system as developed by uib depends on Linux-servers. They are used for
remote installation and maintenance of the client OS and the client software packets ("PC-Server-Integration"). It is based as far as possible on free available tools (GNUtools, SAMBA etc.). The complete system all together is named opsi (Open PC-Server-Integration) and with its configurability is a very interesting solution for the administration challenges of a large computer park.
3.1. Experience



opsi is derived from a system, which is in use since the middle of the 90’s with more than 2000 Client-PCs in different locations of a state authority. Since that time it has continuously been adapted to the changing Microsoft operating system world. As a product opsi is now accessible for a broad range of interested users.
You can find an geographical overview of the registered opsi-installations at:
opsi-map

3.2. opsi features



The core features of opsi are:
	
automatic software distribution

	
automatic operating system installation

	
hard- and software inventory

	
comfortable control via the opsi management interface

	
support of multiple depot-servers




3.3. opsi Extensions



	
Management of licenses

	
MySQL-Backend

	
Nagios Connector

	
Installation ab Shutdown

	
Local Image Backup (Rapid client restore of student computers. For public authorities (e.g. schools) only)

	
Linux Agent

	
WAN Extension (Support for clients behind slow connections)

	
User Profile Management (manipulation Profiles even with Roamin Profiles)

	
OTRS::ITSM Connection - via KIX4OTRS by cape IT gmbh




3.4. Structure



The configuration of opsi requires some data management. All non-server components are using a web service for data exchange with the opsi server. They exchange data via the opsiconfd, and the opsiconfd forwards the data to the backend manager which passes the data into the selected backend.
opsi supports different backends: Backends:
	
File based

	
MySQL based



Figure 1. Scheme: opsi with File / MySQL backend
[image: Scheme: opsi with File / MySQL backend]


More details you will find at Section 5.6, “opsi data storage (backends)”.
The backend configuratin will be found at the files in ther directories
 /etc/opsi/backendManager and  /etc/opsi/backends.
Figure 2. Scheme: backend layers and access control
[image: Scheme: backend layers and access control]


The configuration files in /etc/opsi/backends define the backends.
Which backend is used for which data, is configured in the file
/etc/opsi/backendManager/dispatch.conf.
The file /etc/opsi/backendManager/acl.conf defines who has access to which
methods.
Below the directory /etc/opsi/backendManager/extend.d there could be files
which defines extended opsi methods. So you will find here for example the files which define the action based (legacy) methods by mapping them to the object based methods (/etc/opsi/backendManager/extend.d/20_legacy.conf).
A more detailed reference of these configuration files you will find at
the section called “Configuration files in /etc”.


4. opsi-Management GUI: opsi-configed



4.1. Requirements and operation



Important
Since version 4.0.7.5.22,  the opsi-configed requires at least Java 1.8
It works with the data from a running opsiconfd at least of version 4.0.6.

You find the current version of the opsi-configed as an opsi-package for local installation on download.uib.de.
In non-opsi systems the  opsi-configed can be simply installed by copying the required jar archive files as contained e.g. in the opsi-package.
In order to automate this, the setup program opsi-configed-setup.exe can be used (from http://download.uib.de/opsi4.0/helper/ )
The current stable version of the  opsi-configed is as well contained in the opsi-server installation, and is maintained
by means of the Linux distribution methods. This version of the program has the identical code with the corresponding local version, but is primarily used
as a Java Webstart application. It may be executed
	
via the webstart link on the start page https://<servername>:4447

	
via the URL https://<servername>:4447/configed

	
or by directly calling https://<servername>:4447/configed.jnlp



Without using a browser you can execute (e.g. in a start menu link)
javaws  https://<servername>:4447/configed.jnlp
If the server has a graphical desktop, the  opsi-configed can be started as well directly on the server via a desktop menu entry or
in a shell by /usr/bin/opsi-configed.
With non-gui servers there exist only the special non-gui start options
	
--version

	
--help bzw. -h

	
--querysavedsearch  [SAVEDSEARCH_NAME] bzw. -qs  [SAVEDSEARCH_NAME]

	
--swaudit-pdf  FILE_WITH_CLIENT_IDS_EACH_IN_A_LINE  [OUTPUT_PATH]



If the additional required jar archives exist in the path the opsi-configed can be started  simply by java -jar configed.jar.
With  java -jar configed.jar --help you’ll get a list of the command line options
.
-l LOC                  --locale LOC                    Set locale LOC (format: <language>_<country>)-h HOST                    --host HOST                     Configuration server HOST to connect to
-u NAME                 --user NAME                     User for authentication
-p PASSWORD     --password PASSWORD             password for authentication
-c CLIENT               --client CLIENT         CLIENT to preselect
-g CLIENTGROUP  --group CLIENTGROUP     CLIENTGROUP to preselect
-t INDEX                        --tab INDEX                   Start with tab number INDEX, index counting starts with 0, works only if a CLIENT is preselected
-d PATH                 --logdirectory PATH       Directory for the log files
-r REFRESHMINUTES                       --refreshminutes REFRESHMINUTES                 Refresh data every REFRESHMINUTES  (where this feature is implemented, 0 = never)
-qs [SAVEDSEARCH_NAME]          --querysavedsearch [SAVEDSEARCH_NAME]   On command line: tell saved host searches list resp. the search result for [SAVEDSEARCH_NAME])
--gzip [y/n]                                                    Activate gzip transmission of data from opsi server yes/no
--sslversion PREFERRED_SSL_VERSION      Try to use this SSL/ TLS version
--ssh-key SSHKEY                                                full path with filename from sshkey used for authentication on ssh server
--ssh-passphrase PASSPHRASE                     passphrase for given sshkey used for authentication on ssh server
--version                                                               Tell configed version
--collect_queries_until_no N                            Collect the first N queries; N = -1 (default, no collect), 0 = infinite
--help                                                          Give this help
--loglevel L                                                    Set logging level L, L is a number >= 0, <= 5
--halt                                                          Use  first occurring debug halt point that may be in the code
--sqlgetrows                                                    Force use sql statements by getRawData
--nosqlrawdata                                          Avoid getRawData
--localizationfile EXTRA_LOCALIZATION_FILENAME                                                  Use EXTRA_LOCALIZATION_FILENAME as localization file, the file name format has to be: configed_LOCALENAME.properties
--localizationstrings                                                                                                   Show internal labels together the strings of selected localization
--swaudit-pdf FILE_WITH_CLIENT_IDS_EACH_IN_A_LINE [OUTPUT_PATH]         export pdf swaudit reports for given clients (if no OUTPUT_PATH given, use home directory)
Logging of the opsi-configed



By default, the opsi-configed uses its log level 3 "Info". The level can be raised to 4 "Check" or 5 "Debug".
To change the log level the command line option  --loglevel [LEVEL]  can be used.  It is not recommended to set level 5 as long as not the start process needs to be inspected.
For, with level 5, the produced log file is very large; it is difficult to get loaded and viewed. When the opsi-configed is running and a potential error situation
is expected the log level can be raised via the menu entry Help/ConfigEditor log level.
Level 4 can be helpful since with it, the service calls are logged. With luck, level 5 offers a detailled view of actions.
Since version 4.0.7.6.12  the logfiles are deposed by default in the user home directory. In Windows the folder
c:\Users\[User name]\AppData\Roaming\opsi.org\log
In Linux the default logfiles  folder is the (hidden) subfolder ".configed" in the user home directory.
The current logfile is named configed.log, the up to 3 preceding versions are configed_0.log, configed_1.log, configed_2.log.
The logging directory can be changed via the command line option "-d".
The current logfile path is displayed at the Help menu, entry "Current logfile".
The filename can there be retrieved in order to use it in an open file dialog of a viewer program or can be directly opened by the default application for .log files.

Choosing the language



The opsi-configed tries to use the language following the OS defined locale. If the matching translation file is missing
English is used as default language. If terms in translations file are missing the expressions of the Englisch translation are used as
default.
When calling the opsi-configed you can set a locale via the command line option
-l resp. --locale
On principle, the locale has the format language_region, each component with two characters, eg. en_US of de_DE. It suffices to give the
two character language code since there no region specific variants prepared.
In a running opsi-configed the language can be switched via the menu item
File/International. A change triggers a re-initialization of the program with a (nearly complete) rebuilding of
the visual components in the new language.
Finally the call parameter
--localizationfile
can be used for directly prescribing a localiziation file. The additional parameter
--localizationstrings
has the effect that the display of the localized expressions is combined with displaying the terms for which expressions should be
given. This can be used for producing and testing a localization file.

Custom start values with Java Web Start



When starting via Java Web Start you can apply the same parameters as if the configed is started as a local application
but with a slightly different syntax. It has the form:
javaws "https://<servername>:4447/configed.jnlp?optionname1=value1&optionname2=value2&..."
E.g,, to pass the user name Roger the following call must be applied:
javaws "https://<servername>:4447/configed.jnlp?user=Roger"
It’s a standard http parameter syntax where the option names are used omitting the dashes.


4.2. Login



Figure 3. opsi-configed: login mask
[image: opsi-configed: login mask]


The  opsi-configed tries to connect to the opsi server via https.
The login is done with the given parameters opsi server[:Port] (default port 4447 – opsiconfd)
and the user/password pair of the opsi-config-server account. For a successful login the provided user
has to be a member of the unix group opsiadmin.
In the local user profile, the opsi-configed saves certain session info in order to rebuild the essential working
context after a restart, in particular a selected client group. Since version 4.0.7 the session data is used to produce a selection list
of opsi servers to which you were connected (e.g. a productive one and a second one for experimental purposes). The last server used
gets the highest place, and can be directly used again.
The gzip compression in HTTP protocol reduces the amount of data being transferred at the expense of an extended processing time,
this is due to the fact that the data must be compressed and uncompressed.
It has been observed that the reaction times tend to be shorter without compression in the local network,
as the effects normally surpass the prolonged processing time. For transmissions over the WAN, it tends to be the opposite.
In the practice, little difference is noticed on LAN connections, but relevant differences are noticed on WAN connections, so the Gzip option is enabled by default.
The feature check which clients are reachable runs in the background and shows the results in the client table.
It can be enabled from the login screen mask or via command line parameter.
The default refresh interval is 0 min (= deactivated). It should be observed though that a too short refresh interval produces
a lot of network waiting states which can slow down the opsi server.

4.3. Copy & Paste, Drag & Drop



You may copy the selected entries from nearly every section of the opsi-configed to the clipboard using the standard key combinations (Ctrl-Insert, Ctrl-C). This may be used to transfer interesting data to other programs.
For most of the tables you may also use Drag & Drop to copy the data e.g. to  Excel or a

4.4. opsi-configed modes Client configuration / server configuration / license management



To switch between the different usage modes  of the opsi-configed, use the buttons
in the upper right corner of the opsi-configed frame. Since version 4.0.4, there are six buttons.
Figure 4. opsi-configed:  Usage modes
[image: opsi-configed: Button bar]


The first three buttons allow you to change the editing target of the main window: client configuration,
server configuration. On the other hand, each of the buttons group actions, product actions and license management
starts a special window to manage the specific objects or actions.
These windows can as well be opened via the main menu item windows (since opsi-configed version 4.0.7).

4.5. Depot selection



All opsi-depotservers that are integrated with your server, are listed in the upper left corner
of the opsi-configed. By default the depot on your opsi-config-server
is selected and the clients belonging to this opsi-depot are shown.
You can select multiple Depots at the same time and edit their clients together.
However, only the selected depots are synchronized with each other.
Trying to edit clients from asynchronous depots together will be rejected with an
appropriate warning and the corresponding error message.
As of version 4.0.5, there is no need to carry out a complete data-reload
when switching to a different depot-server,
that means, when you select a depot its data is loaded immediately.
In addition, there are the following buttons:
	
(=+) : Marks all depots with identical product stocks.

	
(++) : Marks all depots (you can also use Ctrl-a)



Figure 5. opsi-configed: depot selection
[image: opsi-configed: depot selection]



4.6. Cient selection



After a successful login, the main window pops up and shows the tab Client selection.
This tab shows a list of known clients from the selected opsi-depot resp. the clients
which are selected using the tree view control on the left side of the opsi-configed.
Since version 4.0.4, the opsi-configed saves on the local machine, for the current user,
the current depot server and group selection. If the opsi-configed is restarted,
you can continue working at the point where you were.
Please note, that group selection is preserved when changing depot selection. In order to
see all clients in the other depot the group selection has to be changed appropriately.
Figure 6. opsi-configed: client selection mask
[image: opsi-configed: client selection mask]


You may select a line of the list not only by manual scrolling and selecting but also
by a String search. This requires that you enter a String into the search field at the top of the list
How the search works is determined by the selected elements in two drop down lists:
Via field selection you can choose if
	
all fields (more precisely, all fields that are for this temporary configuration represented as columns) are searched (default), or

	
only one field (and which one) is searched.



Concerning the method of search  you may select between the options (since 4.0.7):
	
Full-text: the search string is used in a similar way to a web search on a certain search engine for example in the standard manner; i. e., if the input contains several keywords
(delimited by blanks) then the word elements will be a match if any of the input parts are fully contained in some of the columns.

	
Full-text (complete string): the search string is used like using a web search on a search engine the search string embraced by citation marks;

	
e. a table line will match if the complete input string is part of one of the columns content.




	
Start-text search: a table line will be a match if the column text starts with the search string.

	
Regular expression: the search string is interpreted as a so called regular expression; i.e., a line will be a match
if the input string produces a match according to the rules of regular expressions (as described in the java doc for java.util.regex.Pattern).



The enter key produces the next search hit. If there is no match it advances the mark to next line.
More selection functions based on String search are shown in the context menu
of the search field.
Figure 7. opsi-configed: Search function in the client selection list
[image: opsi-configed: Client search]


Examples of Search Patterns
All PCs which have a name or a description containing the character sequence Miller with capital M or with m are found by using the pattern
.*iller.*
The dot in " .* "  means "arbitrary character", the asterisk " * " means "arbitrary number of occurrences (of the beforehand designated element)". That is
.*iller.*
it matches, if anything (any number of any characters) come before iller and anything after iller.
Since "any number" may be zero
Home of Miller
matches where no character follows after iller.
But to ensure that we do not mark Tiller as correct a more precise pattern would be
.*[Mm]iller.*
Several characters enclosed in brackets are interpreted as the searched value must contain one of the enumerated characters. With this more precise pattern, every string is recognized which
contains either Miller  oder  miller but no other string.
Here is yet another example, a pattern search for products:
0.-opsi.*standard
matches for all products which have a name beginning with "0", followed by an arbitrary character, followed by  -opsi, followed by  arbitrary characters (in arbitrary number); finished by standard.
To ensure that the second character is a number symbol, i. e. one of the characters "0", "1", "2", "3", "4", "5" , "6", "7", "8", "9", one can write
0[0123456789]-opsi.*standard
As short hand for [0123456789]  one can use,  since it is a complete partial sequence of the sequence of all characters,  [0-9]. Therefore the search pattern reduces to
0[0-9]-opsi.*standard
Matching products e.g.
03-opsi-abo-standard
or
05_opsi-linux_standard
More informations on the topic can be found in the java api doc, key word
"java.util.regex.Pattern".

The clients list



The clients list has per default the columns client name, description, on, IP address   and last seen.
	
client name is the full qualified hostname which is the client name including the domain name

	
description is a free selectable description which you can edit in the top right hand side of the window

	
On shows after clicking the button Check which clients are connected the
result of this query. This feature runs in the background and shows the results in the client table.
It can be enabled from the login screen mask or via command line parameter.
The default refresh interval is 0 min (= deactivated).



Figure 8. opsi-configed: Button Check which clients are connected
[image: opsi-configed: Button: Check which clients are connected]


Figure 9. opsi-configed: Client reachable
[image: Client reachable]


Figure 10. opsi-configed: Client unreachable
[image: Client unreachable]


	
IP address shows the IP number to which the opsi server resolves the client name.

	
last seen shows the date and a time of the last client connect to the opsiconfd web service



Some columns are deactivated by default:
	
session infos (data is retrieved from the operating system running on the specific client)

	
Inventory No (displaying some optionally entered data)

	
created (date and time of client creation)

	
opsi mac address (hardware address of the client as used by opsi)



You may activate these columns using the context menu. The configuration of the columns being displayed may be changed using the entry configed.host_displayfields in the
server configuration.
Figure 11. opsi-configed: change the default for visible columns in the clients list
[image: opsi-configed: change the default for visible columns in the clients list]


Adding the column session infos enables the button "request session infos from all clients" in the button panel.
Figure 12. opsi-configed: Button Sessioninfo
[image: opsi-configed: Button SessionInfo]


When this button is clicked  the opsiconfd tries to connect to all clients and to retrieve data of the
active user sessions. From the result, the account names are shown in the column session infos.
Instead of using the button you may start the request only for the selected clients via the context menu
or the main menu entry OpsiClient. By doing this, network timeouts are avoided.
Since the search function for the client list works (if not configured otherwise) on all displayed columns
you may now find out which is the client belonging to a logged in user (with known account name).
To sort the clients by a certain column click on the top header of that column.

Selecting clients



You can select one or multiple clients to work with. The client view can be restricted to the selected clients by clicking the funnel icon or from the menu by Grouping / Show only selected clients.
A selected client group can be saved with the icon Save grouping or from the menu by Grouping / save group with a free selectable name.
You can use the mouse to add the selected clients to an existing group (by dragging them to an existing group which is displayed in the tree view).
In the client selection dialog (as called via menu Selection / Define search) clients can be selected using a variety of criteria based on their configurations.
Figure 13. opsi-configed: Selection dialog
[image: opsi-configed: Define Client Search Window]


E.g., it is possible to search for opsi installed products as well as software found by the opsi software audit. You may as well search for
PCs satisfying certain hardware conditions. Criteria may be combined by logical AND or OR operations and may be negated by
a NOT (which is produced by a click on the Not-Field before the  property field).
Search strings can be given as fixed strings combined with asterisks * as wildcard symbols.
Search definitions can be saved and then again used via the menu item Selection/Use saved search definition.
Figure 14. opsi-configed: Saved Search
[image: opsi-configed: Saved Searches]


It is also possible to run a saved search from the command line when the opsi-configed editor is started.  By including the flag "-qs" and the name of the saved search, the configuration editor will start
with the saved search results.  If the name is omitted, then a list of available searches will be displayed.
To detect failed installations, the menu item Selection offers Failures with product and Failures occurred (today, since yesterday, …), since version 4.0.5 .
Choose the first setting to get a list of all products. If you select a single product, all clients will be shown, where the installation of this product failed.
When choosing for instance Failures occured - today, all the clients will be marked, where an product installation failed today.
Figure 15. opsi-configed: Failed Actions
[image: opsi-configed: Failed Actions - today]




4.7. Client selection and hierarchical groups using the tree view



Clients can be grouped in a convenient way by using the tree view control placed on the left side of opsi-configed frame.
Basic concepts



The tree view control has three base nodes groups, directory and client list.
Alls clients of the selected depots are displayed in the group client list.
The nodes  groups and directory are different in so far as each client can have any number of locations in the groups subtree
but has a unique location in the directory subtree;
as long as there was no other assignment to subgroup of directory a client is automatically placed into the group NOT_ASSIGNED.
If you select a client, all groups to which the client belongs will get color marked icons.
Figure 16. opsi-configed: Tree view with clients and groups
[image: opsi-configed: Treeview with clients and groups]



How to …



By a click one a node (or a group) all clients beyond this node will be shown in the Clients tab, but none of these clients is selected for processing.
By a click one a client, this client will be shown in the Clients tab and selected for processing. You may also use this way to change the selected client while you are in a other tab like product configuration without coming back to the clients tab.
You may use Ctrl-click and Shift-click to select multiple clients.
This tree view control show the groups which are created according the chapter
You may also create groups by using the context menu above ALL or any existing group.
Figure 17. opsi-configed: Using the context menu to create a new subgroup
[image: opsi-configed: Using the context menu to create a new subgroup]


You will be asked for the new groups name.
Figure 18. opsi-configed: Dialog: Group name
[image: opsi-configed: Dialog: Group name]


A group can be populated with clients using Drag&Drop by
	
copying clients from the Clients tab to the group in the tree view
(left mouse button)

	
copying clients from the tree view control below the node ALL to group in the tree view (left mouse button)

	
moving clients from a group in the tree view control to a other group in the tree view (left mouse button)

	
copying clients from a group in the tree view control to a other group in the tree view (Ctrl-left mouse button)



A group can
	
be moved to a different location via drag & drop.



The context menu of a group item can be used
	
to create a subgroup;

	
to edit the group properties;

	
to delete the group together with its subgroups and all client assignments of them;

	
to remove all client assignments while keeping the group and its subgroups;

	
to display the the contained clients and select them in one step.





4.8. Client processing / Client actions



Using the menu OpsiClient or the context menu in the Clients tab you may choose from a lot of client specific operations
Figure 19. opsi-configed: : context menu Clients Tab
[image: opsi-configed: : context menu 'Clients' Tab]


Install By Shutdown, Uefi Boot and WAN Configuration



Several client standard configurations can be applied directly in the client information panel which is located on the right side
of the clients page. Please observe that UEFI support and WAN configuration both are currently based on non free extension modules.
If these modules are not active the corresponding buttons are disabled.
	
Install By Shutdown:
In Section 9.17, “opsi Installation on Shutdown (free)” , the method do switch to Install by Shutdown installation is described en detail. You can automatically
trigger this configuration by pushing the On-Button for InstallByShutdown. Observe that this requires a opsi-client-agent reinstall or reconfigure.
Alas, the state of the configuration can currently only be seen in the product property `on_shutdown_install`of the opsi-client-agent product.

	
Uefi Boot:
The state of checkbox Uefi Boot indicates, if a client is configured for UEFI boot. It is activated the value of the client host parameter
clientconfig.dhcpd.filename is changed to linux/pxelinux.cfg/elilo.efi geändert. (For more infos cf Section 9.6, “opsi with UEFI / GPT”)

	
WAN-Konfiguration:
Der opsi-configed prüft, ob die Standard-WAN-Konfiguration für den Client vorliegt oder nicht. Entsprechend ist der Haken für WAN-Konfiguration gesetzt oder nicht.
Und wenn man den Haken manuell setzt,  wird die Standard-Konfiguration eingerichtet.



Diese Konfiguration ist seit Version 4.0.7.6.5 nicht mehr hart kodiert ,
sondern wird aus den Server-Hostparametern configed.meta_config.wan_mode_off* ausgelesen bzw. als deren Verneinung interpretiert.
Wenn man die automatisch eingerichteten Meta_Config.wan_mode*-Parameter beibehalten hat,
kommt die in the section called “Recommended configuration when using the WAN/VPN extension module” beschriebene,
von der uib GmbH empfohlene Standard-WAN-Konfiguration zum Zuge.
Tip
Ob der Client als WAN-Client konfiguriert ist oder einen UEFI-Boot macht, kann in der Client-Tabelle auch in passenden Spalten dargestellt werden.
Für die laufende Session werden sie  im Menüpunkt OpsiClient oder im Kontextmenü aktiviert, dauerhaft über den Eintrag configed.host_displayfields
bei den Server-Hostparametern. Dann ist direkt in der Übersicht erkennbar,
für welche Clients die Eigenschaft gesetzt ist, und es kann auch danach gesucht und sortiert werden.

Figure 20. opsi-configed: Erweiterte Spaltensicht für opsi-Clients
[image: opsi-configed: Erweiterte Spaltensicht für opsi-Clients]



WakeOnLan (Wake selected clients)



Choosing this menu entry, you will send the selected clients a WakeOnLan signal.
Since version 4.0.7 you can choose
	
if the network signal is meant to be sent to the selected clients at once

	
which delay should be between the waking of two clients

	
when the process shall start (via a scheduler).



If a client is assigned to a depot server which is not the configserver then the Wake On Lan signal is not directly sent to the client,
but the opsi-configed tries to establish a HTTPS connection to the opsiconfd of the depot server which in turn sends the Wake On Lan package to the client inside its network segment.
Figure 21. opsi-configed: Scheduler for Wake On Lan
[image: opsi-configed: Scheduler for Wake On Lan]


It should be observed that it is the opsi-configed which triggers the actions, therefore the program must not be shut down in the meantime.

Fire opsiclientd event (Push Installation)



This menu entry is used to send to the opsi-client-agent on the selected clients a command to fire the event
which is selected in the submenu. The standard event is "on demand" which means the demanded action is started at once.
Be aware that this may have the effect that the client is rebooting without any warning.
To incorporate additional events (which should be configured in the opsiclientd.conf) into the submenu you have to edit the
config configed.opsiclientd_events via the tab (server) host parameters.
All messages will be shown on the active desktop. If the client isn’t reachable, you will get a message.
What happens exactly if you fire the event on_demand can be configured in the event on_demand configuration.

Sending messages (Show popup message)



Choosing the menu entry Show popup message you will get a small edit window where you can type in your message.
Figure 22. opsi-configed:  opsi message edit mask
[image: opsi-configed: opsi message edit mask]


By clicking on the red tick you will send the message to the selected clients.
At the selected clients a message window will appear.
Figure 23. opsi-configed:  opsi message display dialog
[image: opsi-configed: opsi message display dialog]



Session info for selected clients



The selected clients get the signal to communicte their session information. The data is shown in the session info column
(if visible).

For WAN-Clients: Delete package cache



On WAN clients there are occasional problems with the package cache synchronization. This function resets the cache.

Call external remote control tools for selected clients



The option Remote Control Software call in the client context menu as well as the client main menu (since opsi-configed version 4.0.1.11) is very powerful. It can be used
to use any command that the operating system offers, parametrized e.g. by the client name.
As an example there are configurations automatically generated which can be used to send a ping to the selected client: one
ping command that works in Windows environment and one command that requires a Linux X environment. Please observe:
  opsi-configed calls obviously the command in its environment, i.e., we need the Linux command when the  opsi-configed
  is running in Linux.
Figure 24. opsi-configed: Choice of Remote Control  call
[image: opsi-configed: Choice of Remote Control call]


The selection window has three parts. The upper part lists the names of the existing commands. It follows a line, which shows
the selected command and offers the chance to edit it (if this is allowed). Additionally, the line contains the buttons
to execute or abandon the action. The third
text area of the window captures any messages that are returned by the operating system when
calling the command.
These calls offer a quasi infinite range of opportunities. For example, a command can be configured to open
a Remote Desktop connection to the selected client (if it allows such connections). On a Windows system, such a command
is
cmd.exe /c start mstsc /v:%host%
In a Linux environment the following command can be used:
rdesktop  -a 16 %host%
In these examples serves %host% as a variable, which opsi-configed automatically replaces
by the value for the selected host. Other variables that can be analogously used in the commands are:
	
%ipaddress%

	
%hardwareaddress%

	
%opsihostkey%

	
%inventorynumber%

	
%depotid%

	
%configserverid%



If the command is marked by the additional server configuration entry  editable  as true,
then the command line allows ad hoc editing. For example, you may supply a requested password or vary
the command as needed.
Caution
If there is some command declared as editable then in fact any program addressed
at the client computer can be called by changing the editable command.

If more than one client is selected the command will be executed in a own thread for each client.
The list of remote control commands
is editable via server configuration entries (cf.
Section 4.16, “Host parameters in client and server configuration”).
To define a command example, at minimum an entry configed.remote_control.example
(or configed.remote_control.example.command) must be generated. The value of property has to be the command
(in which the variables %host%, %ipaddress% etc. can be used). Additionally, an entry configed.remote_control.example.description
can be defined. The value of this entry will be shown as tooltip (if not existing, the command itself will serve as tooltip content).
Furthermore, a Boolean entry configed.remote_control.example.editable can be added. If its value is set to false the command
cannot be edited in the selection window.
Figure 25. opsi-configed: Editing of remote control commands in the server properties editor
[image: opsi-configed: Editing of remote control commands in the server properties editor]



Shutdown / reboot of selected clients



You may send the selected clients a shutdown or reboot signal. You have to confirm this command at the opsi-configed.
Caution
If the client received the signal, it will going down with out any more questions.


Delete, create, rename and move clients



You may delete the selected clients from the opsi-server.
If you choose to create a client, an input mask opens. There you enter or confirm the required data – client name without domain specification, domain name, depot server name. You may add a textual description for this client and notes on this client.
Figure 26. opsi-configed:  creating a client
[image: opsi-configed: creating a client]


The mask also contains fields for an optional declaration of the IP-number and the ethernet (MAC) address of a client. If the backend is activated for the configuration of a local dhcp-server (which is not the default setting), this information will be used to make the new client known to the dhcp-server. Otherwise the MAC address will be saved in the backend and the IP-number will be discarded.
When creating clients you can directly for the new client specify to which group it should belong,
as well as which netboot product should be directly set on setup. In addition, you can activate
directly the Install by shutdown, UEFI Boot and the (standard) WAN configuration from the beginning.
These settings can easily be made in the Hosts-List.
These configurations are only available since the version 4.0.5.8.1 .
Since opsi 4.0.4 it is possible to disable the options for creation and deletion of an opsi client.
This is used if the client creation should be managed by a different service, eg. the UCS service.
For the configuration of these options, a host parameter (config) is provided. It is named configed.host_actions_disabled and
offers the list values
	
add client

	
remove client



(multiple selection allowed). The default is the empty selection meaning that no option is disabled.
The default setting can be changed so that adding and removing clients from the  opsi-configed is disabled:
opsi-admin -d method config_createUnicode "configed.host_actions_disabled" "Disable host actions" ["add client","remove client"] ["add client","remove client"] false true
You may rename a selected client, you will be asked for the new name.
Moving a client to a different depot-server. If clicked the following windows appears with a list of existing depot-servers
Figure 27. opsi-configed: change the depot of a client
[image: opsi-configed: change the depot of a client]




4.9. Product configuration



Switching to the tab Product configuration you get a list of available software packages with its installation status and action status for the selected clients.
Figure 28. opsi-configed: product configuration mask
[image: opsi-configed: product configuration mask]


Since opsi 4.0.4 a search function is added.
With the search function, products can be searched by product names and (if desired) in combination with special values in the fields of the product table (like searching the client table).
Therefore a search string can be entered. The search starts immediately and the first matching line is marked . If there is no match to be found (or characters are removed from the search string), the first line of the table is marked.
The context menu offers some more options.
Figure 29. opsi-configed: Product search with context menu
[image: opsi-configed: Product search with context menu]


To get a better overview, activating the filter function reduces the product view to the selected products only.
The selections stays active until the filter is disabled by clicking the filter button again.
If there is a different status for the selected clients this will be marked grey (undefined). The list of the selected clients is shown at right on top.
You can also sort the product list by clicking at the column header.
This are the columns:
	
Status is the last announced state of the product and can hold the values installed, not_installed, unknown. The table shows an empty cell if the value is not_installed  to improve the usability of the view. The cell becomes grey if a multitude of selected clients is selected and does not share a common value (grey coloring represents the pseudo value mixed).

	
Report informs about the progress or the result of the last action using the pattern <action result> (<last action>). During an installation process there may be indicated installing, afterward e. g. failed(setup) or success (uninstall).

	
The column Requested action holds the information which action is to be executed. Possible values are none (shown by an empty cell) and the action types for which scripts are defined in the product package (possible values are setup, uninstall, update, once, always, custom).

	
The field Version  displays the software version number combined  with the opsi package number of the software package installed on the client.



There are two more columns which can be activated via the context menu:
	
Priority class displays a priority value that is assigned to the product (highest priority +100, lowest priority -100). It influences the product order when products are installed (by virtue of the product_sort_algorithm)

	
The position column displays the product ordering forecast for installation sequences.



Choose a software product to get more product information in the right part of the window like:
	
Complete product name: full product name of that software package.

	
Software/package version: software version-version of the opsi package  of the software package (specified in the opsi installation package).

	
Product description: free text to describe the software.

	
Hints: free text with advices and caveats for handling the package.

	
Requirements: A list of other products which the selected product (say A) depends on combined with the type of dependency: required means that A requires the other product (B), but it doesn’t matter whether B is installed before or after A. pre-required means B has to be installed before A. post-required means B needs to be installed A. on deinstall means this action should take place if A be de-installed.

	
Configuration for client: It is possible to define additional properties for a product. Their values can be evaluated in a setup script to configure the product per client. Because of the intrinsic complexity of a property definition there is a specific GUI element for displaying and editing the table of properties:




4.10. Property tables with list editor windows



A property table is a two-column table. In each row, the first column contains a property name,
the second column displays the assigned property value(s).
It may be configured that a tool tip is displayed showing some information on the meaning of the property and the default value.
Figure 30. opsi-configed: property table with tooltip
[image: opsi-configed: property table with tooltip]


If you click at a value a window pops up: the list editor for this property.
It shows a value resp. a list of preconfigured values with the current value (resp. a combination of values) as selected.
Figure 31. opsi-configed:  list editor, selection list
[image: opsi-configed: list editor, selection list]


Clicking a new value changes the selection.
If the property value list is editable (new values may be added to the existing list resp. existing values changed) the window comes up with an edit field for the new or modified values.
Figure 32. opsi-configed: list editor, edit field
[image: opsi-configed: list editor, edit field]


The most comfortable way to get a new value that is a variant of an existing one
is double clicking the existing value in the list. This copies it into the edit field where it can be modified.
As soon as the edit field contains a new value – not yet occurring in the value list –
the plus button will be activated with it the new value can be added to the list of values.
If multiple values are allowed – as it should be e.g. for the property additional drivers – a value may be added to the set of selected values by Ctrl-Click .
The very same action removes a selected value from the set. The minus button empties the selection set completely.
When the list has been edited the green check mark turns to red as usual in the opsi-configed. Clicking it takes the new selection as new property value (and finishes editing). Clicking the blue cancel button stops editing and resets the original value.
Hidden Password Property Values



A property value that is a password should not be directly displayed.
Until this feature will be constructed as a special value type in some coming release the hack is used that a property value
will only be displayed if the user explicitly requests it in cases (since version 4.0.7 ):
	
the property key text contains the string password

	
the property key text starts with the string secret



E.g., the value of the property root_password in the Linux netboot products is displayed as a sequence of stars  (until the user does the edit click and explicitly confirms to showing the password).


4.11. Netboot products



The products on tab Netboot products are mainly used to install the client OS (operating system) and are listed and configured like the products on tab Product configuration.
If for the selected client(s) a netboot product is set to setup, the correspondent bootimage will be loaded and executed at the next client reboot.
Figure 33. opsi-configed: mask to start the bootimage
[image: opsi-configed: mask to start the bootimage]


This is usually done to initiate an OS installation or any other bootimage task (like a memory test etc.)

4.12. Hardware information



With this tab you get the last detected hardware information for this client (only available if a single client is selected).
Figure 34. opsi-configed: Hardware information for the selected client
[image: opsi-configed: Hardware information for the selected client]


Automatic driver upload



The two offered byAudit driver paths are composed of the manufacturer and the product or the model, which are respectively read from the computer and the mainboard. By clicking the right button to upload a driver, a new window will be displayed to add more settings.
Figure 35. opsi-configed: Hardware information - driver upload
[image: opsi-configed: Hardware information - driver upload]


If you open the opsi-configed on a Linux system, it is not directly possible to carry out a driver upload because the connection is carried out via a Share. This needs to be made manually. However, the methods or directory structures are an essential aspect of the drivers integration for linux users as well as for windows users.
Without further settings, the driver upload of a Windows computer, works only if the connection to the Share is enabled.
Among other things, information must be given in a new window, like to which Windows product should the driver be prepared, which drivers are to be uploaded and with which method or the directory in which the driver integration takes place. The target directory is accordingly changed with the selection of another method. The previously selected byAudit driver path can be found again by default in the selected method byAudit, that specifically integrates the selected driver for the type of machine.
Following methods and directories are possible:
	
standard: For the drivers which are found in ./drivers/drivers/, the driver will be matched to the corresponding hardware using the PCI IDs (i.e. USB- or HD_Audio-ID) in the description file, and then integrated into the Windows setup as needed. It may be the case that the drivers found by opsi in this location do not necessarily work with your hardware. For the drivers which are found in ./drivers/drivers/, the driver will be matched to the corresponding hardware using the PCI IDs (i.e. USB- or HD_Audio-ID) in the description file, and then integrated into the Windows setup as needed. This is the fall back directory for all clients.

	
preferred: In the case that you have to support special hardware, and you can find the additional drivers from the manufacturers, then use the following procedure to include them in the installation. Place the additional drivers in their own directory under: ./drivers/drivers/preferred (the naming and depth of the directory structure is not important). Drivers that are found in the directory ./drivers/drivers/preferred will be integrated into the Windows setup, assuming that opsi finds a suitable match to the drive hardware based off of the PCI IDs (i.e. USB or HD_Audo-ID) in the description file. Problems can occur when the same PCI ID of the drivers is found in preferred. In this case, a direct mapping of the drivers to the devices is needed.

	
excluded: It could happen that the manufacturers include different drivers for different operating systems (i.e. Vista vs. Win7) or different configurations (ie. SATA vs. SATA RAID).  The create_driver_links.py cannot make this distinction.  If you think the wrong driver has been installed, then move the driver to the drivers/exclude directory and then call create_driver_links.py again.  Drivers in the directory drivers/exclude are not used during the integration.

	
additional: When installing additional drivers based on the PCI-IDs or USB-IDs, they should be installed under the directory ./drivers/drivers/additional (where name and depth of the directory structure is not important).  You can map one or more drivers to a client using the Product-Property additional_drivers and a list of driver directories under ./drivers/drivers/additional.  The directories specified by additional_drivers are searched recursively until all drivers are found.  This method can be used to make a specific directory based on the client type (i.e. dell-optiplex-815).

	
byAudit: The previously described mechanisms that directly map drivers to devices is automated since the 4.0.2 Release 2 of opsi.  Opsi will search the directory ./drivers/drivers/additional/byAudit for a director name that matches the field Vendor that was given in the Hardware Inventory. This Vendor directory will be search for a Model directory that corresponds to what is seen in Hardware Inventory.   If this directory is found, then it will be manually assigned to the product property additional_drivers. The directory name byAudit is case sensitive.  The directory names for Vendor and Model are not case sensitive (Dell and dELL are treated the same way).



Some manufacturers use model names that are very delicate to this method, since some special characters such as / are not allowed to be used in files or directory names.
An example for a model name could be: "5000/6000/7000".
A directory with this name is not allowed because of the special characters. Since the third Service Release from opsi 4.0.3 the following special characters: < > ? " : | \ / * were replaced internally with an underscore "_" character.
 With this change can the above example be replaced with: "5000_6000_7000" the directory will automatically be shown, even though the directory structure information in the hardware inventory is not visually the same.
Important
After the driver upload please execute create_driver_links in the opsi-depot-server.



4.13. Software inventory



With this tab you get the last known software information for this client (only available if a single client is selected).
Figure 36. opsi-configed: Software information for the selected client
[image: opsi-configed: Software information for the selected client]



4.14. Logfiles: Logs from client and server



The client specific log files are stored on the server and visible with the opsi-configed via the Tab log files.
The level up to which the log lines are seen can be chosen by a slider (wheel mouse enabled), so that errors can be easily found.
It’s also possible to search in the log file (to continue the search press F3 or Ctrl-L = last search repeated).
Figure 37. opsi-configed: Display of the log file in the opsi-configed
[image: opsi-configed: Display of the log file in the opsi-configed]



4.15. Product default properties



To change the default values of the products for one or more opsi-depots, there is a tab, called Product default-properties.
This is only available if you select Properties of depots (which is the second button at the top right hand side).
In the main table, all products are listed with the product version as well as the package version.
If a product is selected, at the top of the right side (as is customary for the client product configuration)
general information about the product packages is shown. Below is the list of all depots,
that have installed the selected product. The table below with the property keys and values
is also known from the client product configuration.
Figure 38. opsi-configed: product default properties
[image: opsi-configed: Product default properties]


You can select a single depot or multiple depots to change the default values
(which are also called the depot values) of the product.
As the default, all available depots are preselected. With the usual shortcuts
(Ctrl-a, Ctrl-Click or Shift-Click) multiple or all clients can be selected.
If the property value is shown grayed (see Figure 38, “opsi-configed: product default properties” - “gui_language”),
the values for that property differ on the selected depots.
On the right side of the depots are three buttons:
	
(=+): Mark all depots that have identical values 
All depots, that have the same default values, are marked.

	
(++): All depots are marked.

	
(globe): set the package default values
The original package default values of the products will be set for the selected depot(s).




4.16. Host parameters in client and server configuration



There are many configuration options for the opsi server and the opsi clients
that may be set or changed via the tab Host parameters. Server defaults are
set in the mode server configuration, client specific values
in the mode client configuration plus manual selection of the Host parameters tab
(see also Section 4.4, “opsi-configed modes Client configuration / server configuration / license management”).
On principle, these configuration entries (config objects of the opsi-server)
are conceived as lists of values. Therefore they are
edited via the list editor component (cf.
Section 4.10, “Property tables with list editor windows”).
Depending on the specific type of a configuration object,
	
the elements of the list can be of type text (Unicode) or of type Boolean (i.e. true/false);

	
the set of all values from which elements can be selected may be fixed or extensible.

	
the object has a defaultValues-entry, which comprises in the singleValue case exactly one
list element, in the multiValue case some partial list selected from the list of all possible values.



New configuration objects can be created via the context menu of the server host parameters.
At this place it is also possible to remove existing entries.
The relationship of server and client entries is a little bit complicated.
	
Server entries hold the defaults for client entries (this is the defaultValues entry in the server configuration object)

	
Consequentliy, if a client entry is needed a server configuration object must be created beforehand.

	
And, when a server entry (a config object) is deleted,
the depending client entries (called config states) are (automatically) deleted as well.

	
If the client related value is shown as identical with its (server based) default value this may be be
because there does not exist a client specific data base entry or because the client value is identical
with the server default value. In the first case the client value changes when the server default value
gets new contents, in the second case the client remains unchanged.

	
In order to work comfortable with this situation since opsi-configed version 4.0.7.6.5 the context menus
of the client host properties offer the options (1) to remove the specific client values, so that from now on
only the current server values are decisive, (2) to fix the  specific client values to the current server values.

	
if the currently presented client value iis not identical with the server default value it is given in a bold font.

	
There are configurations objects for which client values can  be created and edited but in fact only the server
objects are used. In most cases, the current configed does not show them any more in the client parameters view.



To get more structure the configurations objects are categorized in some (predefined)
groups. The groups are listed in a tree-like manner on the left part of the panel. The entry name/value pairs
belonging to the selected group are shown in the right part of the panel. Wheel mouse scrolling is enabled
as well on the left as on the right side.
Figure 39. opsi-configed: Tab Host parameters (as server configuration)
[image: opsi-configed: Tab Host parameters (Server- and Client configuration)]


Figure 40. opsi-configed: Tab Host parameters (context menü of a client entry)
[image: opsi-configed: Tab Host parameters (context menü of a client entry)]


Management of user rights and roles



Starting with version 4.0.7.5 the opsi-configed includes the user roles function.
Caution
In order to use this feature  the module user roles must be activated in the modules_-file.

In the interface, in the overview of the server host parameters, the category user
shows the availability of the function (not necessarily active).
The user branch of the properties tree starts with a boolean entry
user.{}.register
with default value false.
The other entries at this location represent the default values for the user-specific configurations of the server console (cf.  Section 4.20, “Server-Console”).
To activate the user role extension you need to:
	
Set the value of user. {}.register to true.

	
Load a modules file that has the userroles extension temporarily or permanently activated.



When the user-role extension is activated, an entry is created in the properties tree for the logged-in user.
The default settings used for the administration of rights are like the "classic" requirements for an administrator,
that means, that this user has no restriction whatsoever. E.g., for a user named admindepot1 the following entries are generated:
user.{admindepot1}.privilege.host.all.registered_readonly       [false]
user.{admindepot1}.privilege.host.depotaccess.configured        [false]
user.{admindepot1}.privilege.host.depotaccess.depots            []
user.{admindepot1}.privilege.host.opsiserver.write              [true]
These four items mean:
	
admindepot1 is not restricted to read-only access to the server (a pure read-only access might be appropriate for a help desk staff member);

	
depot restrictions do not exist or are not taken into account;

	
consequently, the list of depots available to the user can stay empty
(and if some depots are entered, this has no effect);

	
the user is allowed to edit config server settings of all kinds.



In the case that the access of admindepot1 is to be restricted to the computers in the depot server depot1, the following should be set:
	
host.depotaccess.configured is to be set to true;

	
the value "depot1" is to be put into the list host.depotaccess.depots.



After a complete data reload, clients from other depots are not more visible to admindepot1
(and also only the depot settings for depot1 are accessible).
Caution
admindepot1 him/herself can change this settings as long as she/he owns the privilege host.opsiserver.write

In order to complete the restriction, it therefore is required to set
	
host.opsiserver.write to false.



Caution
The privileges which are set in this way restrict only the functionality of the opsi-configed.
Until further notice, they have no effect if the JSON-RPC interface of the opsi-server is accessed by other means.



4.17. Depot configuration



In the mode Properties of depots you will see the tab Depots. There is a drop down menu to select the depot. After selecting the depot you may change the properties of the opsi-depot.
see also:
Figure 41. opsi-configed: Tab Depot configuration
[image: opsi-configed: Tab Depot configuration]



4.18. Group actions



The button "group actions" in the main button bar (cf. Section 4.4, “opsi-configed modes Client configuration / server configuration / license management”)
opens a window for group related functions.
At the moment, it provides only one function which is relevant for the opsi-localimage module.
	
to search for an operating system, that had been installed on all of the clients of the selected group and therefore can be offered for all of the clients of that group.



Figure 42. opsi-configed: Group actions (for opsi-local-image)
[image: opsi-configed: Group actions (for opsi-local-image)]



4.19. Product actions



The button "product actions" in the main button bar (cf. Section 4.4, “opsi-configed modes Client configuration / server configuration / license management”)
opens a window for functions related to products resp. packages.
Currently it offers two options:
	
An .opsi file (opsi package) can be selected or entered and can be uploaded to the opsi server; the default upload directory on the server is the network (samba) share named opsi_workbench. The button click starts installing the package on the server, like invoking the opsi-package-manager.

	
The WinPE files and install files for an Windows product (Windows Vista and above) can be uploaded to the server product directory (share opsi_depot), so that windows products do not have to be managed from the server side.



Figure 43. opsi-configed: package  and product actions
[image: opsi-configed: packet actions]



4.20. Server-Console



Caution
Some of the following features require at least python-opsi version 4.0.7.38,
in particular defining you own commands as described in Section 4.21, “Define commands” and using them via configed.

With version 4.0.7.5, the configed is extended with a new main menu entry, the "Server Console". At this place some options are bundled to access the opsi-server via a SSH-Connection.
It is as well possible to start a terminal as well as menu items are offered of some predefined commands on the opsi-server.
Figure 44. opsi-configed: Menu: Server Console
[image: opsi-configed: Server Console]


Connection data and permissions



If not otherwise configured, it is tried to build a SSH connection with the same user/server pair for which to configed login was done.
Should this not be the case the connection can be also started via a SSH key (possibly with a password) when the configed starts.
In this case, the following start parameters can be used:
	
--ssh-key PATH:  e.g. --ssh-key /home/user/.ssh/id_rsa

	
--ssh-passphrase PASSPHRASE: e.g. --ssh-passphrase Password



The settings can be changed or adjust under the menu entry "Connection Information".
The visibility of menu items in the server console menu is controlled by a series of server host parameters in the user section. If the user roles feature is used
(cf. the section called “Management of user rights and roles”) the configs are specifically set for each user (the default values for a newly created user entry are taken from the top user level).
In order to be able to use different functions, the appropriate server settings must be activated.
	
user.{}.ssh.serverconfiguration.active:
Activates the ssh connection settings menu. (Default: false)

	
user.{}.ssh.commandmanagement.active:
Activates the editing of commands and their menu entries. (Default: false)

	
user.{}.ssh.menu_serverconsole.active:
Deactivate the "Server Console" menu in principal. (Default: true)

	
user.{}.ssh.terminal.active:
Allows the usage of the ssh shell. (Default: true)

	
user.{}.ssh.commands.active:
Allows to execute all menu items displaying stored commands. (Default: true)




SSH-Terminal



With the Terminal, Linux commands can be run from the connected SSH-Server.
In addition to the possibility to replace the input with asterisks (*), which is strongly recommended for the input of passwords, a process can also be canceled by clicking the "End process / connection" button or by pressing "Ctrl + C".
Just like in the Terminal, the "TAB" can be used to complete commands. Warning: Paths will not be completed - only Linux system commands.
Besides it is also possible to specify data sources, that before the execution can be replaced by concrete data. More about this functionality:
Section 4.21, “Define commands” - Item: Datasources)
Figure 45. opsi-configed: SSH-Terminal
[image: opsi-configed: SSH-Terminal]



Predefined commands with input masks



Under the menu group "opsi" a few commands are available independently of the self-defined commands with their own input interface. These simplify the handling of various scripts.
	
Download from data …
Any data file which can be downloaded from the Internet can also be downloaded by the "wget"-command and stored in a certain path on the Server. This could be used for example to download opsi-packages from download.uib.de

	
Create opsi product file …
Prerequisite for this command is an opsi-utils package with version >= 4.0.7.7. Using this menu item, an opsi package can be created, specifying the directory upon which must be stored. In addition, can the found versions (package and product version) be displayed and overwritten with a button. And also, a md5sum and/or a zsync file can be created.

	
Set opsi-rights …
This menu item maps the opsi command opsi-set-rights. After entering a specific (optional) path in which the script is to be executed, the root password is prompted and the script is executed in a separate window.

	
Package-Installation …
With this command, opsi packages can be installed on all depots or in one depot using "opsi-package-manager". You can also specify the server path to the package where the opsi package is located.
By selecting a package from the Internet, the functionality of "File download …" command is taken up and then the downloaded package is installed on the depot.
Additionally, the parameters "--update" and "--setup" of the opsi-package-manager are implemented.
If the zsync and md5 files of an opsi package are to be downloaded, the switch "zsync and md5 include" can be activated.
Then the url of the packages is added accordingly and the additional files are also obtained.



You can find more about opsi-package-manager under the section called “Tool: opsi-package-manager: (de-)installs opsi-packages”
	
Package-Deinstallation …
From a list of installed packages one can be selected and uninstalled.
Please check the section called “Tool: opsi-package-manager: (de-)installs opsi-packages”

	
Deployment opsi-client-agent …
If you want to add existing computers to opsi, the opsi-client-agent must be installed on the target computer. If you select the clients in the configed and execute this command, the client names are copied into the corresponding field. If the command is to be executed on several clients in a single call, the login data must be the same on all the participating computers.
Attention: The location of the script have to be: "/var/lib/opsi/depot/opsi-client-agent/opsi-deploy-client-agent"
Detailed information can be found in the opsi-getting-started manual on the First steps chapter.



TIP:
Some user interfaces include a selection component for paths in the directory structure. If the button "Find
Subdirectories" is activated, all directories or files that are contained in the specified path will be listed. To visualize further sections, you can press the button several times. This functionality is, among others, in the
"Set Opsi rights" or the "Package installation" interface.


4.21. Define commands



In addition to the predefined server console commands,
you can create or remove your own commands,
which can be accessed via menu items.
It should be noted that different Linux systems may not be able to execute the same commands.
Thus, the administrator must be sure that the commands can be executed on the addressed Linux system.
Figure 46. opsi-configed: Define commands
[image: opsi-configed: Define commands]


Following data must be or rather could be (marked with a "*") for a command:
	
Menu-Text:
When creating a new command you must make sure that the menu text has not been used already for another command. If a menu text is to be changed, the command must be first deleted with the minus button, and then the new command can be entered.

	
Description*:
If a more detailed description is stored, then it appears as a tool tip text on the command.

	
Superior menu*:
Determines in which menu the new command should appear as a menu item. In the case that field is empty, then the menu entry will be directly assigned to the "Server console" menu.

	
Position *:
The position determines the order (small numbers comes first) of the menu points in total, and thus within each respective menu.

If alphabetical order should be displayed, all items must be set identically (e.g., all 0). Should the the field remain empty, then the position 0 is assigned by default.

	
"Sudo" rights *:
If one of the commands in the command list requires administrative rights, a check mark must be set on "Required root privileges" afterwards the commands in the list are automatically executed with the keyword "sudo".

	
Command list:
For the command list, the Linux commands must be entered line by line, so that they can be executed sequentially.
Caution: Command can be tested or executed on the SSH server by means of a button without creating an extra menu point.

	
Data sources* (on the command list):
Additionally methods can be stored as a data source. Before the command can be executed, the parameters are overwritten with the result of the applied method. The following parameters are possible:

	
Interactive input:
  It is possible to specify parameters for the commands or to identify them for an interactive output. This is done with the following format  "<<< This text will be displayed to the user and replaced by the user input >>>" , it is recommended though to write a sample input for the parameter for the user text.

	
Selected client names / Selected client IP addresses

	
Selected depot names / Selected depot IP addresses

	
configserver name

	
Connected SSH servername
Note: Except for "Interactive Input", the return of the methods can also be formatted, for example, into a comma separated list.
In the interface, the data source can be tested, and also insert it into the location marked in the field of the command list.






Figure 47. opsi-configed: Execute command - Parameter query
[image: opsi-configed: Execute command - Parameter query]


Tip
- On Linux, commands can be combined using two commercial ANDs ( "&&"). However, it must be ensured that the second command, if needed, is executed with administrative rights, since this is not done automatically. Example: Requires root privileges: "activated", command list: "apt-get update --yes && sudo apt-get upgrade --yes". +
  - During the execution, no user input can be made. It is necessary to control all the inputs via the command \ parameters (example: "--yes" option for "apt-get upgrade")



5. opsi-server



5.1. Overview



The functionality of a opsi-server may be installed on many different kind of linux distributions.
There are two different roles which a opsi-server can play:
	
opsi-config-server
The opsi-config-server has the central data storage and provides the access to this data via the opsi web service. A opsi-config-server normally has additiona the role opsi-depot-server.

	
opsi-depot-server
The opsi-depot-server has no configuration data storage. The opsi-depot-server hold the installation files at a share and provides the PXE/tftpboot services for the netboot products.



The hardware requirements are low. The opsi-server can also run as a virtual instance, e.g. vmware® (www.vmware.com).
Installation and initial operation



Installation and start-up of the opsi-server is described in the opsi getting started manual.

Samba Configuration



The opsi depot server provides network shares holding the configuration information and the software packets. These shares can be mounted by the clients. For Windows Clients the shares are provided by SAMBA (version 3.x).
To configure your samba according to the needs of opsi (or to repair) call:
opsi-setup --auto-configure-samba
After every change of the samba configuration, you have to reload your samba  (service samba reload).

The daemon opsiconfd



The opsiconfd is the central opsi daemon (service). It provides an interface for clients to create, manipulate and read data in the backends.
The configuration of opsiconfd is done in /etc/opsi/opsiconfd.conf. The options are commented in the file.
You will find some additional notes here.
	
[global] max log size:
This option limits the size of logfiles created through the opsiconfd.
Due to an historic reasons this is limited to 5MB per logfile.
Since opsi 4.0.6 the size can be configured.
To disable any size limits the value can be set to 0.



In addition you can use the tool logrotate to rotate and compress logfiles.
Please refer to the corresponding manual for configuration possibilities.
With the knowledge that a logfile for a client does not grow beyond a given
size it is possible to calculate how much space opsi logs will require.
There are five different client-specific logtypes that opsiconfd writes:
bootimage, clientconnect, instlog, opsiconfd and userlogin.
There are also some client-independent logs: opsiconfd.log, opsipxeconfd.log,
opsi-backup.log, opsi-product-updater.log and package.log.
If we now assume a configuration of opsiconfd and logrotate that limits those
files to 5MB except for package.log that is allowed 10MB we end up with
the following calculation:
(number of clients * 5 * 5MB) + 5MB + 5MB + 5MB + 5MB + 10MB
For 100 Clients we then should reserve 2530MB for the logs of opsi.
Because logrotate will usually only shorten logs on a specified schedule
we recommend to rounding this number up. It would also give you some space
for adding new clients.

Required administrative user accounts and groups



	
User opsiconfd
The daemon opsiconfd runs as this user.

	
User pcpatch
This user is be used by the opsi-client-agent to mount the depotshare.
You may set the password for this user by
opsi-admin -d task setPcpatchPassword.

	
Group pcpatch
The group pcpatch has write permission on many files and youll need to be in this group in order to build and install opsi products.

	
Group opsiadmin
Members of the group opsiadmin are permitted to connect the opsi-webservice and can use for instance the opsi-configed configuration editor. Therefor all opsi administrators should be members of the group pcpatch.

A user can join group opsiadmin by: addgroup <user> opsiadmin.




needed shares



	
Depotshare with installation files (opsi_depot)
The depot share provides all the software-packets which are installable by the client task opsi-winst. The default directory for the software packets is the directory /var/lib/opsi/depot. In this directory each software packet has its own sub directory named as the software packet. These sub directories contain the packet-specific installation scripts and files.

Note
In older versions that share was located at /opt/pcbin and was named opt_pcbin.


	
The directory to build pacages (opsi_workbench)
At /home/opsiproducts you will find the area to create new packages and from where you should install packages with the opsi-package-manager.

Caution
On distributions from the SUSE family the directory is located at /var/lib/opsi/workbench.


	
Share with the configuration files of the file backend (opsi_config)
At /var/lib/opsi/config you will find the file backend configuration files.




opsi PAM Authentication



opsi uses some PAM-modules to authenticate the user. With this new release, opsi uses different modules for certain distributions. The following list will give you a small overview about which modules are used:
Default: common-auth
openSUSE / SLES: sshd
CentOS and RedHat: system-auth
RedHat 6: password-auth
You can see in the list above, which different PAM-modules are used.  However, it could be the case that a different PAM-module is required, depending on the local configuration.  The source code can be modified to account for these changes. To provide more flexibility without changing the sourcecode, it is possible with this release to create a file named: opsi-auth in the directory /etc/pam.d/. If this file exists, opsi will use this configuration automatically instead of the modules listed above.
The following example will show you the new feature: If you run a debian/ubuntu-System and you get a PAM-authentication-error, even though you can connect with the same credentials over ssh on the server, then you can create the file: /etc/pam.d/opsi-auth with following content:
@include sshd
After restarting opsiconfd, opsi will use automatically the sshd-PAM-module for authentication of users.
Note
Please be aware that for application of ACL a case-sensitive interface is used but authentication through PAM can be case-insensitive. This can lead to the case where ACL are denying access despite an successful authentication.


problem management



If you have incidents by using opsi, you should check the following list or rather execute the following commands. Experience has shown that the combination of the commands in this chapter fix the most incidents.
	
Check accessibility and load of opsi-webservice:
Call URL: https://<server-ip>:4447/info with your browser. If you can not connect, continue with next step. If you can connect: check the load of opsi-webservice and check the freespace on disk (scroll down in the info-page).
For the generation of load images you need rrdtool with Python-bindings. Please install them if needed.

	
Check that the daemons are running and restart them:

ps -ef | grep opsiconfd
ps -ef | grep opsipxeconfd
service opsiconfd restart
service opsipxeconfd restart

	
Initialize the configuration

opsi-setup --init-current-config

	
Set the rights for opsi-relevant files and directories:

opsi-setup --set-rights

	
Cleanup backend

opsi-setup --cleanup-backend

	
Check that samba is running:

ps -ef | grep mbd
At least one nmbd and one smbd process should be running.
To restart samba:
service samba restart
or
service nmbd restart
service smbd restart

	
Set the pcpatch-password:

opsi-admin -d task setPcpatchPassword





5.2. Remarks to Samba 4



With the stable state of Samba4, the development and maintenance for the Samba3 branch has been discontinued. Therefore most of the common Linux distributions (client and server) now contain Samba4 instead of Samba3. Samba shares are a basic component for the opsi system and there are some opsi relevant differences between Samba3 and Samba4, that are discussed in this chapter.
At first it has to be distinguished, in which operational mode Samba is executed. A special feature of Samba4 is the ability to run a fully-fledged Active Directory compatible domain controller. In this operational mode (which will be called PDC mode in the following chapters) there are some restrictions, that had to be adopted from Active Directory for compatibility reasons. Most of the current distributions are equipped with Samba4 in the common share mode, that does not provide the operation of a fully-fledged Active Directory domain. With the exception of the Univention Corporate Server, that has PDC-Mode integrated into their standard packages.
The /etc/opsi/opsi.conf: pcpatch and opsifileadmins



Tip
the restrictions discussed in this chapter concern the PDC mode of Samba4 only.

The classic installation, with the user: pcpatch in the group: pcpatch, does not work with Samba 4. Samba 4 has defined fundamental restrictions for the Active Directory, such as groups with the same name as a user (which is common in Unix/Linux) are no longer allowed. For this reason, a new configuration file has been introduced:  /etc/opsi/opsi.conf, that configures the groups for Samba access. To be more specific, for Samba 4 installations the group name pcpatch is renamed as  opsifileadmins. So the user pcpatch, who was member of the group pcpatch under Samba 3, must now be a member of the group opsifileadmins.
So, to have access rights for opsi-packages under Samba 3, a user cannot be a member of the group pcpatch anymore, but must be a member of the group opsifileadmins.
Furthermore, the user pcpatch has to be created as a fully-fledged domain user and not as a system user anymore.
These migration steps are performed automatically during opsi installation on a Univention Corporate Server, if the installation process detects Samba4 running in PDC mode.
Besides the UCS installations, currently there are no other default Active Directory configurations. So these steps have to be done manually for any other Samba4 Active Directory domain contoller installation.
During future updates, the opsi system checks for the required user configuration and does not try to create users, that do already exist.
For any questions please contact opsi support. In case you do not have an opsi support contract, please contact info(at)uib.de.

Share Configuration



Tip
The changes discussed in this chapter ar relevant for all operational modes of Samba4.

With Samba 3 the default setting was, that every file or directory was executable on the share for the Samba clients. This behaviour changed with Samba 4. Now all files, that shall be executable from the share, must also have the executable bit set on the Unix side.
This results in a basic problem with running opsi. It is not possible to handle this behaviour from the opsi rights management, for it would require fundamental changes of the rights management of opsi, that can’t be done with opsi 4.
So for handling this problem with opsi 4.0 there are two ways:
Option 1: for the affected shares this behaviour can be supressed by elevating the share privileges of each member of the pcpatch group from the share configuration by setting the following option:
admin users = @pcpatch
This fix elevates the privileges of the Samba processes and has already been used by opsi for some time for UCS >= 3 with Samba 4.
opsi installs per default for Samba 4 distributions with opsi-setup --auto-configure-samba this option for the opsi_depot share. This share is mounted read only, so the safety and security risk can be estimated as low.
Caution
For all other shares, that are mounted as read/write, it has to be considered, that with this fix the samba process runs with elevated rights. This can be a potential risk. Although there are currently no known exploits for this vulnerability, there might be some in the future.

Caution
The Linux smb daemon has a bug. On an existing opsi_depot share it is configured with oplocks. These options have to be removed in the share configuration within the smb.conf. On a new opsi installation and therefore share creation these options are not present anymore.

Option 2: the following global option can be set in the smb.conf:
acl allow execute always = True
With this option all shares behave like Samba 3 shares.
To restore the old Samba 3 behaviour for all shares, the setting of this option can be done for every share manually, or alternalively the option can be set globally in the smb.conf. This changes the behaviour for all shares, not only for the opsi shares.
The global setting does not work with Univention Corporate Server, for its Samba 4 installation is configured in a very special way.

Access to the shares: clientconfig.depot.user



When using Samba 4 it might be necessary to configure the specific domain and user combination to be used for mounting the depot share.
The default configuration is just the user pcpatch and nothing as domain. If this fails because the mount defaults to the wrong domain, you should configure the correct domain (in most cases: the hostname of the opsi-server).
The config parameter is named: clientconfig.depot.user.
The value of this config has the syntax: <domain name>\<user name>
An example config:
clientconfig.depot.user = opsiserver\pcpatch
specifies, that the opsi depot share is mounted as domain opsiserver and user pcpatch.
You may create such a configuration using the opsi-configed:
Server configuration / clientconfig / right mouse button: add standard configuration entry.
You may also use the command line to create this configuration (replace pcpatch by the string you need e.g. opsiserver\pcpatch:
opsi-admin -d method config_createUnicode clientconfig.depot.user "clientconfig.depot.user" pcpatch
This system wide configuration may be changed client specific (e.g with the opsi-configed)


5.3. opsi command line tools and processes



Tool: opsi-setup



This program is something like the swiss army knife of the opsi configuration. It is used by the opsi installation scripts and can be also called separately for maintenance and repair purposes.
The tasks of opsi-setup are:
	
register a opsi-server as depot server

	
correct file access rights

	
initialize data storage backends

	
upgrade backend (from 3.4 to 4.0)

	
setup of the MySQL-backend

	
edit the default configurations

	
cleanup the current backend(s)

	
configure the essential samba shares

	
configure the essential dhcp entries



The command opsi-setup --help shows the program options:
opsi-setup --help

Usage: opsi-setup [options]

Options:
   -h, --help  show this help
   -l          log-level 0..9

   --log-file <path>          path to log file
   --ip-address <ip>          force to this ip address (do not lookup by name)
   --register-depot           register depot at config server
   --set-rights [path]        set default rights on opsi files (in [path] only)
   --init-current-config      init current backend configuration
   --update-mysql             update mysql backend
   --update-ldap              update ldap backend
   --update-file              update file backend
   --configure-mysql          configure mysql backend
   --edit-config-defaults     edit global config defaults
   --cleanup-backend          cleanup backend
   --auto-configure-samba     patch smb.conf
   --auto-configure-dhcpd     patch dhcpd.conf
The functions and options in detail:
	
--ip-address <ip>
Sets the ip-address for opsi-server and do not resolve by name.

	
--register-depot
This option is used to register a opsi-server as depot server to a other opsi-server (opsi-config-server). For details see



	
--set-rights [path]
Sets the file access rights in all opsi directories:

	
/tftpboot/linux

	
/home/opsiproducts

	
/var/log/opsi

	
/var/lib/opsi

	
/var/lib/opsi/depot

	
/etc/opsi

You may give a directory name as argument to set only the access rights below this directory.
e.g.
opsi-setup --set-rights /var/lib/opsi/depot/winxppro/drivers




	
--init-current-config
initialize the configured backend. Should always be invoked after changing the file
/etc/opsi/backendManager/dispatch.conf

	
The commands:
--update-mysql
--update-file
 are used to upgrade the backends from one opsi release to the next one.
For details see the releasenotes-upgrade-manual.

	
--configure-mysql
does the first time database setup.



	
--edit-config-defaults
To edit the default values of some configuration data like in the server
configuration of the opsi-configed.

Figure 48. Dialog: opsi-setup --edit-config-defaults
[image: Dialog: opsi-setup --edit-config-defaults]


e.g.:
	
clientconfig.depot.id 

	
The name of the default depot server.

	
clientconfig.depot.drive 

	
The drive letter used for mounting the share with the installation data. You can either select a drive letter or dynamic. With dynamic the client will try to automatically select an drive letter from those not in use.

	
license-management.use 

	
Defines if netboot products should get license keys from license management or from product properties.

	
product_sort_algorithm 

	
Defines the algorithm which is used to calculate the product installation sequence.




	
--cleanup-backend
Checks the current backends for integrity and removes obsolete or unreferenced entries.
Examples for entries that may be removed are products without reference (not installed on depot / client), host-groups without a parent and configstates without corresponding config.



Note
It is common good practice to create a backup through opsi-backup before cleaning the backend.

	
--auto-configure-samba
Creates the opsi share entries in the /etc/samba/smb.conf configuration file

	
--auto-configure-dhcpd
Creates the by opsi needed entries in the /etc/dhcp3/dhcpd.conf.
Don’t use this if you not plan to use the dhcpd on the opsi server.
More details in the opsi-getting-started manual




Tool: opsi-package-manager: (de-)installs opsi-packages



The opsi-package-manager is used for (de-)installing opsi-product-packages on an opsi-server.
In order to install a opsi-product-package, this opsi-product-package must be readable for the opsi system user opsiconfd. Therefore it is strongly recommended to install those packages from the directory /home/opsiproducts (or a sub directory).
The log file of the opsi-package-managers you will find at /var/log/opsi/package.log.
Install a package (asking no questions):
opsi-package-manager -i softprod_1.0-5.opsi'
Install a package (asking questions):
opsi-package-manager -p ask -i softprod_1.0-5.opsi
Install a package (and switch required action to setup where installed):
opsi-package-manager -S -i softprod_1.0-5.opsi
Uninstall a package (asking no questions):
opsi-package-manager -r softprod
Extract and rename a package:
opsi-package-manager -x opsi-template_<version>.opsi --new-product-id myprod
It is possible to install a package with a different product id.
This is helpful if a custom Windows netboot product was derived from an existing
package and that package was updated in the meantime.
opsi-package-manager --install win7-x64_1.2.3.opsi --new-product-id win7-x64-custom
Note
Please note that products installed that way will not be automatically updated by opsi-product-updater.

Calling opsi-package-manager with option --help gives a listing of possible options.
Please note:
	
The option -d or --depots are reserved for the use in a multi-depot-server environment.

	
Using option -d the opsi-package will be copied to the /var/lib/opsi/repository directory of the target server before installing. Please make sure that there is enough free space on this file system.

	
If installing new packages fails because there is not enough free space available in your temporary folder you can specify a different temporary folder with the --temp-dir option.



see also:
# opsi-package-manager --help

Usage: opsi-package-manager [options] <command>

Manage opsi packages

Commands:
  -i, --install      <opsi-package> ...      install opsi packages
  -u, --upload       <opsi-package> ...      upload opsi packages to repositories
  -l, --list         <regex>                 list opsi packages matching regex
  -D, --differences  <regex>                 show depot differences of opsi packages matching regex
  -r, --remove       <opsi-product-id> ...   uninstall opsi packages
  -x, --extract      <opsi-package> ...      extract opsi packages to local directory
  -V, --version                              show program's version info and exit
  -h, --help                                 show this help message and exit

Options:
  -v, --verbose                           increase verbosity (can be used multiple times)
  -q, --quiet                             do not display any messages
  --log-file         <log-file>           path to debug log file
  --log-file-level   <log-file-level>     log file level (default 4)
  -d, --depots       <depots>             comma separated list of depot ids to process
                     all = all known depots
  -p, --properties   <mode>               mode for default product property values
                                 ask     = display dialog
                                 package = use defaults from package
                                 keep    = keep depot defaults (default)
  --purge-client-properties               remove product property states of the installed product(s)
  -f, --force                             force install/uninstall (use with extreme caution)
  -U, --update                            set action "update" on hosts where installation status is "installed"
  -S, --setup                             set action "setup" on hosts where installation status is "installed"
  -o, --overwrite                         overwrite existing package on upload even if size matches
  -n, --no-delta                          full package transfers on uploads (do not use librsync)
  -k, --keep-files                        do not delete client data dir on uninstall
  -t, --temp-dir     <path>               tempory directory for package install
  --max-transfers    <num>                maximum number of simultaneous uploads
                                             0 = unlimited (default)
  --max-bandwidth    <kbps>               maximum transfer rate for each transfer (in kilobytes per second)
                                             0 = unlimited (default)
  --new-product-id   <product-id>         Set a new product id when extracting opsi package or
                                          set a specific product ID during installation.

Tool: opsi-product-updater



The command line utility opsi-product-updater is designed to download and install comfortable opsi packages from a repository or a other opsi server. Using the opsi-product-updater make it easy to keep the opsi server up to date. It may be also used in a cronjob to keep depot server in sync with the config server.
# opsi-product-updater --help

Usage: opsi-product-updater [options]
Options:
    -h    Show this help text
    -v    Increase verbosity (can be used multiple times)
    -V    Show version information and exit
    -c    Location of config file
    -i    Install all downloadable packages from configured repositories (ignores excludes)
    -p    List of productIds that will be processed: opsi-winst,opsi-client-agent
The main features are:
	
configurable repositories

	
configurable actions



All configuration will be done at the configuration file /etc/opsi/opsi-product-updater.conf.
configurable repositories



Repositories are the sources which will be used by the opsi-product-update to fetch new opsi packages
There are two kinds of repositories:
Internet Repositories
Example: download.uib.de
This are repositories which are configured by:
	
baseURL (z.B. http://download.uib.de)

	
dirs ( A list of directories e.g.. opsi4.0/produkte/essential)

	
and if needed username and password for password protected repositories (e.g. for the opsi patch management subscriptions)



You may also configure a proxy here.
opsi-server
This is (using a opsi-depot-server) the central opsi-config-server will be used to fetch the opsi-packages.
The central configuration item is here:
	
opsiDepotId



This is in most cases on a opsi-depot-server the central opsi-config-server. So on any call of the opsi-product-updater the opsi-product-packages will be fetched from the opsi-config-server. This can be done for example by a cronjob.

configurable actions



For each repository you have to configure which actions to run:
	
autoupdate: Newer versions of installed packages will be downloaded and installed

	
autoinstall: Also packages which are not installed yet, will be downloaded and installed

	
autoinstall: For all new installed packages and all clients on which these packages are installed the action request will be set to setup.

	
onlyDownload: New packages are only downloaded and no further actions are done.
A common use case is to use this option together with notifications so that after the download of new packages a mail informs an administrator about the new packages and the administrator will manually install the new packages at a later time.



In addition it is possible to send all these clients a Wake-On-LAN signal to install the new software to the clients. Using the opsi-product shutdownwanted you can make sure that the clients will be powered off after the installation.
	
time window for autosetup: You can give time window which may be used to that client action requests to setup.

	
Automatic WakeOnLan with shutdown: If there is new software Clients could be waked up and shutdown after installation automatically





Tools: opsi-admin / opsi config interface



Overview



opsi V3 introduced an opsi owned python library which provides an API for opsi configuration. The opsiconfd provides this API as a web service, whereas opsi-admin is the command line interface for this API.
Calling https://<opsi-server>:4447/interface in your browser gives you graphical interface to the opsi web service. You have to login as a member of the unix group opsiadmin.
Figure 49. opsi config interface: Access to the web service via browser
[image: opsi config interface: Access to the web service via browser]


At the command line opsi-admin provides an interface to the opsi-API. There is a interactive mode and a non interactive mode for batch processing from within scripts.
The help option opsi-admin --help shows a list of available command line options:
# opsi-admin --help

Application: opsi-admin [options] [command] [args...]
Options:
  -h, --help           Show this help text
  -V, --version        Show version number and exit
  -u, --username       Username (standard: temporary User)
  -p, --password       Password (standard: Password interactive prompt)
  -a, --address        URL from the opsconfd (standard: https://localhost:4447/rpc)
  -d, --direct         opsiconfd avoid
      --no-depot       Don't use a Depotserver-Backend
  -l, --loglevel       Log-Level (standard: 3)
                       0=nothing, 1=essential, 2=critic, 3=Errors, 4=Warnings
                       5=Tips, 6=Informations, 7=debug, 8=debug2, 9=confidential
  -f, --log-file       Path to Log-file
  -i, --interactive    Start in interactive modus
  -c, --colorize       Colorize output
  -S, --simple-output  Simple output (only for scalar and listen)
  -s, --shell-output   Shell-output
  -r, --raw-output     Raw-output
opsi-admin can use the opsi web service or directly operate on the data backend. To work with the web service you have to provide the URL and also an username and password. Due to security reasons you probably wouldn’t like to do this from within a script. In that case you’d prefer direct access to the data base using the -d option: opsi-admin -d.
In interactive mode (start with opsi-admin -d or opsi-admin -d -i -c or short opsi-admin -dic) you get input support with the TAB-key. After some input, with the TAB-button you get a list or details of the data type of the next expected input.
The option -s or -S generates an output format which can be easily parsed by scripts.
There are some methods which are directly based on API-requests, and there are some tasks, which are a collection of function calls to do a more complex special job.

Typical use cases



Set a product to setup for all clients which have this product installed. 

opsi-admin -d task setupWhereInstalled "softprod"


List of all clients. 

opsi-admin -d method host_getIdents


Client delete. 

opsi-admin -d method host_delete <clientname>


e.g.:
opsi-admin -d method host_delete "pxevm.uib.local"
Create client. 

opsi-admin -d method host_createOpsiClient <full qualified clientname>


e.g.:
opsi-admin -d method host_createOpsiClient "pxevm.uib.local"
Set action request. 

opsi-admin -d method setProductActionRequest <productId> <clientId> <actionRequest>


e.g.:
opsi-admin -d method setProductActionRequest win7 pxevm.uib.local setup
Attach client description. 

opsi-admin -d method setHostDescription "dpvm02.uib.local" "Client unter VMware"


Listing the IDs of all clients. This uses the option -S so that every client is on it’s own line.
Through filtering for the type OpsiClient we avoid displaying the IDs of servers.
The output can easily be used in other programs or calls.
opsi-admin -dS method host_getIdents '' '{"type": "OpsiClient"}'
Listing the products installed on clients. 

opsi-admin -d method productOnClient_getObjects '["productVersion", "packageVersion", "installationStatus"]' '{"installationStatus": "installed"}'


set pcpatch password. 

opsi-admin -d task setPcpatchPassword


Set the password of user pcpatch for Unix, samba and opsi.


Server processes: opsiconfd and opsipxeconfd



The opsipxeconfd provides the named pipes in the tftpboot directories. which are used to control the PXE boot process.
The configuration file is /etc/opsi/opsipxeconfd.conf
The log file is /var/log/opsi/opsipxeconfd.log.
The opsiconfd provides the opsi API as JSON web service and have a lot of other important tasks. Therefore the opsiconfd is the central opsi service and does all the communication to the clients.
Regarding this central rule, a tool to monitor this process gives a lot of information about load and possible problems. This tool is the opsiconfd info page.
opsiconfd monitoring: opsiconfd info



Using the web address https://<opsi-server>:4447/info you will get a graphical chart of opsiconfd load and cpu/memory usage in the last hour/day/month/year. This information is completed by tabulary information to the actual tasks and sessions.
Figure 50. opsiconfd info: opsiconfd values from the last hour
[image: opsiconfd info: opsiconfd values from the last hour]


Figure 51. opsiconfd info: opsiconfd values from the last day
[image: opsiconfd info: opsiconfd values from the last day]




Server process: opsi-atftpd



The opsi-atftpd is based on the standard atftpd with the additional feature to handle named pipes.
By default the opsi-atftd is configured to not run as daemon but to be started by t the inetd process.
To change this configuration in order to run the opsi-atftpd as daemon, the following changes must be done:
	
In the file /etc/inetd.conf the line for the tftp protocol has to be removed or commented out. After you changed this configuration file, you have to reload the inetd process. The command to do this differs by the used Linux Distribution:

	
Ubuntu / Debian: service openbsd-inetd reload

	
openSUSE / SLES / RedHat / CentOS: service xinetd reload




	
In the file /etc/default/atfpd the line USE_INETD=true has to be changed to USE_INETD=false. Then you have to restart the opsi-atftpd as daemon with the command: service opsi-atftpd restart





5.4. Web service / API methods



object oriented methods



Since opsi 4 we have to different kinds of API methods:
	
object oriented methods

	
action oriented methods



Overview



At the object oriented methods a Object has some properties.
As a example let us have a look at the object product. A object of the type product which describes the product javavm may look like this:
"ident": "javavm;1.6.0.20;2"
"id": "javavm"
"description": "Java 1.6"
"changelog": ""
"advice": ""
"userLoginScript": ""
"name": "SunJavaRuntimeEnvironment"
"priority": 0
"packageVersion": "2"
"productVersion": "1.6.0.20"
"windowsSoftwareIds": None
"productClassIds": None
"type": "LocalbootProduct"
"licenseRequired": False
"setupScript": "javavm.ins"
"updateScript": ""
"uninstallScript": "deljvm.ins"
"alwaysScript": ""
"onceScript": ""
"customScript": ""
Every object has a set of operators which can be used to work with this object. Most time these operators are:
	
getObjects (returns the objects)

	
getHashes (We recommend to use getObjects)

	
create  (create one object comfortable)

	
createObjects (create one or more objects, existing objects will be updatet)

	
delete (delete one object)

	
deleteObjects (delete one or more objects)

	
getIdents (returns the object id’s)

	
insertObject (create a new object, if the obect exists, it will be updatet)

	
updateObject (update a single object, if the object doesn’t exists no object will be created. We recommend to use insertObject instead.)

	
updateObjects (update a bundle of objects, if the objects doesn’t exists they will not be created. We recommend to use createObjects instead.)



The method names are concatenated:
<object name>_<operation>
According to this naming rule, these new methods are easily to difference from the old legacy opsi 3 methods, which almost start with get, set or create.
The getObjects methods have two optional parameters:
	
attributes

	
filter



The attributes parameter is used query only for some properties of an object. If you are using attributes the returned object has all attribute keys, but only values the attribute you asked for and for all attributes which are used to identify this object. All other attributes have the value none.
For Example you will get by calling the method product_getObjects with attributes:["name"] for the product javavm:
"onceScript": None,
"ident": "javavm;1.6.0.20;2",
"windowsSoftwareIds": None,
"description": None,
"setupScript": None,
"changelog": None,
"customScript": None,
"advice": None,
"uninstallScript": None,
"userLoginScript": None,
"name": "Sun Java Runtime Environment",
"priority": None,
"packageVersion": "2",
"productVersion": "1.6.0.20",
"updateScript": None,
"productClassIds": None,
"alwaysScript": None,
"type": "LocalbootProduct",
"id": "javavm",
"licenseRequired": None
If you don’t want to ask for attributes but instead you need to use the second parameter filter you have to pass the attribute parameter as [].
The parameter filter is used to define which objects you want to get. For example if you are using the filter { "id":"javavm" } on the method  product_getObjects you will get only the object(s) which describe the product javavm.
If you are using methods which expect one ore more objects, these objects have to be given as JSON objects or as an array of JSON objects.
The most important objects are:
	
auditHardwareOnHost (client specific hardware information)

	
auditHardware (client independent hardware information)

	
auditSoftwareOnClient (client specific software information)

	
auditSoftware (client independent software information)

	
auditSoftwareToLicensePool (license management)

	
configState (administration of client host parameters)

	
config (administration of host parameter defaults)

	
group (group administration)

	
host  (server and clients)

	
licenseContract (license management)

	
licenseOnClient (license management)

	
licensePool (license management)

	
objectToGroup (group administration)

	
productDependency (product dependencies)

	
productOnClient (client specific information to a product e.g. installation state)

	
productOnDepot (depot specific information to a product)

	
productPropertyState (depot or client specific product property settings)

	
productProperty (definition of product properties)

	
product (product meta data)

	
softwareLicenseToLicensePool (license management)

	
softwareLicense (license management)



In addition to the described objects and methods there are some more for special operations.
This design:
	
is created to transfer information about clients (severals) faster

	
filter data with a unified syntax

	
allows to check all input for correct syntax



With this we got an increased stability and higher performance.

host  (server and clients)



Example for a OpsiClient:
 method host_getObjects [] {"id":"xpclient.vmnat.local"}
[
          {
          "ident" : "xpclient.vmnat.local",
          "description" : "",
          "created" : "2012-03-22 12:13:52",
          "inventoryNumber" : "",
          "ipAddress" : "172.16.166.101",
          "notes" : "Created by opsi-deploy-client-agent at Wed, 24 Aug 2011 10:24:36",
          "oneTimePassword" : "",
          "lastSeen" : "2012-03-30 16:20:04",
          "hardwareAddress" : "00:0c:29:35:70:a7",
          "opsiHostKey" : "1234567890abcef1234567890abcdef",
          "type" : "OpsiClient",
          "id" : "xpclient.vmnat.local"
          }
]
Most of this data is displayed on the clients tab of the opsi-configed.
Possible types are:
	
OpsiClient

	
OpsiConfigserver (which means implicit this is also a OpsiDepotserver)

	
OpsiDepotserver



The server type have different and additional data.
Example for a server:
 method host_getObjects [] {"id":"sepiolina.vmnat.local"}
[
          {
          "masterDepotId" : null,
          "ident" : "sepiolina.vmnat.local",
          "networkAddress" : "172.16.166.0/255.255.255.128",
          "description" : "",
          "inventoryNumber" : "",
          "ipAddress" : "172.16.166.1",
          "repositoryRemoteUrl" : "webdavs://sepiolina.vmnat.local:4447/repository",
          "depotLocalUrl" : "file:///var/lib/opsi/depot",
          "isMasterDepot" : true,
          "notes" : "",
          "hardwareAddress" : null,
          "maxBandwidth" : 0,
          "repositoryLocalUrl" : "file:///var/lib/opsi/repository",
          "opsiHostKey" : "1234567890abcef1234567890abcdef",
          "type" : "OpsiConfigserver",
          "id" : "sepiolina.vmnat.local",
          "depotWebdavUrl" : "webdavs://sepiolina:4447/depot",
          "depotRemoteUrl" : "smb://sepiolina/opsi_depot"
          }
]
Most of this data is displayed on the depot configuration of the opsi-configed.

group (group administration)



Describes groups and their hierarchical structure.
Example for a group object:
 method group_getObjects
 [
       {
          "ident" : "sub2",
          "description" : "sub2",
          "notes" : "",
          "parentGroupId" : null,
          "type" : "HostGroup",
          "id" : "sub2"
          },
          {
          "ident" : "subsub",
          "description" : "subsub",
          "notes" : "",
          "parentGroupId" : "sub2",
          "type" : "HostGroup",
          "id" : "subsub"
          }
]

objectToGroup (group administration)



Describes the membership of an object in a group.
There are Hostgroups and Productgroups
Example for a objectToGroup objects:
 method objectToGroup_getObjects
[
         {
          "groupType" : "HostGroup",
          "ident" : "HostGroup;sub2;win7.vmnat.local",
          "type" : "ObjectToGroup",
          "groupId" : "sub2",
          "objectId" : "win7.vmnat.local"
          },
          {
          "groupType" : "HostGroup",
          "ident" : "HostGroup;subsub;win7x64.vmnat.local",
          "type" : "ObjectToGroup",
          "groupId" : "subsub",
          "objectId" : "win7x64.vmnat.local"
          },
        {
          "groupType" : "ProductGroup",
          "ident" : "ProductGroup;opsiessentials;opsi-client-agent",
          "type" : "ObjectToGroup",
          "groupId" : "opsiessentials",
          "objectId" : "opsi-client-agent"
          },
          {
          "groupType" : "ProductGroup",
          "ident" : "ProductGroup;opsiessentials;opsi-winst",
          "type" : "ObjectToGroup",
          "groupId" : "opsiessentials",
          "objectId" : "opsi-winst"
          }
]

product (product meta data)



Describes the meta data of a product which are defined while creating the package.
Example for a product object:
 method product_getObjects [] {"id":"jedit","productVersion":"4.5"}
[
          {
          "onceScript" : "",
          "ident" : "jedit;4.5;3",
          "windowsSoftwareIds" :
                    [

                    ],
          "description" : "jEdit with opsi-winst Syntax-Highlighting",
          "setupScript" : "setup.ins",
          "changelog" : "",
          "customScript" : "",
          "advice" : "",
          "uninstallScript" : "uninstall.ins",
          "userLoginScript" : "",
          "name" : "jEdit programmer's text editor",
          "priority" : 0,
          "packageVersion" : "3",
          "productVersion" : "4.5",
          "updateScript" : "update.ins",
          "productClassIds" :
                    [

                    ],
          "alwaysScript" : "",
          "type" : "LocalbootProduct",
          "id" : "jedit",
          "licenseRequired" : false
          }
]
Note
If you have multiple depot servers, you may have different versions of one product.

The entries productClassIds and windowsSoftwareIds are not used right now.

productProperty (definition of product properties)



Describes the properties of a product which are defined while creating the package.
Example for a productProperty object:
 method productProperty_getObjects [] {"productId":"jedit","productVersion":"4.5"}
[
          {
          "ident" : "jedit;4.5;3;start_server",
          "description" : "Should the jedit server be started at every startup ?",
          "editable" : false,
          "defaultValues" :
                    [
                    false
                    ],
          "multiValue" : false,
          "productVersion" : "4.5",
          "possibleValues" :
                    [
                    false,
                    true
                    ],
          "packageVersion" : "3",
          "type" : "BoolProductProperty",
          "propertyId" : "start_server",
          "productId" : "jedit"
          }
]
Note
The real default values are stored in the context of the depot in a productPropertyState object.


productPropertyState (depot or client specific product property settings)



Describes:
	
the default value of a product property on a given depot
properties of a product which are defined while creating the package.

	
the client specific settings of product properties.



Example for a productPropertyState objects:
 method productPropertyState_getObjects [] {"productId":"jedit"}
[
          {
          "ident" : "jedit;start_server;sepiolina.vmnat.local",
          "objectId" : "sepiolina.vmnat.local",
          "values" :
                    [
                    false
                    ],
          "type" : "ProductPropertyState",
          "propertyId" : "start_server",
          "productId" : "jedit"
          },
         {
          "ident" : "jedit;start_server;xpclient.vmnat.local",
          "objectId" : "xpclient.vmnat.local",
          "values" :
                    [
                    true
                    ],
          "type" : "ProductPropertyState",
          "propertyId" : "start_server",
          "productId" : "jedit"
          }

]

productDependency (product dependencies)



Describes the dependencies of a product to another product as it is defined while creating the package.
Example for a productDependency object:
method productDependency_getObjects [] {"productId":"jedit","productVersion":"4.5"}
[
          {
          "ident" : "jedit;4.5;3;setup;javavm",
          "productAction" : "setup",
          "requiredPackageVersion" : null,
          "requirementType" : "before",
          "requiredInstallationStatus" : "installed",
          "productVersion" : "4.5",
          "requiredProductId" : "javavm",
          "requiredAction" : null,
          "requiredProductVersion" : null,
          "type" : "ProductDependency",
          "packageVersion" : "3",
          "productId" : "jedit"
          }
]

productOnClient (client specific information to a product e.g. installation state)



Describes which products in which versions are installed on which client..
Example for a productOnClient object:
 method productOnClient_getObjects [] {"productId":"jedit","clientId":"xpclient.vmnat.local"}
[
          {
          "ident" : "jedit;LocalbootProduct;xpclient.vmnat.local",
          "actionProgress" : "",
          "actionResult" : "successful",
          "clientId" : "xpclient.vmnat.local",
          "modificationTime" : "2012-03-30 15:49:04",
          "actionRequest" : "none",
          "targetConfiguration" : "installed",
          "productVersion" : "4.5",
          "productType" : "LocalbootProduct",
          "lastAction" : "setup",
          "packageVersion" : "3",
          "actionSequence" : -1,
          "type" : "ProductOnClient",
          "installationStatus" : "installed",
          "productId" : "jedit"
          }
]

productOnDepot (depot specific information to a product)



Describes which product is installed in which version on a given depot..
Example for a productOnDepot objects:
 method productOnDepot_getObjects [] {"productId":"jedit"}
[
          {
          "ident" : "jedit;LocalbootProduct;4.4.1;2;depotserver.vmnat.local",
          "locked" : false,
          "productVersion" : "4.4.1",
          "productType" : "LocalbootProduct",
          "depotId" : "depotserver.vmnat.local",
          "type" : "ProductOnDepot",
          "packageVersion" : "2",
          "productId" : "jedit"
          },
          {
          "ident" : "jedit;LocalbootProduct;4.5;3;sepiolina.vmnat.local",
          "locked" : false,
          "productVersion" : "4.5",
          "productType" : "LocalbootProduct",
          "depotId" : "sepiolina.vmnat.local",
          "type" : "ProductOnDepot",
          "packageVersion" : "3",
          "productId" : "jedit"
          }
]
Note
If you have multiple depot server, you may have different versions of one product.


config (administration of host parameter defaults)



Describes the Hostparameter of the opsi-configeds Server configuration.
Example for a config object:
 method config_getObjects [] {"id":"opsiclientd.event_gui_startup.active"}
[
          {
          "ident" : "opsiclientd.event_gui_startup.active",
          "description" : "gui_startup active",
          "defaultValues" :
                    [
                    true
                    ],
          "editable" : false,
          "multiValue" : false,
          "possibleValues" :
                    [
                    false,
                    true
                    ],
          "type" : "BoolConfig",
          "id" : "opsiclientd.event_gui_startup.active"
          }
]

configState (administration of client host parameters)



Describes the Hostparameter of the opsi-configeds client configuration.
Example for a configState object:
 method configState_getObjects [] {"configId":"opsiclientd.event_gui_startup.active"}
[
          {
          "configId" : "opsiclientd.event_gui_startup.active",
          "ident" : "opsiclientd.event_gui_startup.active;wanclient.vmnat.local",
          "values" :
                    [
                    false
                    ],
          "objectId" : "wanclient.vmnat.local",
          "type" : "ConfigState"
          }
]
Note
A configState object can’t be created without an existing config object to refer to.


auditHardwareOnHost (client specific hardware information)



Describes the detected hardware types (including the client specific values). The idea is that you can see here the client specific data and in auditHardware only one entry for a network card which is used in all your computers.
Unfortunately in reality this doesn’t work as you might expect.
The attribute state describes if this is current (value = 1) or historic (value = 0) data.
Example for a auditHardwareOnHost object:
 method auditHardwareOnHost_getObjects [] {"hostId":"xpclient.vmnat.local","hardwareClass":"NETWORK_CONTROLLER","ipAddress":"172.16.166.101"}
[
          {
          "vendorId" : "1022",
          "macAddress" : "00:0C:29:35:70:A7",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "state" : 1,
          "deviceType" : "PCI",
          "subsystemVendorId" : "2000",
          "ipEnabled" : "True",
          "type" : "AuditHardwareOnHost",
          "firstseen" : "2012-03-30 15:48:15",
          "revision" : "10",
          "hostId" : "xpclient.vmnat.local",
          "vendor" : "Advanced Micro Devices (AMD)",
          "description" : "Ethernetadapter der AMD-PCNET-Familie",
          "subsystemDeviceId" : "1022",
          "deviceId" : "2000",
          "autoSense" : null,
          "netConnectionStatus" : "Connected",
          "maxSpeed" : null,
          "name" : "Ethernetadapter der AMD-PCNET-Familie",
          "serialNumber" : null,
          "lastseen" : "2012-03-30 15:48:15",
          "model" : null,
          "ipAddress" : "172.16.166.101",
          "adapterType" : "Ethernet 802.3"
          },
          {
          "vendorId" : "1022",
          "macAddress" : "00:0C:29:35:70:A7",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "state" : 0,
          "deviceType" : "PCI",
          "subsystemVendorId" : "2000",
          "ipEnabled" : "True",
          "type" : "AuditHardwareOnHost",
          "firstseen" : "2012-03-08 14:26:14",
          "revision" : "10",
          "hostId" : "xpclient.vmnat.local",
          "vendor" : "VMware, Inc.",
          "description" : "VMware Accelerated AMD PCNet Adapter",
          "subsystemDeviceId" : "1022",
          "deviceId" : "2000",
          "autoSense" : null,
          "netConnectionStatus" : "Connected",
          "maxSpeed" : null,
          "name" : "VMware Accelerated AMD PCNet Adapter",
          "serialNumber" : null,
          "lastseen" : "2012-03-10 14:47:15",
          "model" : null,
          "ipAddress" : "172.16.166.101",
          "adapterType" : "Ethernet 802.3"
          },
   {
          "vendorId" : "1022",
          "macAddress" : "00:0c:29:35:70:a7",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "state" : 0,
          "deviceType" : null,
          "subsystemVendorId" : "1022",
          "ipEnabled" : null,
          "type" : "AuditHardwareOnHost",
          "firstseen" : "2012-02-29 15:43:21",
          "revision" : "10",
          "hostId" : "xpclient.vmnat.local",
          "vendor" : "Advanced Micro Devices [AMD]",
          "description" : "Ethernet interface",
          "subsystemDeviceId" : "2000",
          "deviceId" : "2000",
          "autoSense" : "",
          "netConnectionStatus" : "yes",
          "maxSpeed" : null,
          "name" : "79c970 [PCnet32 LANCE]",
          "serialNumber" : "00:0c:29:35:70:a7",
          "lastseen" : "2012-03-30 14:58:30",
          "model" : "79c970 [PCnet32 LANCE]",
          "ipAddress" : "172.16.166.101",
          "adapterType" : ""
          }
]

auditHardware (client independent hardware information)



Describes the detected hardware types (independent from client specific values). The idea in this object is to see client specific data and in AuditHardware only the generic. That way, for example, you can see here only one entry for a network card, which is used in all your computers.
Unfortunately in reality this idea doesn’t work as you might expect.
Example for a auditHardware object:
 method auditHardware_getObjects [] {"hardwareClass":"NETWORK_CONTROLLER","vendorId":"1022"}
[
          {
          "vendorId" : "1022",
          "deviceId" : "2000",
          "maxSpeed" : null,
          "vendor" : "Advanced Micro Devices [AMD]",
          "name" : "79c970 [PCnet32 LANCE]",
          "subsystemDeviceId" : "2000",
          "deviceType" : null,
          "subsystemVendorId" : "1022",
          "autoSense" : "",
          "model" : "79c970 [PCnet32 LANCE]",
          "revision" : "10",
          "type" : "AuditHardware",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "adapterType" : "",
          "description" : "Ethernet interface"
          },
          {
          "vendorId" : "1022",
          "deviceId" : "2000",
          "maxSpeed" : null,
          "vendor" : "VMware, Inc.",
          "name" : "VMware Accelerated AMD PCNet Adapter",
          "subsystemDeviceId" : "1022",
          "deviceType" : "PCI",
          "subsystemVendorId" : "2000",
          "autoSense" : null,
          "model" : null,
          "revision" : "10",
          "type" : "AuditHardware",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "adapterType" : "Ethernet 802.3",
          "description" : "VMware Accelerated AMD PCNet Adapter"
          },
          {
          "vendorId" : "1022",
          "deviceId" : "2000",
          "maxSpeed" : null,
          "vendor" : "Advanced Micro Devices (AMD)",
          "name" : "Ethernetadapter der AMD-PCNET-Familie",
          "subsystemDeviceId" : "1022",
          "deviceType" : "PCI",
          "subsystemVendorId" : "2000",
          "autoSense" : null,
          "model" : null,
          "revision" : "10",
          "type" : "AuditHardware",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "adapterType" : "Ethernet 802.3",
          "description" : "Ethernetadapter der AMD-PCNET-Familie"
          },
  {
          "vendorId" : "1022",
          "deviceId" : "2000",
          "maxSpeed" : null,
          "vendor" : "Advanced Micro Devices (AMD)",
          "name" : "Ethernetadapter der AMD-PCNET-Familie",
          "subsystemDeviceId" : "1022",
          "deviceType" : "PCI",
          "subsystemVendorId" : "2000",
          "autoSense" : null,
          "model" : null,
          "revision" : "10",
          "type" : "AuditHardware",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "adapterType" : "Ethernet 802.3",
          "description" : "Ethernetadapter der AMD-PCNET-Familie"
          },
          {
          "vendorId" : "1022",
          "deviceId" : "2000",
          "maxSpeed" : null,
          "vendor" : "Advanced Micro Devices (AMD)",
          "name" : null,
          "subsystemDeviceId" : "2000",
          "deviceType" : "PCI",
          "subsystemVendorId" : "1022",
          "autoSense" : null,
          "model" : "",
          "revision" : null,
          "type" : "AuditHardware",
          "hardwareClass" : "NETWORK_CONTROLLER",
          "adapterType" : null,
          "description" : "Ethernetadapter der AMD-PCNET-Familie"
          },
(....)
[

auditSoftwareOnClient (client specific software information)



Describes the detected software types (including the client specific values). The idea is that you will see here the client specific data and in auditSoftware only one entry for a office software which is used in all your computers.
Example for a auditSoftwareOnClient object:
 method auditSoftwareOnClient_getObjects  [] {"name":"jEdit 4.5.0","clientId":"xpclient.vmnat.local"}
[
          {
          "ident" : "jEdit 4.5.0;4.5.0;;;x86;xpclient.vmnat.local",
          "licenseKey" : "",
          "name" : "jEdit 4.5.0",
          "uninstallString" : "\\\"C:\\\\Programme\\\\jEdit\\\\unins000.exe\\\"",
          "usageFrequency" : -1,
          "clientId" : "xpclient.vmnat.local",
          "lastUsed" : "0000-00-00 00:00:00",
          "subVersion" : "",
          "language" : "",
          "state" : 1,
          "version" : "4.5.0",
          "lastseen" : "2012-03-30 16:19:55",
          "binaryName" : "",
          "type" : "AuditSoftwareOnClient",
          "firstseen" : "2012-03-30 16:19:55",
          "architecture" : "x86"
          }
]

auditSoftware (client independent software information)



Describes the detected software types (independent from the client specific values). The idea is that you will see here only one entry for a office software which is used in all your computers.
Example for a auditSoftware object:
 method auditSoftware_getObjects  [] {"name":"jEdit 4.5.0"}
[
          {
          "windowsDisplayVersion" : "4.5.0",
          "ident" : "jEdit 4.5.0;4.5.0;;;x64",
          "name" : "jEdit 4.5.0",
          "windowsSoftwareId" : "jedit_is1",
          "windowsDisplayName" : "jEdit 4.5.0",
          "installSize" : -1,
          "subVersion" : "",
          "language" : "",
          "version" : "4.5.0",
          "architecture" : "x64",
          "type" : "AuditSoftware"
          },
          {
          "windowsDisplayVersion" : "4.5.0",
          "ident" : "jEdit 4.5.0;4.5.0;;;x86",
          "name" : "jEdit 4.5.0",
          "windowsSoftwareId" : "jedit_is1",
          "windowsDisplayName" : "jEdit 4.5.0",
          "installSize" : -1,
          "subVersion" : "",
          "language" : "",
          "version" : "4.5.0",
          "architecture" : "x86",
          "type" : "AuditSoftware"
          }
]

auditSoftwareToLicensePool (license management)



Describes which license pools are assingned to which auditSoftware patterns.
Example for a auditSoftwareToLicensePool object:
 method auditSoftwareToLicensePool_getObjects [] {"licensePoolId":"win7-msdn-prof"}
[
          {
          "ident" : "Windows 7 Professional N;6.1;00376-165;de-DE;x64;win7-msdn-prof",
          "name" : "Windows 7 Professional N",
          "language" : "de-DE",
          "subVersion" : "00376-165",
          "licensePoolId" : "win7-msdn-prof",
          "version" : "6.1",
          "architecture" : "x64",
          "type" : "AuditSoftwareToLicensePool"
          },
          {
          "ident" : "Windows 7 Professional N;6.1;00376-165;de-DE;x86;win7-msdn-prof",
          "name" : "Windows 7 Professional N",
          "language" : "de-DE",
          "subVersion" : "00376-165",
          "licensePoolId" : "win7-msdn-prof",
          "version" : "6.1",
          "architecture" : "x86",
          "type" : "AuditSoftwareToLicensePool"
          }
]

softwareLicenseToLicensePool (license management)



Describes which softwareLicenseId is assingned to which licensePoolId.
Example for a softwareLicenseToLicensePool object:
method softwareLicenseToLicensePool_getObjects [] {"licensePoolId":"win7-msdn-prof"}
[
          {
          "licensePoolId" : "win7-msdn-prof",
          "softwareLicenseId" : "uib-msdn-win7-vol",
          "ident" : "uib-msdn-win7-vol;win7-msdn-prof",
          "licenseKey" : "12345-12345-12345-12345-3dbv6",
          "type" : "SoftwareLicenseToLicensePool"
          }
]

softwareLicense (license management)



Describes the existing software licenses and their meta data.
Example for a softwareLicense object:
 method softwareLicense_getObjects [] {"id":"uib-msdn-win7-vol"}
[
          {
          "ident" : "uib-msdn-win7-vol;msdn-uib",
          "maxInstallations" : 0,
          "boundToHost" : null,
          "expirationDate" : "0000-00-00 00:00:00",
          "licenseContractId" : "msdn-uib",
          "type" : "VolumeSoftwareLicense",
          "id" : "uib-msdn-win7-vol"
          }
]

licenseContract (license management)



Describes the existing licenses contracts and their meta data.
Example for a licenseContract object:
 method licenseContract_getObjects [] {"id":"msdn-uib"}
[
          {
          "ident" : "msdn-uib",
          "description" : "",
          "conclusionDate" : "2011-04-22 00:00:00",
          "notificationDate" : "0000-00-00 00:00:00",
          "notes" : "",
          "expirationDate" : "0000-00-00 00:00:00",
          "partner" : "Microsoft",
          "type" : "LicenseContract",
          "id" : "msdn-uib"
          }
]

licenseOnClient (license management)



Describes which license is used by which client.
Example for a licenseOnClient object:
 method licenseOnClient_getObjects  [] {"clientId":"win7client.vmnat.local"}
[
          {
          "softwareLicenseId" : "uib-msdn-win7-vol",
          "ident" : "uib-msdn-win7-vol;win7-msdn-prof;win7client.vmnat.local",
          "licenseKey" : "12345-12345-12345-12345-3dbv6",
          "notes" : "",
          "clientId" : "win7client.vmnat.local",
          "licensePoolId" : "win7-msdn-prof",
          "type" : "LicenseOnClient"
          }
]

licensePool (license management)



Describes the license pool and to which opsi product the license pool is assigned.
Example for a license Pool object:
 method licensePool_getObjects [] {"id":"win7-msdn-prof"}
[
          {
          "ident" : "win7-msdn-prof",
          "type" : "LicensePool",
          "description" : "MSDN Keys",
          "productIds" :
                    [
                    "win7",
                    "win7-x64"
                    ],
          "id" : "win7-msdn-prof"
          }
]
====== Special methods
Opsi has some special methods.
This chapter will introduce some of the more important ones.
====== configState_getClientToDepotserver
This is in fact also a storage object, but it’s a little aside of the standard.
It tells us to which depot a client is currently assigned.
The syntax is
 method configState_getClientToDepotserver *depotIds *clientIds
*masterOnly *productIds
Example:
method configState_getClientToDepotserver [] "pcbon4.uib.local"
[
          {
          "depotId" : "bonifax.uib.local",
          "alternativeDepotIds" :
                    [

                    ],
          "clientId" : "pcbon4.uib.local"
          }
]

Communication with hosts



The hostControl methods are used to communicate and control the clients.
Since opsi 4.0.3 we strongly recommend to use the hostControlSafe methods.
All hostControlSafe or hostControl Methods have as last parameter the hostIds. The hostIds are the list of clients this method should work on.
In all hostControlSafe methods this parameter is not optional, if you want to send a method to all clients you have to give a "*". In the older hostControl methods it is allowed to omit this parameter, which means send to all. This has caused some trouble to people which tried this with methods like
hostControl_reboot. So with opsi 4.0.3 we broke the backward compatibility and now an empty hostIds is not any more allowed for the hostControl_reboot and hostControl_shutdown methods.
	
hostControlSafe_execute
Excute a command on the client.
Connect to the opsiclientd of the given hostIds and tell them to start command.
Parameters: command hostIds

	
hostControlSafe_fireEvent
Starts a opsiclientd event on the client.
Connect the opsiclientd of the given hostIds and tell them to start the event.
Parameters: event hostIds

	
hostControlSafe_getActiveSessions
Get information of the logged on users on the client.
Connect the opsiclientd of the given hostIds and ask for the active sessions.
Parameters: hostIds

	
hostControlSafe_opsiclientdRpc
Run the web service method of the opsiclientd.
Connect the opsiclientd of the given hostIds and tell them to run the web service method using the given parameters. This is the most generic hostControlSafe method, because you may start any possible method. The best way to find out what is possible, is to have a look at control interface https://<clientId>:4441
Parameters: method *params hostIds

	
hostControlSafe_reachable
Checks if the opsiclientd is reachable.
Connect the opsiclientd of the given hostIds but do not login.
Parameters: hostIds

	
hostControlSafe_reboot
Reboot the clients.
Connect the opsiclientd of the given hostIds and starts a reboot.
Parameters: hostIds

	
hostControlSafe_showPopup
Shows a pop up message on the clients.
Connect the opsiclientd of the given hostIds and starts a pop up windows with the message.
Parameters: message hostIds

	
hostControlSafe_shutdown
Shutdown the clients.
Connect the opsiclientd of the given hostIds and starts a shutdown.
Parameters: hostIds

	
hostControlSafe_start
Sends a wakeOnLan signal the clients.
This is the only hostControlSafe method that is not use by the opsiclientd from a client.
Parameters: hostIds

	
hostControlSafe_uptime
Asks for the clients uptime.
Connect the opsiclientd of the given hostIds and get the clients uptime in seconds.
Parameters: hostIds




log_read / log_write



	
log_read
Reads a opsi log file from the server.
Parameters: logType *objectId *maxSize
Possible logTypes are instlog (opsi-winst), clientconnect (opsiclientd), userlogin, bootimage, opsiconfd. The objectId is normally the clientId to which the log belongs.

	
log_write
Writes a opsi log file to the server.
Parameters: logType data *objectId *append
Logtypes and objectId see above, append (true/false) (Default = false) should the log be appended to an existing log.



====== Tutorial: Working with groups
The following tutorial will show how to use the opsi interface from the commandline and work with groups of hosts in opsi.
We want to work with group objects and therefore need to work with those functions whose names start with group.
Opsi does distinguish between groups of the type ProductGroup and HostGroup. The first is used for product groupings and the last is used for grouping hosts.
Creating a group of hosts is possible through the method group_createHostGroup. The parameters of the method are id, a description, notes and the parentGroupId (ID of the parent group). Only the ID is required - everything else is optional. The ID is also the name of the group.
Important
In opsi 4.0 groups are identified by their ID. This ID must be unique throughout the opsi groups.

To create a first group from the commandline we can now issue the following command:
opsi-admin -d method group_createHostGroup rechner_wenselowski "Nikos computer"
To check if our group was created we use group_getObjects.
opsi-admin -d method group_getObjects '' '{"id": "rechner_*", "type": "HostGroup"}'
To create some hierarchy we need to also specify the ID of the parent group.
opsi-admin -d method group_createHostGroup "rechner_wenselowski2" "Undergroup" "" "rechner_wenselowski"
We can use the call to group_getObjects from earlier to see that our group was indeed created.
Opsi has a default group that behaves like a directory service - i.e. OpenLDAP - that means, that a client can only be member of one group. There is a root group with the ID clientdirectory that assumes that exact behavior for any group / client inside. Any client not in a subgroup of clientdirectory will be moved to another special group with the ID NOT_ASSIGNED.
Anyone working with that groups is responsible that clients are not member of multiple subgroups of clientdirectory.
Working with the clients is easy now. You probably have noticed that our earlier query to opsi did not show us any signs of clients. That is because the assignment from a client to a group is taken care of another type of object: objectToGroup.
To have a client at hand we will first create one:
opsi-admin -d method host_createOpsiClient "wenselowski-test.uib.local"
This client we now want to add to the group we created previously.
opsi-admin -d method objectToGroup_create "HostGroup" "rechner_wenselowski2" "wenselowski-test.uib.local"
Noticed the HostGroup as the first parameter? That is again our group type.
To check if the creation was successful we can execute the following command:
opsi-admin -d method objectToGroup_getObjects '' '{"groupType": "HostGroup", "groupId": "rechner_wenselowski2"}'
If for some reason we want to remove a client we can do this as well. Just execute the following:
opsi-admin -d method objectToGroup_delete "HostGroup" "rechner_wenselowski2" "wenselowski-test.uib.local"
Finally you may want to clean up the groups we created earlier. The following statements will do this for you:
opsi-admin -d method group_delete "rechner_wenselowski"


Action oriented methods



The action oriented methods where introduced in opsi 3.
These methods are still available and will still be maintained.
Technically methods are mapped to the object oriented methods internally.
Here comes a short list of some methods with a short description. This is meant mainly for orientation and not as a complete reference. The short description does not necessarily provide all information you need to use this method.
method authenticated
Check whether the authentication on the server was successful or not.
method createClient clientName domain description=None notes=None
Creates a new client.
method createGroup groupId members = [] description = ""
Creates a group of clients (as used by the opsi-Configed).
method createLicenseKey productId licenseKey
Assigns an (additional) license key to the product productId.
method createLocalBootProduct productId name productVersion packageVersion licenseRequired=0 setupScript="" uninstallScript="" updateScript="" alwaysScript="" onceScript="" priority=10 description="" advice="" productClassNames=('localBoot')
Creates a new localBoot product (opsi-winst product).
method createNetBootProduct productId name productVersion packageVersion licenseRequired=0 setupScript="" uninstallScript="" updateScript="" alwaysScript="" onceScript="" priority=10 description="" advice="" productClassNames=('netboot')
Creates a new netBoot (boot image) product.
method createProduct productType productId name productVersion packageVersion licenseRequired=0,setupScript="" uninstallScript="" updateScript="" alwaysScript="" onceScript="" priority=10 description="" advice="" productClassNames=""
Creates a new product.
method createProductDependency productId action requiredProductId="" requiredProductClassId="" requiredAction="" requiredInstallationStatus="" requirementType=""
Creates product dependencies.
method createProductPropertyDefinition productId name description=None defaultValue=None possibleValues=[]
Creates product properties.
method deleteClient clientId
Deletes a client.
method deleteGeneralConfig objectId
Deletes a client configuration or domain configuration.
method deleteGroup groupId
Deletes a client group.
method deleteHardwareInformation hostId
Deletes all hardware information for the computer <hostid>.
method deleteLicenseKey productId, licenseKey
Deletes a license key for product <productId>.
method deleteProduct productId
Deletes a product from the data base.
method deleteProductDependency productId action requiredProductId="" requiredProductClassId="" requirementType=""
Deletes product dependencies.
method deleteProductProperties productId *objectId
Deletes all properties of a product.
method deleteProductProperty productId property *objectId
Deletes a single product property.
method deleteProductPropertyDefinition productId name
method deleteProductPropertyDefinitions productId
Deletes a single property or all properties from the product <productId>.
method deleteServer serverId
Deletes a server configuration
method exit
Quit opsi-admin.
method getBackendInfos_listOfHashes
Supplies information about the available backends of the opsi depot server and which of them are activated.
method getClientIds_list
Supplies a list of clients which meet the assigned criteria.
method getClients_listOfHashes
Supplies an extended list of clients which meet the assigned criteria (with description, notes and last seen for each client).
method getDomain hostId
Supplies the computer domain.
method getGeneralConfig_hash objectId
Supplies the general configuration of a client or a domain.
method getGroupIds_list
Supplies the list of saved client groups.
method auditHardwareOnHost_getObjects '[]' '{"hostId":"<hostId>"}'
Supplies the hardware information of the specified computer.
method getHostId hostname
Supplies the hostid of the specified host name.
method getHost_hash hostId
List of properties of the specified computer.
method getHostname hostId
Supplies the host name of the specified host id.
method getInstallableLocalBootProductIds_list clientId
Supplies a list of all localBoot products that could be installed on the client.
method getInstallableNetBootProductIds_list clientId
Supplies a list of all netBoot products that could be installed on the client.
method getInstallableProductIds_list clientId
Supplies a list of all products that could be installed on the client.
method getInstalledLocalBootProductIds_list hostId
Supplies a list of all localBoot products that are installed on the client.
method getInstalledNetBootProductIds_list hostId
Supplies a list of the installed netBoot products of a client or server.
method getInstalledProductIds_list hostId
Supplies a list of the installed products for a client or server.
method getIpAddress hostId
Supplies the IP address of a host.
method getLicenseKey productId clientId
Supplies an available license key of the specified product or the product license key which is assigned to the client.
method getLicenseKeys_listOfHashes productId
Supplies a list of all license keys for the specified product.
method getLocalBootProductIds_list
Supplies a list of all known localBoot products.
method getLocalBootProductStates_hash clientIds = []
Supplies for all clients the installation status and action request of all localBoot products.
method getMacAddresses_list hostId
Supplies the MAC address of the specified computer.
method getNetBootProductIds_list
Supplies a list of all NetBoot products.
method getNetBootProductStates_hash clientIds = []
Supplies for all clients the installation status and action request of all netBoot products.
method getNetworkConfig_hash objectId
Supplies the network specific configurations of a client or a domain.
method getOpsiHostKey hostId
Supplies the pckey of the specified hostid.
method getPcpatchPassword hostId
Supplies the password of pcpatch (encrypted with the pckey of hostId).
method getPossibleMethods_listOfHashes
Supplies the list of callable methods (approximately like in this chapter).
method getPossibleProductActionRequests_list
Lists the available action requests of opsi.
method getPossibleProductActions_hash
Supplies the available actions for each product (setup, uninstall , ….).
method getPossibleProductActions_list productId=softprod
Supplies the list of all actions (setup, uninstall,….).
method getPossibleProductInstallationStatus_list
Supplies the list of all installation states (installed, not_installed,… )
method getPossibleRequirementTypes_list
Supplies the list of types of product requirement (before, after, … )
method getProductActionRequests_listOfHashes clientId
Supplies the list of upcoming actions of the specified client.
method getProductDependencies_listOfHashes productId = None
Supplies the list of product dependencies of all or the specified product.
method getProductIds_list
Supplies a list of products which meet the specified criteria.
method getProductInstallationStatus_hash productId hostId
Supplies the installation status for the specified client and product.
method getProductInstallationStatus_listOfHashes hostId
Supplies the installation status of the specified client.
method getProductProperties_hash productId
Supplies the product properties of the specified product and client.
method getProductPropertyDefinitions_hash
Supplies all known product properties with description, allowed values,…
method getProductPropertyDefinitions_listOfHashes productId
Supplies the product properties of the specified product with description, allowed values,… .
method getProductStates_hash clientIds = []
Supplies installation status and action requests of all products (for the specified clients).
method getProduct_hash productId
Supplies the meta data (description, version, …) of the product
method getProvidedLocalBootProductIds_list serverId
Supplies a list of available localBoot products on the specified server.
method getProvidedNetBootProductIds_list serverId
Supplies a list of available netBoot products on the specified server.
method getServerId clientId
Supplies the opsi-config-server in charge of the specified client.
method getServerIds_list
Supplies a list of the known opsi-config-server.
method getServerProductIds_list
Supplies a list of the server products.
method getUninstalledProductIds_list hostId
Supplies the products which are uninstalled.
method powerOnHost mac
Send a WakeOnLan signal to the specified MAC address.
method setGeneralConfig config
Set for client or domain the generalConfig
method setHostDescription hostId description
Set a description for a client.
method setHostLastSeen hostId timestamp
Set the last seen time stamp of a client.
method setHostNotes hostId notes
Set the notes for a client.
method setMacAddresses hostId macs
Set the client MAC address in the data base.
method setOpsiHostKey hostId opsiHostKey
Set the pckey for a computer.
method setPcpatchPassword hostId password
Set the encrypted (!) password for hostId
method setProductActionRequest productId clientId actionRequest
Set an action request for the specified client and product.
method setProductInstallationStatus productId hostId installationStatus policyId="" licenseKey=""
Set an installation status for the specified client and product.
method setProductProperties productId properties objectId = None
Set the product properties for the specified product (and the specified client).
method unsetProductActionRequest productId clientId
Set the action request to none.

Backend extensions



In opsi 4 we have the possibility to extend the basic opsi 4 methods with
own additional methods which use the opsi 4 base methods. This is done for
example to implement the opsi 3 legacy methods or to create methods which fit
better to the needs of the opsi-configed.
These extensions has to be written as Python code in the /etc/opsi/backendManager/extend.d directory.
Extensions are loaded "on to" an BackendManager-instance and can reference
it with self.

Accessing the API



The API uses JSON-RPC 1.0 over
HTTP for communication.
We use basic authentication.
To use this interface POST your calls to the path rpc of your opsi
server, i.e. https://opsiserver.domain.local:4447/rpc.
Caution
Communicating with an opsi 4.0 webservice leads to a HTTP
header content-type that does not match the real content encoding.
Since release of opsi 4.0.6 it is possible to activate a RFC 2616
compatible behavior by creating the file
/etc/opsi/opsi.header.fix.enable and restarting opsiconfd.
This makes it easier to communicate with the server through third party
applications.
Because this changed behavior may lead to communication failures with
clients expecting the old behavior this is disabled by default.
The client components provided with opsi 4.0.6 have been updated so
that they can work with both.



5.5. opsi-backup



Introduction



Your opsi-server should be backed up (like any other important system). This chapter shows what to backup and how.
And of course - how to restore it.

Preconditions for a backup



You should run the opsi-backup command as root.
You have to install the mysqldump program before you can use the opsi-backup in connection with the mysql backend. Usually this program is part of the mysql client packages.

Quick Start



Create a backup:
opsi-backup create opsi_backup.tar.bz2
Creates a backup of the used backends and all configuration data at the current directory with the name opsi_backup.tar.bz2.
Restore a backup:
opsi-backup restore --backends=all --configuration opsi_backup.tar.bz2
Restores the data from the backup file opsi_backup.tar.bz2, which is searched for in the current directory.

Basic parts of opsi



opsi may be divided in five different parts which may be backed up or not. The location where to find this part may vary (by Linux distribution, version and configuration).
Opsi configuration



The most important part of opsi is the configuration. You will find it at /etc/opsi.
This part will be backed up by opsi-backup.

Opsi backends



The data about the managed clients and the products might be stored in different backends. The most important backends are:
Table 1. opsi backends
	Backend	Description
	file-Backend
	File based backend (default backend)

	mysql-Backend
	MySQL based backend (since opsi 4 for all configuration data)

	dhcp
	Special backend which is used in combination with a dhcpd at the opsi-server




Different backends may be used for different purposes at the same time. So you should have a look at the /etc/opsi/backendManager/dispatch.conf to see which backends you are using.
This part will be backed up by opsi-backup.

opsi depot share



At the opsi depot share you will find the installation files of the software to be installed on the clients by opsi. The directories which contain these files (Local boot products and netboot products) are located at /var/lib/opsi/depot.
Older versions of opsi used the directory /opt/pcbin/install for this. If it’s still present it may be symlinked towards the new location.
Depending on how many operating systems, drivers, software, etc is located here, this part may have a huge extent.
This part will not be backed up by opsi-backup.
So if you like to backup this part, you may use rsnapshot or other backup utilities.

opsi work bench



The opsi work bench is the location which is used to create own packages. It is usually located at /home/opsiproducts (/var/lib/opsi/workbench on openSUSE and SLES) and exported as the samba share opsi_workbench. Because this directory holds your own work, it should be backed up.
This part will not be backed up by opsi-backup.
So if you like to backup this part, you may use rsnapshot or other backup utilities.

opsi repository



The directory /var/lib/opsi/repository is used to store opsi packages, which are downloaded by the opsi-product-updater or which are installed by the opsi-package-manager when using the -d option.
This part will not be backed up by opsi-backup.
So if you like to backup this part, you may use rsnapshot or other backup utilities.

TFTP directory



The TFTP directory contains configuration files for booting via PXE.
This directory can be found under /tftpboot/ on most systems. On openSUSE and SLES this is /var/lib/tftpboot/opsi/.
Files that may have been changed are i.e. linux/pxelinux.cfg/default.menu or linux/pxelinux.cfg/default.nomenu.
During the installation of opsi-linux-bootimage these files are filled with default values. They are not required in case of a disaster recovery.
This part will not be backed up by opsi-backup.


The program opsi-backup



opsi-backup is a command line program which makes it easy to create and restore opsi data backups.
The basic commands are create, restore and verify.
The option --help displays information about the accepted command line options. Use also <command> --help (e.g. opsi-backup create --help) to get information about command options.
opsi-backup --help
The opsi-backup utility stores the configuration and backend data in nearly the same format as they were found at the server. So you may not restore these data to a server which uses other backends, has other opsi versions or is in any other way different regarding the opsi data structures.
opsi-backup creates always a full backup. There is no support for incremental or differencial backups.
Caution
Please notice that opsi-backup creates no backup of:
* opsi depot share
* opsi work bench *
opsi repository

opsi-backup creates a backup file, which is a compressed tar file. So you may access the data using other standard tools.
Caution
A backup file created by opsi-backup may contain passwords, hot-keys and other security-related data. So be sure to store the backup files at a secure place.

Create a backup



To create a backup call opsi-backup create.
This command (without any additional options) will create a backup of all configuration data and all used backends. The backup file will be stored at the current directory with an automatically generated name.
To get information about the possible options of create call
opsi-backup create --help
opsi-backup create
opsi-backup create --help
usage: opsi-backup create [-h] [--flush-logs]
                          [--backends {file,mysql,dhcp,auto,all}]
                          [--no-configuration] [-c [{gz,bz2,none}]]
                          [destination]

positional arguments:
  destination           Destination of the generated output file. (optional)

optional arguments:
  -h, --help            show this help message and exit
  --flush-logs          Causes mysql to flush table logs to disk before the
                        backup. (recommended)
  --backends {file,mysql,dhcp,auto,all}
                        Select a backend to backup or 'all' for all backends.
                        Can be given multiple times. (Default: auto)
  --no-configuration    Backup opsi configuration.
  -c [{gz,bz2,none}], --compression [{gz,bz2,none}]
                        Sets the compression format for the archive (Default:
                        bz2)
You may give the target directory or the full path to the backup file as option to opsi-backup create. If the given option is a filename, the backup will be created in this file - existing files will be overwritten. If the given option is a directory, the backup file will be crated in this directory with a generated filename using the pattern: <hostname>_<opsi-version>_<date>_<time>
opsi-backup create /mnt/backup/opsi_backup.tar.bz2
opsi-backup create /mnt/backup/
Other create options are:
	
--backends {file,mysql,dhcp,all,auto}
is used to select the backends which shall be included to the backup. You may give this option multiple times.
The option --backends=all includes all supported backends.
The default is --backends=auto, which means that opsi-backup reads the configuration file /etc/opsi/backendManager/dispatch.conf and backups all supported backends used in this configuration.
The supported backends are: mysql, file, dhcp

opsi-backup create --backends=file --backends=mysql
opsi-backup create --backends=all
Tip
If you are using a not supported backend (like ldap), you may use opsi-convert to convert your data to a backend, which is supported by backup.


	
--no-configuration
Excludes the opsi configuration files from the backup.

opsi-backup create --no-configuration

	
-c [{gz,bz2,none}], --compression [{gz,bz2,none}]
Specify the compression method. none means no compression.
The default is bz2.

opsi-backup create -c bz2

	
--flush-logs
The backup of the mysql backend uses the mysqldump command. This means that all data known by the database are backed up, no matter if they are on disk or only in the memory yet. This means, that your backup may be more topical than your database files (which is really not a problem).
If you want to make sure, that the database stores all data to the disk before starting the backup, you may use the --flush-logs option. But before you may do this, you have to grant the required RELOAD-privileges to the opsi database user, or your backup will fail. Check: RELOAD.
So use this option only if you really know what you are doing.

opsi-backup create --backends=mysql --flush-logs



Example
opsi-backup create --no-configuration --backends=all opsi_backup.tar.bz2

Archive your backup files



opsi-backup has no features to archive the created backup files. So you have to do it by yourself (e.g. using a file backup tool).
If you call opsi-backup with a target directory as option, please keep in mind that every call creates a new full backup file and no older files will be deleted.

Verify a backup



The command opsi-backup verify is used to test the internal integrity of the created backup file.
Special help for the opsi-backup verify command is available by the command option --help.
Example
opsi-backup verify opsi_backup.tar.bz2
opsi-backup verify --help
usage: opsi-backup verify [-h] file [file ...]

required arguments:
  file        The backup archive to verify.

optional arguments:
  -h, --help  shows this help message and then exits
Tip
If you are calling opsi-backup verify at the console, it may be useful to activate messages at standard out using -v: opsi-backup -v verify opsi_backup.tar.bz2


Restore from a backup file



To restore data from a backup file, use the command opsi-backup restore.
You have to give the path to the backup file as parameter.
The command opsi-backup restore --help gives information about the options for the command restore.
opsi-backup restore --help
usage: opsi-backup restore [-h] [--backends {file,mysql,dhcp,auto,all}]
                           [--configuration] [-f]
                           file

required arguments:
  file                  The backup archive to restore data from.

optional arguments:
  -h, --help            show this help message and exit
  --backends {file,mysql,dhcp,auto,all}
                        Select a backend to restore or 'all' for all backends.
                        Can be given multiple times.
  --configuration       Restore opsi configuration.
  -f, --force           Ignore sanity checks and try to apply anyway. Use
                        with caution! (Default: false)
opsi-backup restore has the following options:
	
--backends {file,mysql,dhcp,auto,all}
Specifies the backend to restore. This option may be used multiple times.
The option --backends=all specifies that the data from all backends which are found in the backup file shall be restored.
The default is --backends=auto. This restores the data from the backup file to the system using the actual configuration data from /etc/opsi/backendManager/dispatch.conf.

opsi-backup restore --backends=file --backends=mysql opsi_backup.tar.bz2
opsi-backup restore --backends=all opsi_backup.tar.bz2
Caution
If you changed your backend configuration since you have created the backup, no or not all data will be restored. In this case you have to use the --backends=all option and then to convert the restored data to the now used backend using opsi-convert.


	
--configuration
Specifies that the opsi configuration has to be restored.
This option is not default at restore command.

opsi-backup restore --configuration opsi_backup.tar.bz2

	
-f, --force
To avoid data damage opsi-backup makes a system compatibility check (opsi Version, OS-Version, Host- and Domain Name) before restoring data and aborts if the actual system differs from the system the backup file was created on. Using this option you may override this check.

opsi-backup restore -f opsi_backup.tar.bz2



Example
opsi-backup restore --configuration --backends=all opsi_backup.tar.bz2



5.6. opsi data storage (backends)



file backend



With the backend type {file backend} the configuration information is kept in text files (ini file syntax) on the server.
Important details of the backend file :
	
It is the default backend

	
You will find the files of this backend at /var/lib/opsi.

	
Is implemented with the assumption that the FQDN of the server running this backend is the FQDN of the :configserver: in opsi.



More details on the files and their structure can be found at the section called “Files of the file backend”.

mysql backend



mysql backend for inventory data



Inventory data at the file backend is stored in structured text files by default. This type of storage is not very useful if you wish to form free queries on these data. In order to allow free queries and reports, a mysql based backend for the inventory data has been introduced.
The main features of this backend are:
* only for inventory data free (for other data it’s part of a co funding project until now)
* optional (not the default backend)
* a very fine granulated data structure with an additional table to make queries easier.
* a history function which tracks changes in the inventory.
Regarding the very different structure of the components in the inventory the resulting data structure is complex.
The table hosts comprises all known hosts. For every device type we use two tables: The HARDWARE_DEVICE_ .table describes the model without individual aspects like the serial number. The HARDWARE_CONFIG table stores these individual and configuration data.
These both tables are connected via the field hardware_id. This is the resulting list of tables:
HARDWARE_CONFIG_1394_CONTROLLER
HARDWARE_CONFIG_AUDIO_CONTROLLER
HARDWARE_CONFIG_BASE_BOARD
HARDWARE_CONFIG_BIOS
HARDWARE_CONFIG_CACHE_MEMORY
HARDWARE_CONFIG_COMPUTER_SYSTEM
HARDWARE_CONFIG_DISK_PARTITION
HARDWARE_CONFIG_FLOPPY_CONTROLLER
HARDWARE_CONFIG_FLOPPY_DRIVE
HARDWARE_CONFIG_HARDDISK_DRIVE
HARDWARE_CONFIG_IDE_CONTROLLER
HARDWARE_CONFIG_KEYBOARD
HARDWARE_CONFIG_MEMORY_BANK
HARDWARE_CONFIG_MEMORY_MODULE
HARDWARE_CONFIG_MONITOR
HARDWARE_CONFIG_NETWORK_CONTROLLER
HARDWARE_CONFIG_OPTICAL_DRIVE
HARDWARE_CONFIG_PCI_DEVICE
HARDWARE_CONFIG_PCMCIA_CONTROLLER
HARDWARE_CONFIG_POINTING_DEVICE
HARDWARE_CONFIG_PORT_CONNECTOR
HARDWARE_CONFIG_PRINTER
HARDWARE_CONFIG_PROCESSOR
HARDWARE_CONFIG_SCSI_CONTROLLER
HARDWARE_CONFIG_SYSTEM_SLOT
HARDWARE_CONFIG_TAPE_DRIVE
HARDWARE_CONFIG_USB_CONTROLLER
HARDWARE_CONFIG_VIDEO_CONTROLLER
HARDWARE_DEVICE_1394_CONTROLLER
HARDWARE_DEVICE_AUDIO_CONTROLLER
HARDWARE_DEVICE_BASE_BOARD
HARDWARE_DEVICE_BIOS
HARDWARE_DEVICE_CACHE_MEMORY
HARDWARE_DEVICE_COMPUTER_SYSTEM
HARDWARE_DEVICE_DISK_PARTITION
HARDWARE_DEVICE_FLOPPY_CONTROLLER
HARDWARE_DEVICE_FLOPPY_DRIVE
HARDWARE_DEVICE_HARDDISK_DRIVE
HARDWARE_DEVICE_IDE_CONTROLLER
HARDWARE_DEVICE_KEYBOARD
HARDWARE_DEVICE_MEMORY_BANK
HARDWARE_DEVICE_MEMORY_MODULE
HARDWARE_DEVICE_MONITOR
HARDWARE_DEVICE_NETWORK_CONTROLLER
HARDWARE_DEVICE_OPTICAL_DRIVE
HARDWARE_DEVICE_PCI_DEVICE
HARDWARE_DEVICE_PCMCIA_CONTROLLER
HARDWARE_DEVICE_POINTING_DEVICE
HARDWARE_DEVICE_PORT_CONNECTOR
HARDWARE_DEVICE_PRINTER
HARDWARE_DEVICE_PROCESSOR
HARDWARE_DEVICE_SCSI_CONTROLLER
HARDWARE_DEVICE_SYSTEM_SLOT
HARDWARE_DEVICE_TAPE_DRIVE
HARDWARE_DEVICE_USB_CONTROLLER
HARDWARE_DEVICE_VIDEO_CONTROLLER
HOST
SOFTWARE
SOFTWARE_CONFIG
Which field name in the database is corresponding to which reported and localized name in the opsi management interface is defined in a configuration file. Example (/etc/opsi/hwaudit/locales/en_US):
DEVICE_ID.deviceType = Device type
DEVICE_ID.vendorId = Vendor ID
DEVICE_ID.deviceId = Device ID
DEVICE_ID.subsystemVendorId = Subsystem vendor ID
DEVICE_ID.subsystemDeviceId = Subsystem device ID
DEVICE_ID.revision= Revision
BASIC_INFO.name = Name
BASIC_INFO.description = Description
HARDWARE_DEVICE.vendor = Vendor
HARDWARE_DEVICE.model = Model
HARDWARE_DEVICE.serialNumber = Serial number
COMPUTER_SYSTEM = Computer
COMPUTER_SYSTEM.systemType = Type
COMPUTER_SYSTEM.totalPhysicalMemory = Physical Memory
CHASSIS = Chassis
CHASSIS.name = Name
CHASSIS.chassisType = Chassis type
CHASSIS.installDate = Installation date
CHASSIS.serialNumber = Serial number
BASE_BOARD = Base board
BASE_BOARD.product = Product
BIOS = BIOS
BIOS.version = Version
SYSTEM_SLOT = System slot
SYSTEM_SLOT.currentUsage = Current usage
SYSTEM_SLOT.status = Status
SYSTEM_SLOT.maxDataWidth = Maximum data width
PORT_CONNECTOR = Port
PORT_CONNECTOR.connectorType = Attributes
PORT_CONNECTOR.internalDesignator = Internal designator
PORT_CONNECTOR.internalConnectorType = Internal type
PORT_CONNECTOR.externalDesignator = External designator
PORT_CONNECTOR.externalConnectorType = External type
PROCESSOR = Processor
PROCESSOR.architecture = Architecture
PROCESSOR.family = Family
PROCESSOR.currentClockSpeed = Current clock speed
PROCESSOR.maxClockSpeed = Maximum clock speed
PROCESSOR.extClock = External clock
PROCESSOR.processorId = Processor-ID
PROCESSOR.addressWidth = Address width
PROCESSOR.socketDesignation = Socket designation
PROCESSOR.voltage = Voltage
MEMORY_BANK = Memory bank
MEMORY_BANK.location = Location
MEMORY_BANK.maxCapacity = Maximum capacity
MEMORY_BANK.slots = Number of slots
MEMORY_MODULE = Memory module
MEMORY_MODULE.deviceLocator = Device locator
MEMORY_MODULE.capacity = Capacity
MEMORY_MODULE.formFactor = Form factor
MEMORY_MODULE.speed = Speed
MEMORY_MODULE.memoryType = Memory type
MEMORY_MODULE.dataWidth = Data width
MEMORY_MODULE.tag = Tag
CACHE_MEMORY = Cache memory
CACHE_MEMORY.installedSize = Installed size
CACHE_MEMORY.maxSize = Maximum size
CACHE_MEMORY.location = Location
CACHE_MEMORY.level = Level
PCI_DEVICE = PCI device
PCI_DEVICE.busId = Bus id
NETWORK_CONTROLLER = Network adapter
NETWORK_CONTROLLER.adapterType = Adapter type
NETWORK_CONTROLLER.maxSpeed = Maximum speed
NETWORK_CONTROLLER.macAddress = MAC address
NETWORK_CONTROLLER.netConnectionStatus = Net connection status
NETWORK_CONTROLLER.autoSense = auto-sense
NETWORK_CONTROLLER.ipEnabled = IP protocoll enabled
NETWORK_CONTROLLER.ipAddress = IP address
AUDIO_CONTROLLER = Audio controller
HDAUDIO_DEVICE = HD Audio device
HDAUDIO_DEVICE.address = Addresse
IDE_CONTROLLER = IDE controller
SCSI_CONTROLLER = SCSI controller
FLOPPY_CONTROLLER = Floppy controller
USB_CONTROLLER = USB controller
1394_CONTROLLER = 1394 controller
PCMCIA_CONTROLLER = PCMCIA controller
VIDEO_CONTROLLER = Video controller
VIDEO_CONTROLLER.videoProcessor = Video processor
VIDEO_CONTROLLER.adapterRAM = Adapter RAM
DRIVE.size = Size
FLOPPY_DRIVE = Floppy drive
TAPE_DRIVE = Tape drive
HARDDISK_DRIVE = Harddisk drive
HARDDISK_DRIVE.cylinders = Cylinders
HARDDISK_DRIVE.heads = Heads
HARDDISK_DRIVE.sectors = Sectors
HARDDISK_DRIVE.partitions = Partitions
DISK_PARTITION = Partition
DISK_PARTITION.size = Size
DISK_PARTITION.startingOffset = Starting offset
DISK_PARTITION.index = Index
DISK_PARTITION.filesystem = Filesystem
DISK_PARTITION.freeSpace = Free space
DISK_PARTITION.driveLetter = Drive letter
OPTICAL_DRIVE = Optical drive
OPTICAL_DRIVE.driveLetter = Drive letter
USB_DEVICE = USB device
USB_DEVICE.vendorId = Vendor ID
USB_DEVICE.deviceId = Device ID
USB_DEVICE.usbRelease = USB release
USB_DEVICE.maxPower = Maximum power
USB_DEVICE.interfaceClass = Interface class
USB_DEVICE.interfaceSubClass = Interface sub class
USB_DEVICE.interfaceProtocol = Interface protocol
USB_DEVICE.status = Status
MONITOR = Monitor
MONITOR.screenHeight = Screen height
MONITOR.screenWidth = Screen width
KEYBOARD = Keyboard
KEYBOARD.numberOfFunctionKeys = Number of function keys
POINTING_DEVICE = Pointing Device
POINTING_DEVICE.numberOfButtons = Number of buttons
PRINTER = Printer
PRINTER.horizontalResolution = Horizontal resolution
PRINTER.verticalResolution = Vertical resolution
PRINTER.capabilities = Capabilities
PRINTER.paperSizesSupported = Supported paper sizes
PRINTER.driverName = Driver name
PRINTER.port = Port
Examples for queries:
Listing of all hard drives:
SELECT * FROM HARDWARE_DEVICE_HARDDISK_DRIVE D
LEFT OUTER JOIN HARDWARE_CONFIG_HARDDISK_DRIVE H ON D.hardware_id=H.hardware_id ;
The software inventory uses as primary keys the following entries:
	
Name
This is the  windowsDisplayName or, if this entry isn’t found at the registry, it is the windowsSoftwareId. Both values come from the registry:
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\<id> DisplayName

	
Version
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\<id> DisplayVersion

	
SubVersion

	
Language

	
Architecture (32 Bit / 64 Bit)



At the table Software_config these primary keys are integrated to one key:  config_id.
Figure 52. data base schema: software inventory
[image: data base schema: software inventory]



mysql backend for configuration data



The mysql backend for configuration data is available since opsi 4.0.
This opsi extension is currently in the cofunding process and not free.
For more details see Section 9.1, “Activation of non free modules”.
The mysql backend has a high performance which is important for large installations.
Here a data structure overview:
Figure 53. data base schema: configuration data
[image: data base schema: configuration data]



Initializing the MySQL-Backend



First, the mysql-server has to be installed (if not done yet):
apt-get install mysql-server
In the next step the administrative password for the mysql-server has to been set:
mysqladmin --user=root password linux123
Caution
Since MySQL server version 5.7 the strict mode is enabled by default. This mode prevents the command opsi-setup --configure-mysql to finish properly, with the correct configurations. To disable the strict mode please edit the file /etc/mysql/mysql.conf.d/mysqld.cnf.
In the [mysqld] section add the following line underneath the section name:
sql_mode=NO_ENGINE_SUBSTITUTION

Now the service mysql has to be restarted: service mysql restart

The command
opsi-setup --configure-mysql
will now initialize the mysql backend.
A example session:
Figure 54. Dialog: opsi-setup --configure-mysql
[image: Dialog: opsi-setup --configure-mysql]


Figure 55. Output: opsi-setup --configure-mysql
[image: Output: opsi-setup --configure-mysql]


All the queries(except the password) can be taken by default by pressing ENTER.
As next step you have to configure how (which methods) opsi should use with the backend. Therefore please edit the file /etc/opsi/backendManager/dispatch.conf.
You can find a detailed description for this configuration at the getting started manual. The configuration file also contains a lot of examples of typical configurations.
A configuration for the use of the mysql backend (without internal dhcpd) looks like this:
backend_.*         : mysql, opsipxeconfd
host_.*            : mysql, opsipxeconfd
productOnClient_.* : mysql, opsipxeconfd
configState_.*     : mysql, opsipxeconfd
.*                 : mysql
Finally you have to activate the changed configuration with the following commands:
opsi-setup --init-current-config
opsi-setup --set-rights
service opsiconfd restart
service opsipxeconfd restart
Caution
The service opsiconfd does not have a dependency to MySQL as default.
This is due to the fact that opsi can be run without using MySQL, and because not every init-system does support requirements between services.
Please refer to the documentation of your operating system on how to configure this.


Configure the mysql database for access from outside the server



The used database must be configured in a way that allow external access.
This usually means that connection from other sources as localhost must be
accepted.
Please refer to the manual of your used database for further information.


HostControl backend



The HostControl backend does not store any information. It is a special backend to control the opsi clients.
Typical tasks are to send Wake-On-Lan signals and send control signals to the opsi-client-agent.
The HostControl backend is configured by the configuration file /etc/opsi/backends/hostcontrol.conf. Configuration options are here:
	
opsiclientdPort:
Network port to contact the opsi-client-agent.

	
hostRpcTimeout:
Timeout (in seconds) connecting a opsi-client-agent.

	
resolveHostAddress:
This option controls whether the name resolution of a opsi-client address is primary done by the opsi database or by the name resolution of the operating system of the opsi-server.
If this option is True, the opsi-server tries at first to get the IP-Address of a opsi-client by the name resolution of the operating system (DNS, /etc/hosts) and if this fails the opsi database is used.
To use the opsi database, first you have to set this option to False.

	
maxConnections:
Maximal number of concurrent connections to opsi-client-agents.

	
broadcastAddresses:
List of broadcast addresses used to send Wake-On-Lan broadcasts.




HostControlSafe-Backend



The default behavior of opsi4.0 methods called without any parameter is, that it matches all existing objects. For instance the command "host_getObjects" without any parameters results in returning all existing host objects. This could be dangerous when using the HostControl-Backend. Especially with commands like: hostControl_shutdown and hostControl_reboot. In these cases calling the method without any parameter would shutdown or reboot all the clients.
Therefore with service release opsi 4.0.3 two changes were introduced:
	
The methods hostControl_shutdown and hostControl_reboot don’t have the standard behavior anymore and result in an error message when they are called without any parameter.

	
A new backend is introduced (HostControlSafe backend), that results in an error message for all of the methods, if they are called without any client parameter. To explicitly address all of the clients by a HostControlSafe-Backend method, the wildcard * can be used:

opsi-admin -d method hostControlSafe_shutdown *



So for the reasons mentioned above, we recommend to use the hostControlSafe methods at the console or especially with little experience in using the service methods.

Conversion between different backends



The command opsi-convert converts the opsi configuration files from one backend to another. The target or the source can be assigned in different ways:
	
backend name:
A backend on the current server can be addressed with just the backend name.  The command opsi-convert file mysql converts the data base of the current server from file backend to the mysql backend.

	
Service address
Providing a fully qualified service address allows access to a remote servers data base (after passing the users password). The service address looks like https://<username>@<ipadresse>:4447/rpc.
You will be asked for the passwords.
The conversion command looks like that:



opsi-convert -s -l /tmp/log https://uib@192.168.2.162:4447/rpc   https://opsi@192.168.2.42:4447/rpc
	
Configuration directories
With the declaration of a configuration directory for the specified backend manager configuration source or target can be described in detail.

opsi-convert --help

Usage: opsi-convert [options] <from> <to>
Convert an opsi database into an other.
Options:
    -h        show this help text
    -V        show version information
    -q        do not show progress
    -v        increase verbosity (can be used multiple times)
    -c        clean destination database before writing
    -s        use destination host as new server
    -l <file> log to this file

<from> and <to> can be:
     - the name of a backend as defined in /etc/opsi/backends (file, ldap, ...)
     - the url of a opsi configuration service
       http(s)://<user>@<host>:<port>/rpc




Boot files



/tftpboot/linux contains the boot files needed for the system start with the PXE boot proms.

Securing the shares with encrypted passwords



The opsi-client-agent accesses the shares provided by the opsi-server to get the software which have to be installed at the client.
The mount of these shares is done by using the user pcpatch. That these shares are not public and have to be mounted using a password is important for:
* general system security and data integrity
* meet the license agreements of special software packets
To give the client task opsi-client-agent access to authentication data, the server creates a specific key (opsi-host-key) when creating a client. This key is stored (at the file backend) in the file   /etc/opsi/pckeys and is passed to the PC with the (re)installation request. The opsi-client-agent will store this key in the local file  c:\program files\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf
during system installation (access rights limited to the administrators). Also, on the server, the file /etc/pckeys is only accessible by the user root and members of the group opsiadmin. This way every PC has got an unique key only known to the client itself and the opsi-server, not accessible by client standard users. The key is used to encrypt the password of the user pcpatch. The encrypted password will be transferred to the client at boot time via web service. Hence the servers pcpatch password can be changed any time. The new encrypted password will be sent to every client at the next reboot.


5.7. Important files on the depot servers



Configuration files in /etc



/etc/hosts



The hosts file stores all IP addresses and IP names known to the network. The IP addresses and names of all clients have to be entered here. There might be aliases (additional names) and comments (starting with #).
opsi needs  full qualified host name (including the domain name) and this might come from the /etc/hosts as well from the DNS.
Example:
192.168.2.106  dplaptop.uib.local  dplaptop  # this opsi-server
192.168.2.153  schleppi.uib.local
192.168.2.178  test_pc1.uib.local # Test-PC PXE-bootprom
With the following command you may test the name is resolved:
getent hosts $(hostname -f)
The result should be similar to:
192.168.1.1 server.domain.tld server
If the result isn’t like that and contains for example 127.0.0.1 or localhost you should correct your /etc/hosts or your DNS before you continue with the installation.

/etc/group



The required opsi groups are pcpatch and opsiadmin.
All users who are administrating opsi packets need to be member of the pcpatch group.
Membership of the group opsiadmin allows users to connect to the opsi web service (for instance using the opsi-configed).

/etc/opsi/backends/



Configuration files for the used backends.

/etc/opsi/backendManager/



	
acl.conf
Configuration of the access control lists to the opsi methods.
This allows restricting access to the base methods of the opsi webservice for users and attributes.

	
dispatch.conf
Configuration which of the in /etc/opsi/backends/ configured backends should be used for which method.

	
extend.d/
Directory for backend extensions. For example this is be used to implement the old opsi 3 methods which are mapped to the new opsi 4 methods.




/etc/opsi/hwaudit/*



Since opsi V3.2
Here the configuration files for the hardware inventory are to be found. The directory locales holds the language specifications. The file opsihwaudit.conf specifies the mapping of WMI classes to the opsi data management.

/etc/opsi/opsi.conf



Since Version 4.0.2-2
General opsi configurations.
Example:
[groups]
fileadmingroup = pcpatch
Background:
The classical opsi installation with a user named pcpatch and a groeu named pcpatch do not works with samba 4 based distributions. The reason is, that with samba 4 we have the rule (from Active Directory) that a user and a group can not have the same name.
So for all samba4 based distributions the file /etc/opsi/opsi.conf is be used to defin the name of the group that have read and write permissions to most files of an opsi installations. The name of these group is opsifileadmins at the samba4 based distributions.
Everybody who need these access rights (e.g. people who build and install opsi products) should be member of this group.

/etc/opsi/modules



Since opsi 3.4
The opsi activation file.
This is by the uib gmbh signed file which is used to activate not free features of opsi. Any change on this file will invalidate the activation. Without this file (or with a invalid file) you may only use the free feature of opsi.

/etc/opsi/opsiconfd.conf



Since opsi V3
Configuration file for the opsiconfd service including configurations like ports, interfaces, logging.

/etc/opsi/opsiconfd.pem



Since opsi version 3.0
Configuration file for the opsiconfd holding the ssl certificate.

/etc/opsi/opsipxeconfd.conf



Configuration file for the opsipxeconfd in charge for writing the start-up files for the Linux boot image. You can configure directories, defaults and log level here.

/etc/opsi/opsi-product-updater.conf



Configuration file for the opsi-product-updater.
See also the section called “Tool: opsi-product-updater”

/etc/opsi/version



Holds the version number of the installed opsi.

/etc/init.d/



Start and stop scripts for:
* opsi-atftpd
* opsiconfd
* opsipxeconfd


Boot files



Boot files in /tftpboot/linux



	
pxelinux.0
Boot file which will be loaded first by the PXE boot-prom.

	
install and miniroot.gz
Installation boot-image which will be loaded by the client (per tftp) during a re-installation.




Boot files in /tftpboot/linux/pxelinux.cfg



	
01-<mac adresse> or <IP-NUMMER-in-Hex>
Files named by the clients hardware address (prefix 01-) are stored on the opsi-server as client-specific boot files. Usually they are named pipes created by the opsipxeconfd as to initiate the (re)installation of clients.

	
default
The file default is loaded if no client-specific file is found. This initiates a local boot.

	
install
Information for the boot of the install boot image which will be used by the opsipxeconfd to create the named pipe.





Files in /var/lib/opsi



/var/lib/opsi/repository



This is the place where opsi-product-packages are saved, which are loaded by the calls of the opsi-product-updater to the server.
This is also the place where opsi-product-packages are saved, which are installed by the calls of the  opsi-package-manager if it is called with the option -d.

/var/lib/opsi/depot



This directory is exported as read only Samba share opsi_depot.

/var/lib/opsi/ntfs-images



This directory holds (per default) the partition image files which are produced by the netboot product opsi-clonezilla.

Other directories



The other directories in /var/lib/opsi (config and audit) are directories of the file backends, which are described in the following chapters.


Files of the file backend



/etc/opsi/pckeys



In this file the opsi-host-keys, specified for each computer, are stored.
Example:
schleppi.uib.local:fdc2493ace4b372fd39dbba3fcd62182
laptop.uib.local:c397c280fc2d3db81d39b4a4329b5f65
pcbon13.uib.local:61149ef590469f765a1be6cfbacbf491

/etc/opsi/passwd



Here the passwords encrypted with the server key of the server (e.g. for pcpatch) are kept.

Overview /var/lib/opsi



The files of the file backend are in /var/lib/opsi, which is the home directory of the opsiconfd daemon. The following schema gives an overview of the directory structure.
/var/lib/opsi-|
              |-depot                           opsi_depot share
              |-repository                      opsi package repository used by opsi-product-updater opsi-package-manager
              |-audit                           inventory - files
              !-config/-|                               config share
                        |-clientgroups.ini      client groups
                        |-config.ini            Host Parameter (Global Defaults)
                        |-clients/              <pcname.ini> files
                        |-products/             product control files
                        !-depots                depot description files

        +audit/
                global.<Type> (generic hard-, and software information)
                <FQDN>.<Type> (host specific hard-, and software information)

        clientgroups.ini (hold the host groups)

        +clients/
                <FQDN>.ini (client configuration information)
        config.ini (store the 'configs' (host parameter))

        +depots/
                <FQDN>.ini (Information according to the depots)

        +products/
                <ID>_<ProdVer>-<PackVer>.<Type> (Information about the products)

        +templates/
                pcproto.ini (template for new clients)
                <FQDN>.ini (specific templates (not implemented yet))
Warning
Editing the files is strongly discouraged!


Configuration files in detail



The following chapters explain the structure of different the file backend files.

./clientgroups.ini



This file holds information on the client groups.
[<GroupId>]
<HostId> = 1 #aktiv
<HostId> = 0 #inaktiv

./config.ini



This are the global defaults of the host parameter as shown in the server configuration in the opsi-configed.

./clients/<FQDN>.ini



In these files the client specific configuration is set. This information will be combined with the <depot-id>.ini values whereas the settings from <FQDN>.ini overrides the <depot-id>.ini setting.
These files can have the following structure:
The section info contains all non product client information:
[info]
description = <String>
created = <Date> #format: 'YYYY-MM-DD HH:MM:SS'
lastseen = <Date> #format: 'YYYY-MM-DD HH:MM:SS'
inventorynumber = <String>
notes = <String>
hardwareaddress = <MAC> #format: 'hh:hh:hh:hh:hh:hh'
ipaddress = <IP> #format: 'nnn.nnn.nnn.nnn'
onetimepassword = <String>
The following section stores the installation state and the action request of a product. If there is no information here, the default is not_installed:none.
[<Type>_product_states] #'Local-', bzw. 'NetbootProduct'
<ProductId> = <InstallationStatus>:<ActionRequest>
More information on products you will find at the product sections:
[<ProductId>-state]
producttype = <Type> #'Local-', bzw. 'NetbootProduct'
actionprogress = <String>
productversion = <ProdVer>
packageversion = <PackVer>
modificationtime = <Date> #format: 'YYYY-MM-DD HH:MM:SS'
lastaction = <ActionRequest>
actionresult = <ActionResult>
targetconfiguration = <InstallationStatus>

/var/lib/opsi/config/templates



In this directory are the template files like pcproto.ini, which is the standard template for creating a new <FQDN>.ini file. It has the same internal structure as the <FQDN>.ini file.

/var/lib/opsi/config/depots/



Here are the depot specific data storage which are also stored as <depot-id>.ini. Here you find general information about the depot.
[depotshare]
remoteurl = smb://<NetBiosName>/<Path>
localurl = file://<Path>

[depotserver]
notes = <String>
network = <IP>
description = <String>
hardwareaddress = <MAC>
ipaddress = <IP>
inventorynumber = <String>

[repository]
remoteurl = webdavs://<FQDN>:<Port>/<Path>
localurl = file://<Path>
maxbandwidth = <Integer> #in Bytes
You will find also information which opsi product is installed at the depot in which version and with which property defaults.

Product control files in /var/lib/opsi/config/products/



This directory contains the product meta data, which is the product name, properties, default values and dependencies.
The control files are the kind of control files, that are generated by creating new opsi-products in the directory <product name>/OPSI/control.
The control files have the following sections:
	
Section [Package]
Description of the package version and whether this is an incremental package.

	
Section [Product]
Description of the product

	
Section(s) [ProductProperty]
(optional)
Description of variable product properties

	
Section(s) [ProductDependency]
(optional)
Description of product dependencies



Example:
[Package]
version: 1
depends:
incremental: False

[Product]
type: localboot
id: thunderbird
name: Mozilla Thunderbird
description: Mail client by Mozilla.org
advice:
version: 2.0.0.4
priority: 0
licenseRequired: False
productClasses: Mailclient
setupScript: thunderbird.ins
uninstallScript:
updateScript:
alwaysScript:
onceScript:

[ProductProperty]
name: enigmail
description: Install encryption plug-in for GnuPG
values: on, off
default: off

[ProductDependency]
action: setup
requiredProduct: mshotfix
requiredStatus: installed
requirementType: before
	
[Package]-Version
is for different package versions from the same product version. This helps to distinguish packages build from the same product version but with different opsi-winst script for instance.

	
[Package]-depends
refers to the base package of an incremental package.

	
[Package]-Incremental
specifies whether this is an incremental package.

	
[Product]-type
marks the product type as localboot or netboot.

	
[Product]-Id
is the general name of that product (like firefox), independent from the product version.

	
[Product]-name
is the full name of the product.

	
[Product]-Description
is an additional description for the product as shown in the opsi-configed as Description.

	
[Product]-Advice
is an additional hint for handling the product (caveats etc.) as to be shown in the opsi-configed as Note.

	
[Product]-version
is the version of the original software.

	
[Product]-Priority
affects (in combination with the product dependencies) the installation sequence.

	
[Product]-productClasses
is for future use.

	
[ProductProperty]-type
Type of the property: (unicode/boolean)

	
[ProductProperty]-name:
Name of the property.

	
[ProductProperty]- multivalue
May this property contain a list of values (True/False)

	
[ProductProperty]- editable
Is this property free editable or may the user only select on of the values (True/False)

	
[ProductProperty]-description:
Description of a property (Tool-tip in the opsi-configed).

	
[ProductProperty]-values :
List of allowed values.

	
[ProductProperty]-default :
Default value of the property.

	
[ProductDependency]-Action :
To which product action this dependency entry belongs (setup, uninstall …).

	
[ProductDependency]-Requiredproduct:
Product ID of the product to that a dependency exists.

	
[ProductDependency]-Required  action:
The required action of the product, which the dependency entry refers to. Actions could be setup, uninstall, update…

	
[ProductDependency]-Required installation status:
The required status of the product, which the dependency entry refers to. Typically this is installed, which results in setting this dependency product to setup, if it isn’t installed on the client yet.

	
[ProductDependency]-Requirement type:
this is regarding the installation order. If the product, which the dependency entry refers to, has to be installed before the actual product installation starts, the Requirement type must be before. If the dependency product has to be (re-)installed after the actual product, the Requirement type is set to after. If there is no entry, the installation order is of no relevance.




Inventory data /var/lib/opsi/audit



Here you find the inventory data for hardware (.hw) and software (.sw).


opsi programs and libraries



Programs in /usr/bin



	
opsipxeconfd
opsi daemon to administrate the files required for the PXE boot of the clients.

	
opsi-admin
Starts the command line interface for the opsi python library

	
opsiconfd
opsi daemon which is the central opsi configuration daemon.

	
opsiconfd-guard
opsi daemon which monitors if the opsiconfd is running and restarts the opsiconfd if it isn’t running.

	
opsi-configed
Command to start the opsi management interface

	
opsi-convert
Script for converting between different backends.

	
opsi-makeproductfile
Script for packing the opsi-package (opsi-product)

	
opsi-newprod
Script for creating the structure and meta data files of a new opsi product

	
opsi-package-manager
Script to unpack, install, remove, list opsi packages on one ore more servers (and a lot more).

	
opsi-setup
opsi configuration utility





opsi log files



The opsi log files have the following format:
[Loglevel] Timestamp Message
The log levels are:
0 = nothing      (absolute nothing)
1 = essential    ("we always need to know")
2 = critical     (unexpected errors that my cause a program abort)
3 = error        (Errors that don't will abort the running program)
4 = warning      (you should have a look at this)
5 = notice       (Important statements to the program flow)
6 = info         (Additional Infos)
7 = debug        (important debug messages)
8 = debug2       (a lot more debug information and data)
9 = confidential (passwords and other security relevant data)
/var/log/opsi/bootimage



In this directory are the log-files of the opsi-linux-bootimage. These log files will be named log.<IP-number>.
If the opsi-linux-bootimage couldn’t connect the web-service, you will find the logs in /tmp/log at the bootimage. In such case, there are two possible ways to get the log file:
	
You have a network connection to the client
You may use scp (winscp) to copy the log file from the running boot-image to your computer (login as root with password linux123).

	
You have no network connection to the client
You have to use a USB stick.

	
Login as root with the password linux123

	
Connect USB stick to the client and wait some seconds

	
use the command sfdisk -l to check on which device you will find your stick

	
mount

	
copy

	
umount






A example session:
#sfdisk -l
Disk /dev/sda: 30401 cylinders, 255 heads, 63 sectors/track
Units = cylinders of 8225280 bytes, blocks of 1024 bytes, counting from 0

   Device Boot Start     End   #cyls    #blocks   Id  System
/dev/sda1   *      0+  30401-  30402- 244197528+   7  HPFS/NTFS
/dev/sda2          0       -       0          0    0  Empty
/dev/sda3          0       -       0          0    0  Empty
/dev/sda4          0       -       0          0    0  Empty

Disk /dev/sdb: 1017 cylinders, 33 heads, 61 sectors/track
Units = cylinders of 1030656 bytes, blocks of 1024 bytes, counting from 0

   Device Boot Start     End   #cyls    #blocks   Id  System
/dev/sdb1          0+   1016    1017-   1023580    b  W95 FAT32
/dev/sdb2          0       -       0          0    0  Empty
/dev/sdb3          0       -       0          0    0  Empty
/dev/sdb4          0       -       0          0    0  Empty
# mount /dev/sdb1 /mnt
# cp /tmp/log /mnt
#umount /mnt

/var/log/opsi/clientconnect



In this directory are the log-files of the opsi-client-agent running on the client.
The client log files will be named <client FQDN>.log. On the client you will find this file at C:\opsi.org\log\opsiclientd.log.

/var/log/opsi/instlog



In this directory are the log-files of the opsi-winst running on the client.  The client log files will be named <client FQDN>.log. On the client you will find this file at C:\opsi.org\log\opsiscript.log

/var/log/opsi/opsiconfd



In this directory are the log-files of the opsiconfd and the clients.
The client log files will be named log.<IP-number> and (if available) a symbolic link named <IP-Name>.log to log.<IP-number> is created.

/var/log/opsi/opsipxeconfd.log



Log file the opsipxeconfd
that administrates the tftp files for the PXE boot of the clients.

/var/log/opsi/package.log



Log file of the opsi-package-manager.

/var/log/opsi/opsi-product-updater.log



Log file of the opsi-product-updater.

tftp log in /var/log/syslog



The log of the tftpd you will find at /var/log/syslog.
You should increase the log level to see important information.
At the file /etc/inetd.conf in the line starting with tftpd set the parameter verbose to 7 :
tftp    dgram   udp     wait    nobody /usr/sbin/tcpd /usr/sbin/in.tftpd --tftpd-timeout 300 --retry-timeout 5     --mcast-port 1758 --mcast-addr 239.239.239.0-255 --mcast-ttl 1 --maxthread 100 --verbose=7  /tftpboot
If this is done execute:
killall tftpd
killall -1 inetd

c:\opsi.org\log\opsi_loginblocker.log



Log file of the opsi-login-blocker

c:\opsi.org\log\opsiclientd.log



Log file of the opsiclientd
This file is copied at the end of a event to server at /var/log/opsi/clientconnect/<pc-ipnummer.log>.

c:\opsi.org\log\opsi-script.log



Log file of the opsi-winst.
This file is copied at the end of a installation to server at /var/log/opsi/instlog/<pc-ipnummer.log>.



5.8. Upgrade of a opsi-server



Please refer to the special releasenotes-upgrade manuals.

5.9. Notes on file structure on UCS 4.X systems



Compared to Ubuntu or Debian the files of the opsi-linux-bootimage are stored in another directory, namely:
/var/lib/univention-client-boot
Earlier versions of the opsi-linux-bootimage package had filesn stored in the directory /tftpboot/linux and linked the content to /var/lib/univention-client-boot. This changed with the release of opsi 4.1. the opsi-linux-bootimage of opsi 4.1 directley installs the files into /var/lib/univention-client-boot. After the opsi-atftpd received a patch to support files larger than 90MiB the opsi 4.1 opsi-linux-bootimage adapted to opsi 4.0.
The file structure looks like this:
 ls -l /var/lib/univention-client-boot/
insgesamt 224424
-rw-rw-r-- 1 997 OPSI Depot Servers     12372 Aug 13 13:13 chain.c32
lrwxrwxrwx 1 997 OPSI Depot Servers        15 Aug 13 13:13 install -> vmlinuz-4.17.13
lrwxrwxrwx 1 997 OPSI Depot Servers        11 Aug 13 13:13 install64 -> install-x64
lrwxrwxrwx 1 997 OPSI Depot Servers        19 Aug 13 13:13 install-x64 -> vmlinuz-x64-4.17.13
-rw-rw-r-- 1 997 OPSI Depot Servers     52272 Aug 13 13:13 menu.c32
-rw-rw-r-- 1 997 OPSI Depot Servers 105388996 Aug 13 13:13 miniroot-20180813.bz2
lrwxrwxrwx 1 997 OPSI Depot Servers        21 Aug 13 13:13 miniroot.bz2 -> miniroot-20180813.bz2
-rw-rw-r-- 1 997 OPSI Depot Servers 108394052 Aug 13 13:13 miniroot-x64-20180813.bz2
lrwxrwxrwx 1 997 OPSI Depot Servers        25 Aug 13 13:13 miniroot-x64.bz2 -> miniroot-x64-20180813.bz2
-rw-rw-r-- 1 997 OPSI Depot Servers     15710 Aug 13 13:13 pxelinux.0
drwxrwxr-x 2 997 OPSI Depot Servers      4096 Aug 28 19:19 pxelinux.cfg
-rw-rw-r-- 1 997 OPSI Depot Servers   7763664 Aug 13 13:13 vmlinuz-4.17.13
-rw-rw-r-- 1 997 OPSI Depot Servers   8166656 Aug 13 13:13 vmlinuz-x64-4.17.13
If the inetd service is used to control the opsi-atftpd the tftp line in the file /etc/inetd.conf has to look as follows:
tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd --tftpd-timeout 300 --retry-timeout 5 --verbose=5 /var/lib/univention-client-boot
On the other hand if the inetd service is not used, and the opsi-atftpd is used directly the configuration file /etc/default/atftpd need to have the following content:
USE_INETD=false
OPTIONS="--daemon --port 69 --tftpd-timeout 300 --retry-timeout 5     --mcast-port 1758 --mcast-addr 239.239.239.0-255 --mcast-ttl 1 --maxthread 100 --verbose=5  /var/lib/univention-client-boot"
In opsi 4.1 the opsi-tftpd-hpa obsoleted opsi-atftpd and directly patches the service file to have the correct TFTPROOT directory.
In addition UCS 4.X needs a DHCP policy to support a PXE Boot. This policy can be found in the Policies section of the domain settings. Hereby the boot server need to be entered whereby the IP address represents the boot server and the file pxelinux.0 is the boot filename.


6. opsi-client



6.1. opsi-client-agent



Overview



To make Software distribution manageable for the system administrator, a client computer has to notice that new software-packets or updates are available and install them without user interaction. It is important to make user-interaction completely obsolete as the installation can run unattended this way and a user cannot stop the installation during the installation process.
These requirements are implemented in opsi by the opsi-client-agent:
On the client side the service opsiclientd examines usually at boot time, before the user logs in, whether an update has to be installed for this client.
If there are software packets to be installed on the client, the script processing program opsi-winst is being started to do the installation job. The server provides all the installation scripts and software files on a file share. At this time the user has no chance to interfere with the installation process.
As an additional option the module loginblocker can be installed to prevent a user login before the end of the installation process is reached.
Before any software can be installed with the opsi-winst program, it has to be prepared as opsi-product-package. For details see Chapter Integration of new software packets into the opsi software deployment from the getting started manual.

Directories of the opsi-client-agent



The opsi-client-agent is installed at %ProgramFiles%\opsi.org\opsi-client-agent.
This directory contains all programs of the opsi-client-agent like e.g. the opsiclientd, the opsiclientd notifier, the opsi-winst and some required libraries. Also we will find here the configuration files and graphical templates (skins) of the mentioned programs.
The directory %ProgramFiles%\opsi.org\opsi-client-agent is protected against manipulation by users without administrator privileges.
The directory %ProgramFiles%\opsi.org\opsi-client-agent\opsiclientd contains the configuration file of the opsiclientd and you need administrator privileges to read it.
There also is the directory c:\opsi.org.
This directory is used (at the moment) for caching installation files and data (see WAN-Extension). In future it will have some more functions like containing log files.
You need administrator privileges to read the directory c:\opsi.org.
The log files of the opsi-client-agent you will find in c:\opsi.org\log\.

The service: opsiclientd



The opsiclientd is the core of the opsi-client-agent. The opsiclientd starts at boot time and runs with administrative privileges.
The important features are:
	
Event based control:
The activity of the opsi client agent (opsiclientd) may be triggered by different events in the client system. According to this fact, the start of the installation can be triggered by the system start up event or can be configured to be triggered by some other system event.

	
Control via web service:
This interface is used for push installations and for maintenance purposes as well.

	
Remote configuration:
The configuration data for the clients may be changed (globally or client specific) at the server by editing the Host parameters.



The opsi-client-agent consists of multiple components :
	
opsiclientd: the main service

	
opsiclientd notifier: information and communication window

	
opsi-login-blocker: block the user login until the installation has finished



Installation



In case of automatic OS-Installation with opsi (not image based), the opsi-client-agent will be installed automatically.
You may set the action request uninstall to uninstall the opsi-client-agent.
For a subsequent installation on an existing Windows system or for repair purposes see the getting started manual.
See also: the section called “Subsequent installation of the opsi-client-agents”.
See also Chapter opsi Software On Demand (Kiosk-Mode): Section 9.15, “opsi Software On Demand (Kiosk-Mode) (free)”

opsiclientd



Core component of the opsi-client-agent is the service opsiclientd. This service starts at the boot time.
The opsiclientd has the following tasks:
	
while the system is booting and the opsiclientd is waiting for the GUI to come up, the block_login_notifier is started and shows a padlock at the right upper corner of the screen.

	
Getting in action if the configuration event takes place. In case of action the opsiclientd contacts the opsi server via web service (JSON-RPC) and asks for the configuration data and required actions.
The default event is gui_startup which will fire at boot time before user login.

	
Creates a named pipe which is used by the opsi-login-blocker to ask via JSON-RPC the opsiclientd when to unblock the login.

	
Starting the opsiclientd notifier as a thread for information and interaction with the user.

	
If needed, it connects to the opsi-depot to update the local installation of the opsi-winst and then starts it to process the action requests (software packet installations).




opsiclientd notifier



The opsiclientd notifier implements the interaction with the user. It displays status messages and may give the possibility to interact with the process.
There are different situations where the opsiclientd notifier will become active in different ways:
	
blocking notifier

	
Indicates that the opsi-login-blocker is blocking



Figure 56. opsiclientd blocklogin notifier
[image: opsiclientd blocklogin notifier]


	
event notifier

	
Shows information about the current event.



Figure 57. opsiclientd event notifier
[image: opsiclientd event notifier]


	
action notifier

	
Shows state of the event processing



Figure 58. opsiclientd action notifier
[image: opsiclientd action notifier]


	
shutdown notifier

	
Gives information about a requested reboot / shutdown
(if shutdown_warning_time > 0)



Figure 59. opsiclientd shutdown notifier
[image: opsiclientd shutdown notifier]


Caution
Names and functionality of the notifier have changed from opsi 4.0 to opsi 4.0.1.
The opsi 4.0 event notifier doesn’t exist anymore.
The opsi 4.0.1 event notifier equals the opsi 4.0 action notifier.
The opsi 4.0.1 action notifier has almost the same functionality as the opsi 4.0 event notifier, but it will only be activated if there is a action request.


opsi-login-blocker



The opsi-login-blocker for NT5 (Win2K/WinXP) is implemented as a GINA  (opsigina.dll).
This GINA waits until the opsiclientd reports, that all product actions are finished or, if the opsiclientd is not reachable, until the connection timeout to the opsiclientd is reached (normally 120 seconds). Then the complete control is forwarded to the next GINA, which is normally the msgina.dll.
The opsi-login-blocker for NT6 (Vista/Win7) is implemented as a credential provider filter (OpsiLoginBlocker.dll).
This credential provider filter blocks all credential providers until the opsiclientd reports, that all product actions are finished or, if the opsiclientd is not reachable, until the connection timeout to the opsiclientd is reached (normally 120 seconds).

Processing sequence



How the opsiclientd works may be configured in many details. To understand these configuration options, it is necessary to understand the processing sequence. Here comes an overview of the work flow of a standard event like the event_gui_startup.
Figure 60. simplified work flow of a standard event
[image: simplified work flow of a 'standard event']


The most important parameters have the following relations:
Tip
If there is an error while connecting to the opsi-config-server, the log of this problem cannot be sent to the server. But you may find the log in the local log file opsiclientd.log in the log directory (c:\opsi.org\log\opsiclientd.log) at the client.

	
If an event fires, the event_notifier_command will be started.
Now the opsiclientd tries to reach the opsi-config-server using the url address.
If after user_cancelable_after seconds there is still no connection established, so the opsiclientd notifier will enable an Abort button. If no connection could be established in connection_timeout seconds, the opsiclientd connection process will be aborted and the event ends with an error message. To avoid a user from aborting, set user_cancelable_after = connection_timeout .

	
After a successful connection to the opsi-config-server, the opsiclientd checks if there are action requests for this client. If there are action requests and the action_warning_time > 0, the action_notifier_command will be executed.
This is normally the opsiclientd notifier, which shows now the list of action requests for this client for action_warning_time seconds.
Is the action_warning_time = 0 (default) the action_notifier_command will not be executed.
You may allow the user to suspend the process at this time by setting action_user_cancelable >= 0. The user may suspend the actions up to action_user_cancelable times. After action_user_cancelable aborts in sequence or if action_user_cancelable = 0 the user gets no possibility to suspend the actions.
In every case there will be a button which allows the user to start the installations immediately without waiting for the count down of action_warning_time seconds. The messages displayed by the opsiclientd notifier may be configured with the options action_message or action_message[lang] . This messages may contain the placeholders %action_user_cancelable% (total number of allowed suspensions) and %action_cancel_counter% (number of suspensions already used by the user).
If the actions are not suspended by the user, the action_cancel_counter will reset and the opsi-winst will be executed to process the action requests.

	
If the opsi-winst terminates with a reboot or shutdown request, the shutdown_notifier_command will be executed if shutdown_warning_time > 0.
The now starting shutdown_notifier_command shows for shutdown_warning_time seconds a message saying that the client will be rebooted. If shutdown_user_cancelable > 0 the user may suspend the reboot up to shutdown_user_cancelable times in sequence. If the user suspends the reboot, the shutdown_notifier_command will be restarted after shutdown_warning_repetition_time. The shutdown_notifier_command shows a message which may be configured by shutdown_warning_message or shutdown_warning_message[lang]. This message may contain the placeholders  %shutdown_user_cancelable% (maximum number of allowed suspensions) and %shutdown_cancel_counter% number of suspensions already done by the user).
If the client is rebooted (by the user or the opsi-client-agent) the %shutdown_cancel_counter% will be reset.



Tip
The sequence of event processing and user actions is visualized as a timeline graphic at the info page of the opsiclientd.

(the section called “opsiclientd infopage”).
Figure 61. Complete work flow of an event
[image: Complete work flow of a event]



Configuration



The following chapters shows how to configure the opsi-client-agent.

Configuration of different events



To meet the requirements of the various different situations in which the opsi-client-agent will become active, a slightly complex configuration is needed. To reduce the complexity, the configuration file uses something like inheritance.
In the opsiclientd configuration section headers like [event_<config-id>] introduce a new event configuration section. An event configuration may be disabled by setting the section option active = false.
There are different types of event configurations (type).
	
There are event configuration templates (type = template).
Event configurations may inherit configurations from another event. In this case the option super points to the other event to inherit all parameters from (excluding the parameter active). These inherited parameters may be overridden by local parameters in the current event section. So an event section needs only those parameters which are different from the super event.
Setting an event to active = false does not change anything in the inheritance process.

	
The other event types are:

	
gui startup
A gui startup event starts while booting the client and loading the graphical user interface (GUI). It is the most used event and set to active in the default configuration.

	
custom
Event configurations of the type custom are fired by a wql event. A wql event is defined by the corresponding wql statement in the event configuration. If the wql statement is empty, the event will never be fired, but can be executed from the interactive web interface.

	
user login
will be fired at the login of a user

	
timer
will be fired all interval seconds

	
sync completed
will be fired if the synchronization of configurations (sync_config_from_server) or products (cache_products) is completed.

	
sw on demand
will be fired by the user choosing Start actions now in the software-on-demand web page of the opsiclientd. It will never be fired if software-on-Demand is not used.




	
There are Preconditions
Preconditions define special system states (e.g. a user is logged on).
In the opsiclientd configuration a section header of the form [precondition_<precondition-id>] starts the declaration of a Precondition.
A Precondition is true, if all declared options are true.
An option not declared (but possible) is assumed as true.
Possible options for Preconditions are:

	
user_logged_in: is true if currently a user is logged on.

	
config_cached: is true if the caching of configuration data is completed (see: sync_config_from_server).

	
products_cached: is true if the caching of product files is completed (see: cache_products).




	
A Precondition can be assigned to an event configuration.
If there is a Precondition in an event configuration header, there also must be a configuration for this event without any precondition.
The event configuration with the precondition inherits all the parameters from the event configuration without precondition.
If the event is fired, first it will be checked which preconditions are true. If there is no precondition true, the configuration without precondition is used.
Is one precondition true, the configuration is used, which is bound to this precondition.
If more than one of the preconditions are true, the most specific event configuration is used (which is the configuration with the most matching options).



A small example for a better understanding:
While installing software it may be necessary to reboot the computer. Is there currently a user logged on, you should warn about the pending reboot. This warning should have a timeout and it may make sense to ask the user, if the reboot should be canceled (at the moment).
Is there no user logged on, it makes no sense to ask and wait for an answer. So in this case the reboot should take place immediately.
To handle these different situations, we configure the event_on_demand in the following way:
	
We define a Precondition user_logged_in which comes true if a user is logged on to the system (user_logged_in = true).

	
In the default configuration for the event event_on_demand (without any Precondition) we set shutdown_warning_time = 0 (immediate reboot without warning).

	
At the configuration event_on_demand{user_logged_in} we set  shutdown_warning_time = 300 (warning with 300 seconds timeout).




Proxysupport-Configuration



In the global section of opsiclientd.conf you have the option to define a proxyserver that will be used by the opsi-client-agent.
If a proxyserver is defined in config, all HTTP- and HTTPS-Connection of the opsiclientd will be redirected to this proxyserver.
# Use a proxy for connecting configservice
# proxy_mode:
#   'system' will try to check the system setting,
#   'static' to use proxyurl from configfile/hostparameter
# proxy_url usage: http://<user>:<password>@<proxy-url>:<proxy-port>
# Example: http://proxyuser:proxypass123@proxy.domain.local:8080
proxy_mode = static
proxy_url =
This proxy settings allows also to use a proxyserver, that require authentication.
In that case you must define the credentials as shown in the configuration snippet.
Warning
The option proxy_mode is reserved for the value system to use on the system proxy settings. This feature is not implemented yet. Therefore the only option that works at the moment is the static mode.


Event configuration to control which products will be processed



With this new feature it’s possible over the configuration to control the list of products, that will be processed in Events with product groups:
There are (basically) two ways to use this control:
Blacklisting (excluding):
The option exclude_product_group_ids allows to configure a comma separated list of product Groups. The members of these groups will be excluded from the actual Event. Also if action request is set for this products. This products will be ignored in this event, but the action requests will not be changed.
White listing (including):
The option include_product_group_ids allows to also configure a comma separated list of products Groups. The members of this groups are the only products, that will be processed from the actual event if they have set action requests.
You can use these options globally from the default-Event. From that point this settings will be used in every event. You can also set these options in a special event. If you use the option on event_on_demand, you can control which products will not be installed in push installations, although they have an action request. On normal restart of the client, the products will be installed from gui_startup (default event) at startup.
CAUTION: For Clients that work in WAN/VPN-mode you must set this options in sync-event and also in the cacheservice-section, because the cache service have no access to the configuration of main sync-event.
Warning
Product dependencies will not be observed by this feature. That means that you have to observe the process in order to prevent dependency issues.


Configuration via configuration file



On a 64bit Windows the configuration file is c:\program files (x86)\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf.
On a 32bit Windows the configuration file is c:\program files\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf.
Caution
This configuration file is UTF-8 encoded.
Any changes using editors which do not support this encoding (e.g. notepad.exe) may destroy any umlaut in this file.

The configuration written in this file may be changed by different configuration data, which come via web service after a successful connection to the opsi-server.
A sample opsiclientd.conf:
; = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
; =     configuration file for opsiclientd                              =
; = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     global settings                                                 -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[global]

# Location of the log file.
log_file = c:\\opsi.org\\log\\opsiclientd.log

# Set the log (verbosity) level
# (0 <= log level <= 9)
# 0: nothing, 1: essential, 2: critical, 3: errors, 4: warnings, 5: notices
# 6: infos, 7: debug messages, 8: more debug messages, 9: passwords
log_level = 4

# Client id.
host_id =

# Opsi host key.
opsi_host_key =

# Verify opsi server certs
verify_server_cert = false

# Verify opsi server certs by ca
verify_server_cert_by_ca = false

# On every daemon startup the user login gets blocked
# If the gui starts up and no events are being processed the login gets unblocked
# If no gui startup is noticed after <wait_for_gui_timeout> the login gets unblocked
# Set to 0 to wait forever
wait_for_gui_timeout = 120

# Application to run while blocking login
block_login_notifier = %global.base_dir%\\notifier.exe -s notifier\\block_login.ini

# Use a proxy for connecting configservice
# proxy_mode:
#   'system' will try to check the system setting,
#   'static' to use proxyurl from configfile/hostparameter
# proxy_url usage: http://<user>:<password>@<proxy-url>:<proxy-port>
# Example: http://proxyuser:proxypass123@proxy.domain.local:8080
proxy_mode = static
proxy_url =

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     config service settings                                         -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[config_service]
# Service url.
# http(s)://<opsi config server address>:<port>/rpc
url = https://opsi.uib.local:4447/rpc

# Conection timeout.
connection_timeout = 30

# The time in seconds after which the user can cancel the connection establishment
user_cancelable_after = 30

# If this option is set, the local system time will be synced with time from service
sync_time_from_service = false

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     depot server settings                                           -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[depot_server]

# Depot server id
depot_id =

# Depot url.
# smb://<depot address>/<share name>/<path to products>
url =

# Local depot drive
drive =

# Username that is used for network connection [domain\]<username>
username = pcpatch

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     cache service settings                                          -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[cache_service]
# Maximum product cache size in bytes
product_cache_max_size = 5000000000
# Members of this ProductGroups will be excluded from processing
exclude_product_group_ids =
# Only members of this ProductGroups will be excluded from processing
include_product_group_ids =

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     control server settings                                         -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[control_server]

# The network interfaces to bind to.
# This must be the IP address of an network interface.
# Use 0.0.0.0 to listen to all interfaces
interface = 0.0.0.0

# The port where opsiclientd will listen for HTTPS rpc requests.
port = 4441

# The location of the server certificate.
ssl_server_cert_file = %global.base_dir%\\opsiclientd\\opsiclientd.pem

# The location of the server private key
ssl_server_key_file = %global.base_dir%\\opsiclientd\\opsiclientd.pem

# The location of the static files
static_dir = %global.base_dir%\\opsiclientd\\static_html

# The maximum number of authentication failures before a client ip
# is blocked for an amount of time.
max_authentication_failures = 5

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     notification server settings                                    -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[notification_server]

# The network interfaces to bind to.
# This must be the IP address of an network interface.
# Use 0.0.0.0 to listen to all interfaces
interface = 127.0.0.1

# The first port where opsiclientd will listen for notification clients.
start_port = 44000

# Port for popup notification server
popup_port = 45000

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     opsiclientd notifier settings                                   -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[opsiclientd_notifier]

# Notifier application command
command = %global.base_dir%\\notifier.exe -p %port% -i %id%

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     opsiclientd rpc tool settings                                   -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[opsiclientd_rpc]

# RPC tool command
command = %global.base_dir%\\opsiclientd_rpc.exe "%global.host_id%" "%global.opsi_host_key%" "%control_server.port%"

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     action processor settings                                       -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[action_processor]
# Locations of action processor
local_dir = %global.base_dir%\\opsi-winst
remote_dir = opsi-winst\\files\\opsi-winst
filename = winst32.exe

# Action processor command
command = "%action_processor.local_dir%\\%action_processor.filename%" /opsiservice "%service_url%" /clientid %global.host_id% /username %global.host_id% /password %global.opsi_host_key%

# Load profile / environment of %run_as_user%
create_environment = false

; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; -     events                                                          -
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[event_default]
; === Event configuration
# Type of the event (string)
type = template
# Interval for timer events in seconds (int)
interval = -1
# Maximum number of event repetitions after which the event will be deactivated (int, -1 = forever)
max_repetitions = -1
# Time in seconds to wait before event becomes active (int, 0 to disable delay)
activation_delay = 0
# Time in seconds to wait before an event will be fired (int, 0 to disable delay)
notification_delay = 0
# Event notifier command (string)
event_notifier_command = %opsiclientd_notifier.command% -s notifier\\event.ini
# The desktop on which the event notifier will be shown on (current/default/winlogon)
event_notifier_desktop = current
# Block login while event is been executed (bool)
block_login = false
# Lock workstation on event occurrence (bool)
lock_workstation = false
# Logoff the current logged in user on event occurrence (bool)
logoff_current_user = false
# Get config settings from service (bool)
get_config_from_service = true
# Store config settings in config file (bool)
update_config_file = true
# Transmit log file to opsi service after the event processing has finished (bool)
write_log_to_service = true
# Shutdown machine after action processing has finished (bool)
shutdown = false
# Reboot machine after action processing has finished (bool)
reboot = false
# Members of this ProductGroups will be excluded from processing
exclude_product_group_ids =
# Only members of this ProductGroups will be excluded from processing
include_product_group_ids =

; === Sync/cache settings
# Sync configuration from local config cache to server (bool)
sync_config_to_server = false
# Sync configuration from server to local config cache (bool)
sync_config_from_server = false
# Sync configuration from local config cache to server after action processing (bool)
post_sync_config_to_server = false
# Sync configuration from server to local config cache after action processing (bool)
post_sync_config_from_server = false
# Work on local config cache
use_cached_config = false
# Cache products for which actions should be executed in local depot cache (bool)
cache_products = false
# Maximum transfer rate when caching products in byte/s (int, 0 = no limit)
cache_max_bandwidth = 0
# Dynamically adapt bandwidth to other network traffic (bool)
cache_dynamic_bandwidth = false
# Work on local depot cache
use_cached_products = false

; === Action notification (if product actions should be processed)
# Time in seconds for how long the action notification is shown (int, 0 to disable)
action_warning_time = 0
# Action notifier command (string)
action_notifier_command = %opsiclientd_notifier.command% -s notifier\\action.ini
# The desktop on which the action notifier will be shown on (current/default/winlogon)
action_notifier_desktop = current
# Message shown in the action notifier window (string)
action_message = Starting to process product actions. You are allowed to cancel this event a total of %action_user_cancelable% time(s). The event was already canceled %state.action_processing_cancel_counter% time(s).
# German translation (string)
action_message[de] = Starte die Bearbeitung von Produkt-Aktionen. Sie können diese Aktion insgesamt %action_user_cancelable% mal abbrechen. Die Aktion wurde bereits %state.action_processing_cancel_counter% mal abgebrochen.
# French translation (string)
action_message[fr] = Traitement des actions du produit. Vous êtes autorisé à annuler cet événement un total de %action_user_cancelable% fois. L'événement a été déjà annulée %state.action_processing_cancel_counter% fois.
# Number of times the user is allowed to cancel the execution of actions (int)
action_user_cancelable = 0

; === Action processing
# Should action be processed by action processor (bool)
process_actions = true
# Type of action processing (default/login)
action_type = default
# Update the action processor from server before starting it (bool)
update_action_processor = true
# Command which should be executed before start of action processor
pre_action_processor_command =
# Action processor command (string)
action_processor_command = %action_processor.command%
# The desktop on which the action processor command will be started on (current/default/winlogon)
action_processor_desktop = current
# Action processor timout in seconds (int)
action_processor_timeout = 10800
# Command which should be executed before after action processor has ended
post_action_processor_command =

; === Shutdown notification (if machine should be shut down or rebooted)
# Process shutdown requests from action processor
process_shutdown_requests = true
# Time in seconds for how long the shutdown notification is shown (int, 0 to disable)
shutdown_warning_time = 0
# Shutdown notifier command (string)
shutdown_notifier_command = %opsiclientd_notifier.command% -s notifier\\shutdown.ini
# The desktop on which the action notifier will be shown on (current/default/winlogon)
shutdown_notifier_desktop = current
# Message shown in the shutdown notifier window (string)
shutdown_warning_message = A reboot is required to complete software installation tasks. You are allowed to delay this reboot a total of %shutdown_user_cancelable% time(s). The reboot was already delayed %state.shutdown_cancel_counter% time(s).
# German translation (string)
shutdown_warning_message[de] = Ein Neustart wird benötigt um die Software-Installationen abzuschliessen. Sie können diesen Neustart insgesamt %shutdown_user_cancelable% mal verschieben. Der Neustart wurde bereits %state.shutdown_cancel_counter% mal verschoben.
# French translation (string)
shutdown_warning_message[fr] = Un redémarrage est nécessaire pour terminer l'installation du logiciel. Vous êtes autorisé à retarder le redémarrage un total de %shutdown_user_cancelable% fois. Le redémarrage a été déjà retardé %state.shutdown_cancel_counter% fois.
# Number of times the user is allowed to cancel the shutdown (int)
shutdown_user_cancelable = 0
# Time in seconds after the shutdown notification will be shown again after the user has canceled the shutdown (int)
shutdown_warning_repetition_time = 3600

[event_gui_startup]
super = default
type = gui startup
name = gui_startup
block_login = true

[event_gui_startup{user_logged_in}]
name = gui_startup
shutdown_warning_time = 300
block_login = false

[event_gui_startup{cache_ready}]
use_cached_config = true
use_cached_products = true
action_user_cancelable = 3
action_warning_time = 60

[event_gui_startup{installation_pending}]
name = gui_startup
active = true

[event_on_demand]
super = default
type = custom
name = on_demand

[event_on_demand{user_logged_in}]
name = on_demand
shutdown_warning_time = 300

[event_software_on_demand]
super = default
type = sw on demand

[event_sync]
super = default
type = template
process_actions = false
event_notifier_command =
sync_config_to_server = true
sync_config_from_server = true
cache_products = true
cache_dynamic_bandwidth = true

[event_timer]
super = sync
type = timer
active = false
interval = 3600

[event_net_connection]
super = sync
type = custom
active = false
wql = SELECT * FROM __InstanceModificationEvent WITHIN 2 WHERE TargetInstance ISA 'Win32_NetworkAdapter' AND TargetInstance.NetConnectionStatus = 2

[event_sync_completed]
super = default
type = sync completed
event_notifier_command =
process_actions = false
get_config_from_service = false
write_log_to_service = false

[event_sync_completed{cache_ready_user_logged_in}]
reboot = true
shutdown_user_cancelable = 10
shutdown_warning_time = 300

[event_sync_completed{cache_ready}]
reboot = true

[event_user_login]
super = default
type = user login
action_type = login
active = false
action_message = Starting to process user login actions.
action_message[de] = Beginne mit der Verarbeitung der Benutzer-Anmeldungs-Aktionen.
action_message[fr] = Traitement des actions à la connexion de l'utilisateur.
block_login = false
process_shutdown_requests = false
get_config_from_service = false
update_config_file = false
write_log_to_service = false
update_action_processor = true
event_notifier_command = %opsiclientd_notifier.command% -s notifier\\userlogin.ini
event_notifier_desktop = default
action_processor_command = %action_processor.command% /sessionid %service_session% /allloginscripts /silent
action_processor_desktop = default
action_processor_timeout = 300

[event_on_shutdown]
super = default
type = custom
name = on_shutdown
active = False

[event_on_shutdown{installation_pending}]
name = on_shutdown
active = False

[event_silent_install]
super = default
type = custom
name = silent_install
event_notifier_command =
process_shutdown_requests = false
action_processor_productIds = swaudit,hwaudit
action_processor_command = %action_processor.command% /productlist %action_processor_productIds% /silent
action_processor_desktop = winlogon
action_processor_timeout = 300

[event_timer_silentinstall]
super = silent_install
type = timer
active = false
interval = 21600

[precondition_user_logged_in]
user_logged_in = true

[precondition_cache_ready]
config_cached = true
products_cached = true

[precondition_cache_ready_user_logged_in]
user_logged_in = true
config_cached = true
products_cached = true

[precondition_installation_pending]
installation_pending = true

Configuration via web service (Host Parameter)



The opsiclientd configuration can be changed by the host parameter tab at the opsi management interface.
The entries in the host parameter have to be according to the following patterns:
opsiclientd.<name of the section>.<name of the key>
Example:
opsiclientd.event_gui_startup.action_warning_time = 20
set in the configuration file opsiclientd.conf in the section [event_gui_startup] the value of action_warning_time to the value 20.
The following figure shows how to change the serverwide general configure via opsi-configed
Figure 62. Setting the server default opsiclientd configuration
[image: Setting the server default opsiclientd configuration]


Using the context menu you may choose add property to set a new key/value pair.
To delete a server default, please use the opsi-admin tool:
Example:
opsi-admin -d method config_delete "opsiclientd.event_gui_startup.action_warning_time"
It is also possible to manipulate these entries client specific via opsi-configed.
To delete a client specific entry, please use the opsi-admin tool:
Example:
@opsi-admin> method configState_delete "opsiclientd.event_gui_startup.action_warning_time" "myclient.uib.local"
Figure 63. client specific opsiclientd configuration via opsi-configed
[image: client specific opsiclientd configuration via opsi-configed]



Logging



The opsiclientd logs to:
C:\opsi.org\log\opsiclientd.log.
All log information will be transferred to the opsi-config-server via web service. At the server you find these log infos at /var/log/opsi/clientconnect/<ip-or-name-of-the-client>.log. They are presented in the opsi configed at the tab logfiles / client connect.
Every line at the log has the pattern:
[<log level>] [<time stamp>] [message source] message.
There are the following log levels:
# Set the log (verbosity) level
# (0 <= log level <= 9)
# 0: nothing, 1: essential, 2: critical, 3: errors, 4: warnings, 5: notices
# 6: infos, 7: debug messages, 8: more debug messages, 9: passwords
Example:
(...)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'sync_completed{cache_ready}' added to event generator 'sync_completed'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'gui_startup' added to event generator 'gui_startup'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'gui_startup{cache_ready}' added to event generator 'gui_startup'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'on_demand' added to event generator 'on_demand'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'sync_completed{cache_ready_user_logged_in}' added to event generator 'sync_completed'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'gui_startup{user_logged_in}' added to event generator 'gui_startup'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'sync_completed' added to event generator 'sync_completed'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'software_on_demand' added to event generator 'software_on_demand'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Event config 'on_demand{user_logged_in}' added to event generator 'on_demand'   (Events.pyo|1107)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] Updating config file: 'C:\Program Files (x86)\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf'   (Config.pyo|287)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] No need to write config file 'C:\Program Files (x86)\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf', config file is up to date   (Config.pyo|318)
[5] [Mar 22 10:17:46] [ event processing gui_startup  ] No product action requests set   (EventProcessing.pyo|591)
[5] [Mar 22 10:17:49] [ event processing gui_startup  ] Writing log to service   (EventProcessing.pyo|247)
[6] [Mar 22 10:17:49] [ opsiclientd                   ] shutdownRequested: 0   (Windows.pyo|340)
[6] [Mar 22 10:17:49] [ opsiclientd                   ] rebootRequested: 0   (Windows.pyo|326)
[5] [Mar 22 10:17:49] [ opsiclientd                   ] Block login now set to 'False'   (Opsiclientd.pyo|111)
[6] [Mar 22 10:17:49] [ opsiclientd                   ] Terminating block login notifier app (pid 1620)   (Opsiclientd.pyo|148)
[6] [Mar 22 10:17:49] [ event processing gui_startup  ] Stopping notification server   (EventProcessing.pyo|225)
[6] [Mar 22 10:17:51] [ control server                ] client connection lost   (Message.pyo|464)
[6] [Mar 22 10:17:52] [ event processing gui_startup  ] Notification server stopped   (Message.pyo|651)
[5] [Mar 22 10:17:52] [ event processing gui_startup  ] ============= EventProcessingThread for event 'gui_startup' ended =============   (EventProcessing.pyo|1172)
[5] [Mar 22 10:17:52] [ opsiclientd                   ] Done processing event '<ocdlib.Events.GUIStartupEvent object at 0x023CE330>'   (Opsiclientd.pyo|405)
[5] [Mar 22 10:19:41] [ opsiclientd                   ] Session 'HSzMB1wtOiBS6vHl7mh3ro5r6s3TanFu' from ip '127.0.0.1', application 'opsi jsonrpc module version 4.0.1' expired after 120 seconds   (Session.pyo|184)
[6] [Mar 22 10:19:41] [ opsiclientd                   ] Session timer <_Timer(Thread-20, started daemon 2636)> canceled   (Session.pyo|120)
[5] [Mar 22 10:19:41] [ opsiclientd                   ] Session 'HSzMB1wtOiBS6vHl7mh3ro5r6s3TanFu' from ip '127.0.0.1', application 'opsi jsonrpc module version 4.0.1' deleted   (Session.pyo|207)
[6] [Mar 22 10:27:55] [ control pipe                  ] Creating pipe \\.\pipe\opsiclientd   (ControlPipe.pyo|253)
[5] [Mar 22 10:27:55] [ event generator wait_for_gui  ] -----> Executing: getBlockLogin()   (JsonRpc.pyo|123)
[5] [Mar 22 10:27:55] [ opsiclientd                   ] rpc getBlockLogin: blockLogin is 'False'   (ControlPipe.pyo|428)
[6] [Mar 22 10:27:55] [ event generator wait_for_gui  ] Got result   (JsonRpc.pyo|131)
'
The opsi-login-blocker logging to the log file: C:\opsi.org\log\opsi_loginblocker.log.

opsiclientd infopage



According to the fact that there are a lot of subcomponents of the opsiclientd which work and log at the same time, the log file of the opsiclientd becomes complex.
In order to make it easier to understand how the different subcomponents work together, the opsiclientd has an own info page which visualizes the running tasks on a timeline.
You may view this info page at the browser calling the url:
https://<address-of-the-client>:4441/info.html
Figure 64. Info page of the opsiclientd after push installation with activated product caching
[image: Info page of the opsiclientd at push installation with activated product caching]



opsi-client-agent remote control



The opsiclientd has its own web service interface which can be used to transmit commands to the opsiclientd. The possible commands can be divided in the following categories:
	
send Messages (Popup)

	
Push installation (start the event on_demand)

	
other maintenance tasks



This can be done on the command line using the tool opsi-admin by calling one of the hostControlSafe_* methods. Calling one of these methods takes the parameter *hostid which:
	
can be ["*"] to send the command to all clients

	
can be the name of a client (e.g.. "pcbon4.uib.local")

	
can be a list of client names according to the pattern [ <client1>, <client2>]
e.g.. ["pcbon1.uib.local", "pcbon2.uib.local"]

	
may contain wildcards like *

e.g.. "pcbon4.*" or "pcbon*"



If a client isn’t reachable (e.g. powerd off) you will get a message.

Sending popup messages



Using the opsi-configed you may send messages to the clients.
 the section called “Sending messages (Show popup message)”
At the command line you may do this with the tool opsi-admin:
opsi-admin -d method hostControlSafe_showPopup message *hostid
Example:
opsi-admin -d method hostControlSafe_showPopup "This is my message" "myclient.uib.local"

Push installations: start the event on demand



The opsi-server may send a command to the client that the client should process the configured action requests immediately. This is done by activating the event on_demand at the client.
This is possible using the opsi-configed and is described in chapter:
Push installationen: start the event on demand
From the opsi-server the client can be instructed to execute the product actions.
Executing Events can also be done from the opsi-configed.
the section called “Fire opsiclientd event (Push Installation)”
On the command line you may use opsi-admin to fire an event:
opsi-admin -d method hostControlSafe_fireEvent event *hostIds
Example:
opsi-admin -d method hostControlSafe_fireEvent "on_demand" "myclient.uib.local"

Additional maintenance tasks (shutdown, reboot,…..)



Using the control server port you may remote control the opsiclientd. In order to do this you have to authenticate yourself at the web service. This could be done either with the local administrator account (with a not empty password) or with the opsi-host-Id (FQDN, client name and DNS Domain name) as user name and the opsi-hostkey as password.
Using the opsi-configed you may choose the menu opsiClient or the context menu in the Clients Tab.
Figure 65. Web service of the opsiclientd
[image: Web service of the opsiclientd]


At the command line you also can initiate a client:
shutdown:
opsi-admin -d method hostControlSafe_shutdown *hostIds
reboot:
opsi-admin -d method hostControlSafe_reboot *hostIds


Adapting the opsi-client-agent to your Corporate Identity (CI)



Adapting the opsi-client-agent to your Corporate Identity can be important for the user acceptance when rolling out opsi. By adding your corporate logo to the opsi background image, the users feel more familiar with the opsi installation instead of being puzzled by something unknown.
Since opsi-client-agent version 4.0.7.16 all graphic components of the opsi-client-agent (notifier, opsi-script, kiosk-client) are base on the same graphic libraries and may be customized in the same way.
Colors can be configured in three different ways: as symbolic name (clRed), as hexadecimal value ($FF00FF) and as rgb value ((255,0,0)). There is a helper program set allows you simple to choose your colors and get the correct way to write the colors to the configuration file. The program is opsi color chooser.
As background graphic formats you may use a large number of different formats like: .bmp, .png, jpeg and so on. But all these formats are include a number of subformats. So for example is one png file displayed without any problem while an other, different png-file may not displayed in a correct way.
There may also be a difference between the operating system platforms (e.g between Windows and Linux).
There is a helper program set allows you simply to check if a given bitmap file will be displayed correct or not: opsi bitmap viewer.
Elements to be patched: opsi-winst



The files to be configured for opsi-winst are to be found in the directory /var/lib/opsi/depot/opsi-client-agent/files/opsi/opsi-winst/winstskin:
	
bg.png
This is the opsi-winst background image, where during installation text messages and product logos are shown.

	
skin.ini
This is the configuration file to specify the position, font and color of text messages during installation.




Elements to be configured: opsiclientd



In the directory
/var/lib/opsi/depot/opsi-client-agent/files/opsi/dist/notifier
are the files to configure the look of the notifiers. Each notifier has an image and a configuration file:
	
block_login.bmp
background image of the login blocker notifier.

	
block_login.ini
configuration file of the login blocker notifier.

	
event.bmp
background image of the server connection event notifier.

	
event.ini
configuration file of the server connection event notifier.

	
action.bmp
background image of the action notifier (software installation).

	
action.ini
configuration file of the action notifier.

	
shutdown.bmp
background image of the shutdown/reboot action notifier.

	
shutdown.ini
configuration file of the shutdown/reboot action notifier.

	
popup.bmp
background image of the popup message notifier.

	
popup.ini
configuration file of the popup message notifier.

	
userlogin.bmp
background image of the user login event notifier.

	
userlogin.ini
configuration file of the user login event notifier.




Elements to be configured: kioskclient



For description of the kiosk client see also: Section 9.15, “opsi Software On Demand (Kiosk-Mode) (free)”
The Headers list from the Main window (1) is customizable to the desire of the client.
To that, there are two files which play a roll:
	
opsiclientkiosk.png

	
opsiclientkiosk.ini



The opsiclientkiosk.png holds the picture which will be loaded in this area.
The opsiclientkiosk.ini defines the text and its representation which will be shown in this area.
Example:
[TitleLabel]
Text= Opsi Client Kiosk
FontName = Arial
FontSize = 15
FontColor = clWhite
FontBold = false
FontItalic = false
FontUnderline = false

[Tile]
Width = 220
Height = 200
Color =  clCream
FontName = Arial
FontSize = 12
FontColor = clBlack
FontBold = false
FontItalic = false
FontUnderline = false

[TileRadio]
Fontsize = 10
None_color = clBlack
Uninstall_color = clRed
Setup_color = clGreen
You will find templates for these files under /var/lib/opsi/depot/opsi-client-agent /files/opsi/opsiclientkiosk/opsiclientkioskskin
or C:\Program Files(x86)\opsi.org\opsi-client-agent\opsiclientkiosk\opsiclientkioskskin

Protect your CI changes from updates: the custom directory



(available since opsi-client-agent version 4.0.2.3)
The custom directory can be used to protect your configuration changes during opsi-client-agent updates: (/var/lib/opsi/depot/opsi-client-agent/files/opsi/custom). During server updates of opsi-client-agent the whole custom directory will be saved and restored after the update, so that your custom changes will persist.
	
custom/config.ini
Values from this config file override values from the default cfg/config.ini. Except of the values for pckey and bootmode, which never are picked from that file. Add to your custom config file only those values, that are different from the default settings.

	
custom/winstskin/*.*
All the files from this directory will be copied to the clients C:\Program Files (x86)\opsi.org\opsi-client-agent\custom\winstskin directory during installation of the opsi-client-agent on the client. This winstskin directory, if it exists, since opsi-winst Version 4.11.3.4. is the preferred one. It must contain all required winstskin files and configurations, for the content of the default directory is ignored.

	
custom/notifier/*.*
All the files from this directory will be copied to the clients C:\Program Files (x86)\opsi.org\opsi-client-agent\notifier directory during installation of the opsi-client-agent and overwrite the files from the server side files/opsi/dist/notifier/ directory.

	
custom/opsiclientd.conf
If it exists, the custom/opsiclientd.conf will be copied to the clients C:\Program Files (x86)\opsi.org\opsi-client-agent\opsiclientd directory during installation of the opsi-client-agent and overwrites the default opsiclientd.conf from the server side files/opsi/dist/opsiclientd/ directory. So the custom opsiclientd.conf must contain all the required configuration entries.
Attention:
Using a custom opsiclientd.conf is not recommended. To customize your client configuration, use the host parameter configuration for single features as described in the opsi-client-agent chapter. Using a custom opsiclientd.conf is applicable for very complex configurations only. By using a custom opsiclientd.conf, after each update of opsi-client-agent it is required to check the server default file  files/opsi/dist/opsiclientd/opsiclientd.conf for changes to be patched to your custom opsiclientd.conf.
 So: hands off this feature, unless you really know what you are doing!

	
custom/opsiclientkioskskin/*.*
All the files in these directory will be copied, by the installation of an opsi-client-agent to C:\Program Files(x86)\opsi.org\opsi-client-agent\custom\opsiclientkioskskin. If available, this directory (opsiclientkioskskin) will have the preference over others.



To avoid errors by the change of rights, the following helps:
opsi-setup --set-rights /var/lib/opsi/depot/opsi-client-agent


Blocking the user login with the opsi-Loginblocker



To prevent a user login before all installations are completed, opsi provides the optional opsi-login-blocker.
opsi loginblocker at Windows 2000 to XP (NT 5)



The opsi-login-blocker is implemented as the Gina opsigina.dll. Gina means Graphical Identification and Authentication and is the official Microsoft hook to manipulate the login process.
If you already have a special Gina-DLL installed, which is different from the original Microsoft msgina.dll (e.g. Novell nwgina.dll), you should not install the opsi-login-blocker without consulting uib or https://forum.opsi.org. It is possible to chain different gina.dll’s, but therefore the installation has to be customized. Proper chaining of Gina DLLs is a quite critical task and might result in a locked up computer if done improperly.
Whether the opsi-login-blocker is installed or not is configured by the switch LoginBlockerStart=on/off in section [opsi-client-agent-install] of the client configuration.

opsi loginblocker at NT 6 (Win 7 & Co)



The opsi-login-blocker at Vista is implemented as a credential provider filter. It blocks all credential providers until the release by the opsiclientd or timeout.


Subsequent installation of the opsi-client-agents



The information about the Subsequent installation of the opsi-client-agent you will find in the opsi-getting-started manual (Chapter First Steps).
Installation of the opsi-client-agent from a master image or as exe



In order to install the opsi-client-agent from a prepared (sysprep) masterimage,
the opsi-client-agent has to be (re)installed while the clone awakes and get a new personality.
To do this use the following steps:
	
Copy from the share opsi_depot the complete content of the directory opsi-client-agent in a temporary directory on the master.

	
Edit there the file files\opsi\cfg\config.ini :

	
In section [installation] set for service_user= the login name of a user that is member of the opsiadmin group..

	
NOT RECOMMENDED: In section  [installation] set for service_password= the uncoded password of this user. Better:

	
In section [installation] set for service_hidden_password= the base64 encoded password of this user. For encoding of the pawword you may use the opsi-winst function base64EncodeStr(<string>) or a online service like  http://www.base64encode.org/
If service_hidden_password= has any value the key service_password= will be ignored.

	
In section [opsiclientd] set for config_service.url = the web service address of your opsi-config-server (e.g. https://192.168.1.10:4447/rpc)




	
Make sure that the script silent_setup.cmd from the temporary directory is called after the clone has its new personality.

	
After the call of silent_setup.cmd is finished, the temporary directory should be deleted.



If you like you may pack the temporary directory to a self extracting exe with final program start using a tool like filzip.


The Systray Program of the opsi-client-agent



The systray program of the opsi-client-agent focuses on the following targets:
	
Notifying the user in regular (and configurable) Intervals on pending Installations. (Optional)

	
Notifying the user on pending Installations on demand by using the context menu.

	
Possibility for the user to start the installations.



Figure 66. Message window of the opsi-systray program
[image: Message window of the opsi-systray program]


Figure 67. Context menu (right mouse click) of the opsi-systray program
[image: Context menu (right mouse click) of the opsi-systray program]


Controlling the opsi systray program via the opsi-client-agent product properties:
	
systray_install
(true / false) Install the opsi systray program ?
Default = false

	
systray_check_interval
Interval in minutes to check for pending action requests.
Default=180 (Small values here give heavy load to the server)
The value 0 means: no checks at all..

	
systray_request_notify_format
Format of action request notification.
Possible Values:
"productid : request", "productname : request", "productname productversion : request"
default: "productname : request"



Logs of the opsi systray program:
The program logs to %Appdata%\opsi.org\log. That is the opsi.org\log directory in the Appdata directory of the loggedin user.
For Example:
C:\Users\<username>\AppData\Roaming\opsi.org\log\
See also Chapter opsi Software On Demand (Kiosk-Mode): Section 9.15, “opsi Software On Demand (Kiosk-Mode) (free)”


6.2. Registry Entries



Registry entries for the opsiclientd



opsi.org/general



	
bootmode= <bkstd | reins>
Stores the information whether the client is new installed or not.




opsi.org/shareinfo



	
depoturl
<URL for installation packets>
depoturl pattern: <protocol:\\server\share\dir>

Example:
smb:\\opsi-server\opsi_depot

	
depotdrive
drive letter the depoturl will be mounted to

Example: P: (including the colon)





Registry entries of the opsi-winst



opsi.org/winst



This registry entries are controlled by opsi-winst and should not be edited.
"LastLogFilename"="C:\\TMP\\syslogin.log"
"ContinueLogFile"=dword:00000000
"RebootRequested"=dword:00000000
"SendLogToService"=dword:00000001
"NumberOfErrors"=dword:00000000
"ShutdownRequested"=dword:00000000




7. Security



7.1. Introduction



Opsi is a powerful tool for the administration of many clients.
According to that fact, the opsi-server has to be in the focus of security considerations.
If you control the opsi-server, you are in control of all the clients, that are connecting to that opsi-server.
How much time and money you should spend for hardening your opsi-server, depends on your needs regarding security and the operational environment for using opsi. So for example an opsi-server in the cloud is more endangered than an opsi-server in a secured network.
In the following chapter we have collected the most important issues and problems.
At this point we say thank you to all customers and users which informed us about security problems and helped us to improve the security of the opsi system. If you find any security problem, please inform us (info@uib.de) before disclosing the security vulnerability in public.

7.2. Stay tuned



Information about security relevant updates and tasks are published at
the news area at the opsi forum:
https://forum.opsi.org/viewforum.php?f=10

7.3. General server security



The opsi software cannot be more secure than the underlying operating system. So please make sure to update your server with the security updates of your Linux distribution. This has to be done not only for the opsi-config-server, but also for all the opsi-depot-server.
It may help you to install programs which inform you by email if there are new updates available.
	
Debian, Ubuntu

	
apticron

	
RHEL, CentOS

	
yum-updatesd



There are a lot of possibilities to enhance the security of your Linux server. But this is not the task of this manual.
We would be happy to help you with this task as part of a support contract.

7.4. Client authentication at the server



The client authenticates itself using the FQDN as username and the opsi-host-key as password.
The opsi-host-key is stored at the client in the file:
%programfiles%\opsi.org\opsi-client-agent\opsiclientd\opsiclientd.conf
which is readable with administrative privileges only.
The opsi-host-key is stored at the server in the used backend (e.g at /etc/opsi/pckeys).
In addition to this authentication, you may tell the opsiconfd to check if the client IP address matches the given FQDN. To activate this check, set at the /etc/opsi/opsiconfd.conf:
verify ip = yes
and reload the opsiconfd:
service opsiconfd reload
Caution
Do not use this feature if you are not really sure, that your name resolution works properly in both directions for all clients.


7.5. Server authentication at the client



Since opsi 4.0.1 there are different possibilities to check the trustworthiness of the contacted server.
Caution
Do not use them in combination. Choose only one way or you will be locked out from your client.

Variant 1: verify_server_cert



At the first contact to a opsi-server, the client will accept the given SSL certificate and store it at C:\opsi.org\opsiclientd\server-certs.
On any subsequent contact, the client creates a random string and uses the public key of the stored certificate to encrypt this string (and the own access parameters). These encrypted data will be sent to the server.
The server uses the private key of its own SSL certificate to decrypt the data and sends the decrypted random string back to the client.
Now the client checks if the correct string was sent back. If not, the communication to the server will be aborted.
You can prevent this way that somebody directs your clients to a wrong server, e.g. by manipulating the DNS. If you setup a new server, you may migrate the SSL certificate from the old to the new server without problems. And you must not deploy any certification authority (CA).
The disadvantage of this method is, that a man-in-the-middle attack is still possible.
This security method checks the communication between client and opsi-config-server.
Using the opsi WAN extension and as clientconfig.depot.protocol webdav, also the communication to the opsi-depot-server is checked.
the section called “Communication Protocol for accessing an opsi-depot”
To activate this check, set at the opsiclientd.conf in the section [global] the option:
verify_server_cert = true
Run the following command at your opsi-config-server to create this configuration entry for all clients:
opsi-admin -d method config_createBool opsiclientd.global.verify_server_cert "verify_server_cert" false
Now you can activate this using the opsi-configed at the Server configuration or at the Host parameter of seleted clients by chaning the value from false to true.
Caution
Be very careful with activating "verify_server_cert", for in case of improper configuration your clients will refuse the connection!


Variant 2: verify_server_cert_by_ca



This variant works just like SSL certificates are checked in your browser.
The given SSL certificate will be accepted, if it is issued for the exact FQDN (commonName) of the server (or if the DNS verifies that this is the FQDN matching the IP address of the server) and the certificate is issued and signed by the uib gmbh.
Is one of these conditions not true, the communication to the server will be aborted.
This method is more secure than the first one. But you will have to buy the certificates from uib gmbh.
For prizes and conditions have a look at the prize list of uib gmbh:
http://uib.de/en/opsi_support/index.html
Any profits from selling these certificates will be invested in the maintenance of the opsi security.
To activate this security method, set at the opsiclientd.conf in the section [global] the option:
verify_server_cert_by_ca = true
Run the following command at your opsi-config-server to create this configuration entry for all clients:
opsi-admin -d method config_createBool opsiclientd.global.verify_server_cert_by_ca "verify_server_cert_by_ca" false
Now you can activate this using the opsi-configed at the Server configuration or at the Host parameter of seleted clients by chaning the value from false to true.
Caution
Be very careful with activating "verify_server_cert_by_ca", for in case of improper configuration your clients will refuse the connection!



7.6. Authentication at the control server of the client



The opsiclientd provides a web service interface, which allows remote control of the opsiclientd and thus remote control of the client.
(the section called “opsi-client-agent remote control”).
In order to access this interface authentication is required.
You may authenticate as a local administrator with a not empty password, or with an empty user name and the opsi-host-key as password.

7.7. Admin network configuration



The idea of an admin network is to ban any administrative access from the standard production network and allow these accesses only from a special admin network.
With opsi all opsi-clients need restricted access to the opsi web service, which allows them to read and change their own data. Administrative access with further privileges is granted to members of the unix group opsiadmin only.
If you configure an admin networks parameter, all administrative accesses are restricted to these network(s).
Setting the option [global] admin networks at the /etc/opsi/opsiconfd.conf will restrict the administrative access to the opsiconfd to connections coming from the specified network address(es).
You may give multiple addresses separated by comma.
Non administrative access may also come from other networks.
The default is:
admin networks = 0.0.0.0/0
and allows administrative access from all networks.
A configuration like e.g.
admin networks = 127.0.0.1/32, 10.1.1.0/24
restricts administrative access to the server itself and to the network 10.1.1.0/24.

7.8. The user pcpatch



With opsi 4 the user pcpatch is used just by the opsi-client-agent to mount the depot share (opsi_depot).
Excepions are the products:
	
opsi-wim-capture and opsi-local-image-capture which use pcpatch to mount the share opsi_depot_rw

	
opsi-clonezilla wich use pcpatch to mount the share opsi_images



The password of the user pcpatch is usually stored and transmitted encrypted. Under special circumstances it might be possible to catch the clear password. To reduce risks arising from that, you should do the following:
Deny for the user pcpatch the access to all other shares than the opsi_depot share. You should do this by adding the following entry to all share definitions (besides the opsi_depot) at the /etc/samba/smb.conf:
invalid users = root pcpatch
Alternative
At the /etc/samba/smb.conf restrict privileges for the user pcpatch to global read only by setting in the [global] section:
read list = pcpatch
Warning
For the products opsi-wim-capture and opsi-local-image-capture the share opsi_depot_rw must have write permission for pcpatch. For the product opsi-clonezilla the share opsi_images must have write permission for pcpatch

As an additional task you should frequently change the password of the user pcpatch. You may set the password to a random string which no one knows (besides opsi). You may do this by calling the following command e.g by a cronjob:
opsi-admin -d task setPcpatchPassword $(< /dev/urandom tr -dc _A-Z-a-z-0-9 | head -c16)
If you are not using netboot products that require the possibility to login as user pcpatch you can disable the login for that user.
To do so please change the shell of the user pcpatch to /bin/false in the file /etc/passwd.
Netboot products that may require such a login are i.e. ntfs-write-image and ntfs-restore-image respectively.

7.9. Webservice access limitations



The file /etc/opsi/backendManager/acl.conf can be used to limit the access
to specified methods and attributes of the returned values.
The limitation affects the base methods of the webservice.
For those a restriction of users or groups and allowed attributes can be established.
The access should be limited to the used methods.
If it is not clear what methods are being used one can refer to the output of
opsiconfd about the accessed methods. This is logged to /var/log/opsi/opsiconfd/opsiconfd.log in case of a stop or restart.
More information about the webservice can be found at the section called “object oriented methods”.

7.10. Change the bootimage root password



The root password of the opsi linux bootimage is linux123 by default.
You may like to change this for security reasons.
How to do this is desribed here: the section called “Parameteters for the opsi linux boot image”


8. opsi products



8.1. Localboot products: automatic software distribution with opsi



A localboot product is a opsi product which will be installed by the opsi-client-agent after the client started it’s default OS from the local hard disk. This diskriminate them form the netboot products which will be described later
opsi standard products



The following products are basic products which come with the opsi-server installation.
opsi-client-agent



The opsi-client-agent packet contains the installation and update mechanism of the opsi-client-agent.

opsi-winst



The opsi-winst packet is a special case. It includes the actual opsi-winst winst32.exe, which is updated by the opsi-client-agent packet itself. The opsi-client-agent checks the server for there is a different version of the winst32.exe and then copies the new opsi-winst (all it’s files) to the client.

javavm: Java Runtime Environment



he product javavm installs the required Java runtime environment (required for opsi-configed) on the clients.

opsi-configed



opsi Graphical Management Interface as application
For Windows and Linux.
See also chapter Section 4, “opsi-Management GUI: opsi-configed”

jedit



Java based editor with syntax highlighting for opsi-winst scripts

swaudit + hwaudit: Products for hard- and software-audit



The products hwaudit and swaudit provide the hardware and software inventories.
The hardware data are acquired using WMI and written to the hardware inventory via opsi web service.
The data for the software inventory are taken from the registry (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall) and passed to the inventory server via opsi web service.

opsi-template



Template for you own opsi scripts.
You may extract this template with:
opsi-package-manager -x opsi-template_<version>.opsi
it is also possible to rename it at the same time:
opsi-package-manager -x opsi-template_<version>.opsi --new-product-id myprod
See also opsi-getting-started Manual.

opsi-template-with-admin



Template-Script for Installations in the Context of a Local Administrator
You may extract this template with:
opsi-package-manager -x opsi-template-with-admin_<version>.opsi
it is also possible to rename it at the same time:
opsi-package-manager -x opsi-template-with-admin_<version>.opsi --new-product-id myprod
See also opsi-winst-manual / opsi-script-manual
Chapter: Cookbook / Script for Installations in the Context of a Local Administrator

shutdownwanted



Requests a shutdown after all is installed.
(more exactly: if there is no more action request).

opsi-script-test



Large collection of opsi-script selftest scripts which can be used as a example collection for running opsi-script code.

opsi-wim-capture



See also chapter Section 9.4, “opsi WIM Capture”

opsi-winpe



Product for comfortable creation of a opsi-winpe
See also opsi-getting-started Manual, Chapter Creating a PE.

opsi-uefi-netboot



See also chapter Section 9.6, “opsi with UEFI / GPT”

opsi-set-win-uac



Set’s the UAC-Level via opsi.

opsi-setup-detector



See also chapter Section 9.19, “opsi Setup Detector (free)”

opsi-logviewer



Text viewer with selection for log levels and events.
For Windows and Linux.

config-win10



Configure various Windows 10 settings like lockscreen, hibernationboot, telemetry sending and update behavior.
	
change_power_plan Change the machine power plan.

	
config_updates gives one the possibility to handle the update source. The options are to select Microsoft servers, a local peer-to-peer or a peer-to-peer over the internet as an update source. Die option disable moved into an own property, named disable_updates.

	
defer_upgrade: One can defer Updates and Upgrades of Windows 10. Setting this property to true defers Updates for four weeks and Upgrades for eight months. However security updates will be installed anyway.

	
disable_advertising_id: The advertising ID is used to collect data within the browser and show user-specific advertisement. Set this property to true to disable this.

	
disable_cortana: The Cortana assistant in Windows 10 collects data on performed seaches through the search field in the task bar. To change this behaviour use this property.

	
disable_customer_experience can dis- or enable the data collection on used applications.

	
disable_defender: Windows 10 has the Windows Defender preinstalled. To deactivate the defender and replace it with an own anti-virus-solution use the property disable_defender.

	
disable_font_streaming: Whenever a document uses a font which is not installed on the system the missing font is streamed to the machine. This can be disabled by setting the peroperty disable_font_streaming to true.

	
disable_handwrite_sharing: On modern tablet computers with Windows 10 Microsoft collects data whenever the user uses a pen or anything similar to write something. This handwrite sharing feature is controlled by the property disable_handwrite_sharing

	
disable_location_sensors: Windows 10 logs informations on the current geolocation of the device. This property makes it possible to disable this logging.

	
disable_lock_screen disable_lock_screen.

	
disable_mac: Windows 10 also collect data on the currently logged in Microsoft account user. This can be changed with the property disable_mac

	
disable_mrt: Windows 10 has an auto built in Malware Removal Tool (MRT). This tool checks the file on the harddrive on a regular basis and compares them with known malware. To disable this feature, set the property to true.

	
disable_onedrive_sync disable the OneDrive file synchronization.

	
disable_sending_feedback can disable the feedback service. This service send data to Microsoft in crashed applications.

	
disable_smbv1 disable smbv1.

	
disable_telemetry influences the amount of transfered data to Microsoft. Usually the default level, full, transfers most data. Setting this property to true lowers the amount of transfered data. Windows 10 LTSB and Enterprise releases will then only communicate security related information. Any other Windows 10 release will lower the level to basic.

	
disable_updates blocks connections wo Microsoft update sources when set to true. Setting the property to false enables these connections again.

	
disable_wifi_sense: WiFi Sense service makes it possible to share WiFi SSIDs inclusing password with contacts. The disable_wifi_sense property can disable or enable this service.

	
flashplayer_autorun: The Adobe Flashplayer contains a security vunerability related to its autorun feature. If one has the Flashplayer installed, please use the flashplayer_autorun property to disable or enable the autorun feature.

	
online_search: Whenever one uses the search field within the task bar a search is also performed through the internet. The search result then also contains webpages even if a local file was searched. Setting the property to true disables

	
sync_settings: Windows 10 makes it possible to synchronise made settings with an account and restore these saved settings on another device running Windows 10.



[ProductProperty]
type: bool
name: disable_fast_boot
description: Disable Fastboot for proper opsi startup
default: True

[ProductProperty]
type: bool
name: disable_lock_screen
default: True

[ProductProperty]
type: bool
name: disable_telemetry
description: Disable telemetry data transmission
default: True

[ProductProperty]
type: bool
name: disable_cortana
description: Disable Cortana assistant
default: True

[ProductProperty]
type: bool
name: disable_customer_experience
description: Disable customer experience program
default: True

[ProductProperty]
type: bool
name: disable_mrt
description: Disable Malicious Software Removal Tool
default: True

[ProductProperty]
type: unicode
name: config_updates
multivalue: False
editable: False
description: Set Windows-Update behavior
values: ["AllowPeerToPeer", "LocalPeerToPeer", "MicrosoftOnly"]
default: ["MicrosoftOnly"]

[ProductProperty]
type: bool
name: disable_mac
description: Disable Microsoft Account communication
default: False

[ProductProperty]
type: bool
name: disable_advertising_id
description: Disable Microsoft Advertising ID
default: False

[ProductProperty]
type: bool
name: disable_updates
description: Disable Windows Updates
default: False

[ProductProperty]
type: bool
name: disable_defender
description: Disable Microsoft Windows Defender
default: False

[ProductProperty]
type: bool
name: disable_wifi_sense
description: Disable Wi-Fi Sense
default: False

[ProductProperty]
type: bool
name: disable_sending_feedback
description: Disable sending feedback and diagnostics
default: False

[ProductProperty]
type: bool
name: disable_font_streaming
description: Disable font streaming of not installed fonts
default: False

[ProductProperty]
type: bool
name: defer_upgrade
description: Defer Windows 10 Upgrade
default: True

[ProductProperty]
type: bool
name: flashplayer_autorun
description: Adobe Flashplayer: allow autorun?
default: False

[ProductProperty]
type: bool
name: location_sensors
description: Disable location and sensor detection
default: True

[ProductProperty]
type: bool
name: online_search
description: Disable online search during file or command search
default: True

[ProductProperty]
type: bool
name: disable_handwrite_sharing
description: Tablet-PC: Disable sharing of handriting information
default: True

[ProductProperty]
type: bool
name: sync_settings
description: Sync settings with AccountID
default: False

config-winbase



Package for customizing the GUI and Explorer settings.


Manipulating the installation sequence by product priorities



Since opsi 4.0 the installation sequence will be calculated by regarding product dependencies and product priotities.
	
product dependencies
defines dependencies and needed installation sequence between opsi-packages. A typical example is the dependency between a java program and the java runtime environment (javavm).

	
product priorities
will be used to push some packages to the beginning of the installation sequence and other packages to the end. For example it is useful install service pack and hotfixes at the beginning of a installation sequence and software inventory at the end.
Product priorities are numbers between 100 and -100 (0 is the default)



There are different possibilities how these two factors are used to calculate the installation sequence. According to this opsi provides two different algorithms.
You may switch between these algorithms:
	
using the opsi-configed, in the Host parameter Tab of the server configuration



Figure 68. opsi-configed: server configuration
[image: opsi-configed: server configuration]


or you can do this on the commend line:
opsi-setup --edit-config-defaults
Figure 69. Choose the sort algorithm: Part 1
[image: Choose the sort algorithm: Part 1]


Figure 70. Choose the sort algorithm: Part 2
[image: Choose the sort algorithm: Part 2]


Algorithm1: product dependency above priority (default)



Using this algorithm, the product installation sequence at first will be calculated by the product priorities. In a second step it will be resorted to met the product dependencies. This algorithm may push products with low priority before products with higher priority to met the needs of product dependencies. But therefore you will not see installation problems as result of not resolved product dependencies.
The installation sequence of products with action requests is exactly the sequence you see in the configed if sort the products by the products by the column position and its order even if the scripts have partly been executed. Especially, if the execution of a script is stopped by an "ExitWindows /ImmediateReboot" command, then it is guaranteed that the suspended product installation is directly continued after reboot.

Algorithm2: product priority above dependency



The base philosophy of this algorithm is, that in practice there are three needed priority classes:
	
Products which have to be installed at the beginning of a sequence, like OS-Patches. These products need a high priority (e.g. 100)

	
"normal" products to install applications (default priority = 0)

	
Products which have to be installed at the end of a installation sequence, like software inventory. These products need a low priority (e.g. -100)



Product dependicies will only resolved inside of priority class. This guarantees that products with a high priority will be installed very early. But is in your reponsibility that there are non product dependencies which go cross priority class borders.

Defining product priorities and dependencies



Product priorities and dependencies belong to the meta data of a product. You will be asked for these meta data creating a new product using the command
opsi-newprod.
These meta data will be stored in the product control file and may be edited there. After changing the control file you have create and install the package again.
For more details see at getting started manual in the chapter creating a opsi-package.


Integration of new software packets into the opsi software deployment.



The information about the Integration of new software packets into the opsi software deployment. you will find in the opsi-getting-started manual.


8.2. Netboot products



Parameteters for the opsi linux boot image



The opsi-linux-bootimage has some parameters which may be used to change the behaviour of the bootimage. You will try this if the opsi-linux-bootimages doesn’t run properly with the standard parameters on your hardware (e.g. black screen).
You may change these standard parameters by the opsi-configed choosing the Tab Hostparameter and use there the entry opsi-linux-bootimage.append.
Typical values are (may be combined):
	
acpi=off

	
noapic

	
irqpoll

	
reboot=bios



An other important default is the password of the root user within the opsi-linux-bootimage. This password is linux123 by default and you should change this for security reasons.
To do this change the opsi-linux-bootimage.append entry at the server-configuration.
The option you have to change is pwh (password hash). As the value to this option you have to give a new password as a hash, which will be loaded to the /etc/shadow during the boot process.
The best way to get the correct password hash is to login via ssh to your bootimage:
ssh root@<client.domain.tld>
The old password is linux123.
Now set a new password for root:
passwd
Get the new hash
grep root /etc/shadow
The output should look like this:
root:$6$344YXKIT$D4RPZfHMmv8e1/i5nNkOFaRN2oYNobCEjCHnkehiEFA7NdkDW9KF496OHBmyHHq0kD2FBLHZoTdr5YoDlIoWz/:14803:0:99999:7:::
Now copy from after the first colon until to the second colon and use this as value for pwh.
So the option for opsi-linux-bootimage.append may be:
pwh=$6$344YXKIT$D4RPZfHMmv8e1/i5nNkOFaRN2oYNobCEjCHnkehiEFA7NdkDW9KF496OHBmyHHq0kD2FBLHZoTdr5YoDlIoWz/
One can execute a pythin script before the execution of the desired netboot product. Therefore the bootimage append supports two parameter:
	
pre-execute

	
pre-script



In addition these parameter require an address with the script. This can be a http:// or tftp:// address. Please refer to the following example:
	
tftp://172.16.166/linux/test.py



When using tftp please keep in mind that the default port 69 is used.

Unattended automated OS installation



Overview



Steps of a re-installation:
	
Using PXE-Boot:

	
Choose the client which has to be installed with the utility opsi-configed or opsi-admin.




	
At the next reboot, the client detects (via PXE-Bootprom) the re-installation request and loads the boot image from the opsi-server.



Using CD-Boot:
* The client boots the boot image from the opsi-client-boot-cd.
*The boot image starts and asks for confirmation to proceed with the re-installation. This is the only interactive question. After confirming this, the installation proceeds without any further request for interaction.
* The bootimage formats and partitions the hard disk.
* The bootimage copies the required installation files and configuration information from the opsi-server to the client and initiates a reboot.
* Windows Installation: After the reboot the client installs the OS according to the provided configuration information without any interaction.
* Linux Installation: By default the Linux Netboot products initiate a kexec command from within the bootimage and directly jumpt to the distribution installaer.
* Next the opsi-client-agent is installed as the opsi installer for automated software distribution.
* The automated software distribution then installs all the software packages as defined in the client’s configuration.

Preconditions



The client PC has to be equipped with a bootable network controller. Most recent network controllers provide this functionality (PXE boot). Also recent network controllers which are integrated on the PC’s main board. The PXE software, which is stored in the bootprom of the network controller, controls the boot process via network according to the BIOS boot device sequence. Usually the boot sequence has to be set in the BIOS, network-boot has to be the first boot device.  If there is no possibility to use PXE you may boot from the opsi-client-bootcd.
The opsi installation package for the OS to be installed needs to be provided on the depot server. In the following we assume Windows 10 to be the OS to install.

PC-client boots via the network



The PXE firmware gets activated at startup of the PC. Part of the PXE implementation is a DHCP client.
Figure 71. Step 1 during PXE-Boot
[image: Step 1 during PXE-Boot]


At first the PC only knows its hardware Ethernet address (MAC), consisting of six two-digit HEX characters.
The firmware initiates a DHCPDISCOVER broadcast: “I need an IP address, who is my DHCP-Server?“
The DHCP-Server offers an address (DHCPOFFER).
DHCPREQUEST is the response of the client to the server if the IP address is accepted. (This is not an obsolete step as there could be more than one server in the network.)
The server sends a DHCPACK to acknowledge the request. The information is sent to the client again.
You can watch this process on the display, for the PXE-BOOTPROM displays some firmware information and its CLIENT MAC ADDR. The rotating pipe-symbol is displayed during the request. When an offer was made it is replaced by an \ and you get the transmitted information (CLIENT IP, MASK, DHCP IP, GATEWAY IP).
A short while later you should get a response like this: My IP ADDRESS SEEMS TO BE …….
This process makes the PC a regular, fully configured member of the network.
The next step is to load the boot file (bootimage) given in the configuration information.

Loading pxelinux



The bootimage is loaded via trivial file transfer protocol (tftp). The displayed message is „LOADING“. tftp is a rather old and simple protocol to transfer files without authentication. In fact, all data available via tftp is available to everyone in the network. Therefore the tftp access is limited to one directory, which is usually /tftpboot. This directory is specified in x/inetd (internet daemon, /etc/inetd.conf), which will start the tftp daemon tftpd if requested. The start command as noted in inetd.conf is something like
tftpd -p -u tftp -s /tftpboot
The PXE boot-process is a multi-stage process:
Stage 1 is to load and start the file submitted as part of the address discovery process (usually /tftpboot/linux/pxelinux.0).
The program pxelinux.0 then looks for configuration and boot information in /tftpboot/linux/pxelinux.cfg. It first looks for a PC specific file with a name based on the hardware ethernet address (MAC) of the network controller with a leading 01. The filename for the controller with the hardware ethernet address 00:0C:29:11:6B:D2 would be 01-00-0c-29-11-6b-d2. If the file is not found, pxelinux.0 will start to shorten the filename (starting at the end) to obtain a match. If this process ends without result, the file default will be loaded. This file only contains the instruction to boot from the local hard disk. In this case the PC won’t install anything and will just start the current OS from hard disk.
Figure 72. Step 2 PXE-Boot
[image: Step 2 PXE-Boot]


To initiate the re-installation of a certain PC, a loadable file is prepared for the program pxelinux.0. In order to do so, the opsipxeconfd creates a PC custom file in /tftpboot/linux/pxelinux.cfg. Part of this file is the command to load the installation boot image. Also this file contains the client key to decrypt the pcpatch password. This file is created as a named pipe and therefore disappears after being read once. More details about this in the chapter on security of file shares.
Based on the information the pxelinux.0 got from the named pipe, the actual bootimage is loaded from the opsi depot server via tftp. The bootimage is based on a linux kernel (/tftpboot/linux/install) within an appropriate initrd file system (/tftpboot/linux/miniroot.bz2).

Boot from CD



Similar to the tftp boot via PXE-bootprom, the installation boot image can be booted from the opsi bootcd.
This might be recommended under the following conditions:
	
the client has no PXE bootprom;

	
there is no dhcp;

	
there is a dhcp but it isn’t allowed to configure any client data and the hardware addresses of the clients are unknown;

	
there is a dhcp but it isn’t configured for this demand.



According to different situations, several information has to be provided for the CD boot image by interactive input. The most simple case is to provide no further information. Eventually the clients hostname can be passed by hn=<hostname>. Using the option ASK_CONF=1 several parameters can be queried. Pressing F1 at the CD prompt shows the syntax.
Please read the chapter Create a new client using the opsi-client-bootcd at the opsi-getting-started manual.

The linux bootimage prepares for reinstallation



The bootimage again performs a dhcp request and configures the network interface according to the perceived information. Afterwards the configuration data for the client will be loaded via opsi web service.
Figure 73. PXE-Boot loaded with bootimage preparing hard disk for operating system installation
[image: PXE-Boot loaded with bootimage preparing hard disk for operating system installation]


It also holds the information on how to partition the hard disk, what file system to use and which operating system to install. Also it provides the encrypted password to connect the file share.
These information will be combined with some information taken from the dhcp response and then be passed to the installation script for further processing.
Then the password for the user pcpatch will be decrypted with the transferred key to mount the installation share and then call the installation script from the mounted share to start the installation of the operating system. What specific operations the script performs depends on the operating system which is to be installed. Below the steps of a Windows 10 installation will be described.
Prepare the disc: On the hard disk the bootimage creates a new partition (size of 4 GB), formats it and installs a bootable ntloader kernel.
Copy the installation file: The files required for OS installation and the setup files for the opsi-client-agent (which is the opsi software distribution pack) will be copied from the server file share (e.g. /var/lib/opsi/depot/win10/installfiles) to the local hard disk.
Maintain the configuration informations: Some of the configuration and control files contain replacement characters, which will be patched before starting the actual installation. With a specified script (patcha-script) the placeholders will be replaced with parameters taken from the information packet. This is built from configuration files and the dhcp-response. For example the file unattend.xml, which is the control file for unattended OS Installation, will be patched with specific information like host IP, client IP, client name, workgroup, default gateway etc..
Prepare Reboot: Bootrecords will be installed which will start the Windows setup program at the next reboot. The patched unattend.xml is passed to the setup as the control file for unattended installation.
Reboot: During the previous boot, the named pipe (which is indicating a request for installation) has been removed by reading it once. So the next PXE boot will load the default netboot response, which executes the command localboot 0. The local boot loader will be started and the setup for operating system installation starts.
These steps are controlled by an OS specific python script.

Installation of OS and opsi-client-agent



The OS installation bases on the Microsoft unattended setup. Part of this is the standard hardware detection. In addition to the possibilities given during an installation from non-OEM or slipstreamed installation media, drivers and patches (i.e. service packs) can be installed during the initial installation, making the separate installation of drivers obsolete.
One feature of the unattended installation is the possibility to initiate additional installations after the main installation is finished. This mechanism is used to install the opsi-client-agent, which implements the automatized software distribution system. An entry in the registry marks the machine as being still in the reinstallation-mode.
The final reboot leads to starting the opsi-client-agent service for software distribution prior to the first user login. Based on the value of the aforementioned registry key the opsi-client-agent switches into reinstallation-mode. Therefore, regarding the configuration status of each software packet, each packet which is marked as action status ”setup” or installation status ”installed” within the configuration of that client will be installed. After all the designated client software has been installed, the reinstallation process is finished and the internal status is switched back from reinstallation-mode to standard-mode. In standard-mode only software packages that are marked as action status ”setup” will be installed.

How the patcha program works



As mentioned above the information collected from dhcp and opsi-webservice will be used to patch some configuration files as e.g. unattend.xml. The program used for patching is the script /user/local/bin/patcha.
This script replaces patterns like @flagname() in a file with values taken as flagname=value from the specified properties in the Windows 10 product. In the files that have to be patched, the search and replace pattern must start with @, might have an optional  after the flagname and must have one or more trailing .
So by calling patcha -f <patchValues> <filename> the file <filename> will be patched with information from the set product properties, stored in the file <patchValues>. The file <patchValues> is generated before the installation from the product properties.
Usage: patcha [-h|-v] [-f <params file>] <patch file>

Fill placeholders in file <patch file>
Options:
-v Show version information and exit
-h Show this help
-f <params file> File containig key value pairs
If option not given key value pairs from kernel cmdline are used
patcha patches one tag per line
Caveat: patch a patches only the first pattern of each line.
Each pattern will be expanded (or reduced) to the length of the value to be replaced with and then replaced. Trailing chars will not be affected.
Examples:
With the input file try.in
cat try.in
tag1=hallohallohallo1 tag2=t2
and the file patch.me to be patched:
cat patch.me
<#@tag1##########################>
<#@tag2##########################>
<#@tag1#>
<#@tag2#>
<#@tag1*##########################>
<#@tag2*##########################>
<#@tag1*#>
<#@tag2*#>
<#@tag1#><#@tag1#####>
<#@tag2*#######><#@tag1#>
the result will be:
./patcha -f try.in patch.me
cat patch.me
<hallohallohallo1>
<t2>
<hallohallohallo1>
<t2>
<hallohallohallo1>
<t2>
<hallohallohallo1>
<t2>
<hallohallohallo1><#@tag1#####>
<t2><#@tag1#>

Structure of the unattended installation products



The information about the Structure of the unattended installation products is found in the opsi-getting-started manual.

Simplified driver integration with symlinks



The information about the Simplified driver integration with symlinks is found in the opsi-getting-started manual.


Some hints to the NT6 netboot products (Win7 to Win 10)



Preconditions. All netboot products with the version  >= 4.1.0.0 require an opsi-winst >= 4.12.0.13 installed on the opsi server.
The netboot products with the version   4.1.0.0 also run on opsi 4.0.7.
Multidisk mode. Windows OS installations on systems with more than one hard disk are now supported with the new multidiskmode property.
The multidiskmode property allows to select the target disk for the Windows installation by selecting the disk number. It is also possible to select the first SSD by using prefer_ssd or to select the first rotational (classic) disk by prefer_rotational
In order to work with the multidisk mode, the property winpenetworkmode has to be true.
Important
By using the multidiskmode on a computer with MBR BIOS you have to make sure, that the by multidiskmode selected disk is also the first disk in the BIOS boot sequence.
On UEFI BIOS systems no further actions are necessary, due to the fact that the boot sequence it’s controlled by the installation software.

Actions while running inside the Windows PE. The preparation of a Windows installation starts with the opsi-linux bootimage, which select and prepares the hard disk. It also copies a Windows PE to a partition of the hard disk. This Windows PE is booted in order to start the Windows setup.
Starting with the 4.1.0.0 netboot products we use an opsi-script inside the Windows PE. This has the following advantages:
	
Easier and clearer scripts

	
The creation of a log file of the actions inside the PE

	
Sending of this log file to the opsi server



The netboot products for the installation of the operating systems of the NT6 familiy, contain several properties which will be described below.
Figure 74. NT6 product properties
[image: NT6 product properties]


	
additional_drivers

	
One or more directories below <productid>\drivers\drivers\additional. All driver directories below the given directories will be integrated. If there is here a driver for a found device, no other driver will be integrated by the automatic driver integration.

	
administrator_password

	
At this property you set the password for the local Administrator.
Default = nt123

	
askbeforeinst

	
Should there be a confirmation dialog before start installing

	
boot_partition_label

	
Label of the boot_partition (Bitlocker partion)

	
boot_partition_letter

	
Drive letter of the boot_partition (Bitlocker Partion)

	
boot_partition_size

	
Size of the boot_partition (Bitlocker Partion). 0 = create no partition

	
data_partition_label

	
Label of the data partion (if created)

	
data_partition_letter

	
Drive letter of the data partion (if created)

	
data_partition_preserve

	
Preserve data partition on reinstallation

	
fullname

	
Full name of the license holder, which is given to the setup program

	
imagename

	
Name of the operating system variant



Figure 75. NT6 image names
[image: NT6 image names]


	
installto

	
This property should never be changed. It ist not editable. It is used internally to difference between standard (disk) installations, opsi-local-image (oli) and opsi-vhd (vhd).
Please do not try to change it.

	
multi_disk_mode

	
This property is used to select the target disk of the Windows installation.
Possible values are: "0","1","2","3","prefer_ssd","prefer_rotational"
The values "0","1","2","3" are the index of the hard disks ("0"= 1. harddisk)
The value "prefer_ssd" selects the first SSD.
The value "prefer_rotational" selects the first rotational (classic) disk.
This property is ignored on systems with only one disk.
Default = "0"

	
orgname

	
Name of the company or organisation of license holder, which is given to the setup program

	
pre_format_system_partitions

	
Should we format the windows and boot partition before installation starts to remove any traces of former installations ? (takes time !)

	
preserve_winpe_partition

	
By default (False) the winpe partition will be deleted after the installation and the space is used by the system partition. True meens only to hide the winpe partition.

	
productkey

	
License key for the installation. Is only used if the host parameter license-management.use is set to false. If it set to True the license key will be get from the license management module.

	
setup_after_install

	
Which opsi product(s) should we switch to setup after OS installation is done ?

	
system_keyboard_layout

	
Select keyboard language. (see: http://msdn.microsoft.com/en-us/goglobal/bb895996 )



Figure 76. Select keyboard language
[image: Select keyboard language]


	
system_language

	
Select system language

	
system_timezone

	
Select time zone

	
winpe_dir

	
This property only is used for debuging
The value "auto" detects the matching standard winpe directory. These are winpe or winpe_uefi
Any other value must point to an existing directory inside the product directory on the opsi depot share.
Default = auto

	
winpe_inputlocale

	
Microsoft-Windows-International-Core-WinPE InputLocale

	
winpe_partition_size

	
Size of the  winpe_partition

	
winpe_uilanguage

	
Microsoft-Windows-International-Core-WinPE

	
winpe_uilanguage_fallback

	
Microsoft-Windows-International-Core-WinPE

	
windows_partition_label

	
Label of the system partion (c:)

	
windows_partition_size

	
Size of the system partion (c:). The size may be given as percent of the harddisk size or as absolut size (G=Gigabyte). If you choose a other value the 100%, the rest will be used as data_partition.



Figure 77. Size of the system partion
[image: Size of the system partion]


	
winpenetworkmode

	
If true the PE tries to mount the depot share and start the operating system setup from the share (faster). If false all installation files will be copied to the hard disk and the installation starts from the local disk (slower).




memtest



The product memtest is a utility to perform a memory test on a client.

hwinvent



This product does a hardware inventory of the client.

wipedisk



The product wipedisk overwrites the complete hard disk (partion=0) or several partitions with different patterns. The number of consecutive write operations to perform is specified as the {product-property iterations (1-25).


8.3. Inventory



The inventory can be ordered with the Localboot products hwaudit and swaudit or with the Netboot product hwinvent.
Hardware Inventory



The hardware inventory is controlled by an opsi configuration file.  This means that the information about the data that will be compiled is not hardwired into the
corresponding products hwaudit and hwinvent.  In fact, the products will be controlled by a configuration file.  The configuration file will be called and interpreted
with every dispatch of the Web service.  Simultaneously, the configuration file controls the structure of the database, so that a change of this configuration file
changes the database schema.
The configuration file is /etc/opsi/hwaudit/opsihwaudit.conf.
All the objects on the inventory are defined and described in this file, like how these objects and their data are instantiated (under Linux and Windows).  This file will
also define the associated data structure.  To be more specific, this configuration file contains the object-oriented inheritance definitions.
The reason for this is the fact that a lot of objects contain identical data fields (i.e. like Name and Vendor).  The general information will be defined
in virtual Hardware base classes.  The actual inventory objects are then structural Hardware classes, where many properties could possibly be inherited
from overridden virtual base classes.
The following example may be instructive:
At first, the configuration file defines a virtual Class called "BASIC_INFO". This defines the properties (Values):
	
"name"

	
"description"



Next comes the virtual Class called "HARDWARE_DEVICE", which inherits all the additional parameters from "BASIC_INFO", and includes the following:
	
"vendor"

	
"model"

	
"serialNumber"



Next follows the first object that is found in the inventory, which is the first structural Class called "COMPUTER_SYSTEM",
which inherits of all the additional parameters from "HARDWARE_DEVICE", it is defined (and overwrites properties) as:
	
"name"

	
"systemType"

	
"totalPhysicalMemory"



The class definition will include a description of various parameters and their Values:
	
Class definition:

	
"Type"
is "STRUCTURAL" or  "VIRTUAL"

	
"Super"
this class which it will be inheriting.

	
"Opsi"
gives the name of the class, which will be used later in opsi as a display name.






Further more, the class definition can define how the data will be compiled.  This information can also be found in the definition of the Values.
	
For the inventory under Linux:

	
"Linux":  "[<command>]<parameter>"
Executes the command <command> on the command line, with the argument <parameter>.

	
"Python": "<python code with place holder>"
Executes the given Python code whose output will be placed in the place holder which is between the "#" signs (see example below).




	
For the Inventory under Windows:

	
"WMI": "<wmi select statement>"
executes WMI when called

	
"Cmd": "<Python text object with place holder>"
In this case, this is the relative path to the Python executable program, whose output will be placed in the place holder.

	
"Registry": "[<registry key>] <value name>"
The value of <value name> will be read from the registry, and given the key name <registry key>.
The registry must be read in an architecture-specific manner.  This means, that the 64 bit sector will be read on a 64 bit system.




	
Value Definition:

	
"Type":   "<MySQL database type>"
<MySQL Database type> gives the MySQL database type that will be applied to this value (i.e. a Python string will be a "<MySQL Datenbase type>"="varchar(200)").

	
"Scope":  "<scope>"
The field <scope> will be used in the following way:
"g" means:  This attribute is the same in every link of these types.
"i" means:  This attribute can have different types of values with these links.

	
"Opsi":   "<id>"
"<id>" is an internal name of the fields.  This can be found in the file located at /etc/opsi/hwaudit/locales .

	
"WMI":    "<id or command>"
<id or command> is either the name of a WMI command that prints the value or a single WMI command.  If the WMI command is given in the Class definition (i.e. "select * from Win32_ComputerSystem") ,
then the results are assigned to the "WMI" variables in the "Values" class definition.  If there is no WMI command, then the "WMI" variables in the "Values" section are WMI commands (see example below).

	
"Linux":  "<id>"
This is part of the class definition, <id> is the name of the displayed value when the Linux command is given.

	
"Condition": "<condition>"
<condition> is a condition which must be fulfilled, with which the Value will be determined.  So for example if the <condition> is defined as"vendor=[dD]ell*", then the values of "vendor" must contain either Dell or dell.






Here is an example of the class "COMPUTER_SYSTEM":
{
   "Class": {
      "Type":   "STRUCTURAL",
      "Super":  [ "HARDWARE_DEVICE" ],
      "Opsi":   "COMPUTER_SYSTEM",
      "WMI":    "select * from Win32_ComputerSystem",
      "Linux":  "[lshw]system"
   },
   "Values": [
      {
         "Type":   "varchar(100)",
         "Scope":  "i",
         "Opsi":   "name",
         "WMI":    "Name",
         "Linux":  "id"
      },
      {
         "Type":   "varchar(50)",
         "Scope":  "i",
         "Opsi":   "systemType",
         "WMI":    "SystemType",
         "Linux":  "configuration/chassis"
      },
      {
         "Type":   "bigint",
         "Scope":  "i",
         "Opsi":   "totalPhysicalMemory",
         "WMI":    "TotalPhysicalMemory",
         "Linux":  "core/memory/size",
         "Unit":   "Byte"
      },
      {
         "Type":   "varchar(50)",
         "Scope":  "i",
         "Opsi":   "dellexpresscode",
         "Condition": "vendor=[dD]ell*",
         "Cmd": "#dellexpresscode\dellexpresscode.exe#.split('=')[1]",
         "Python":  "str(int(#{'COMPUTER_SYSTEM':'serialNumber','CHASSIS':'serialNumber'}#,36))"
      }
   ]
},
Regarding the "WMI" commands, the class definition contains "select * from Win32_ComputerSystem".  This command is run by WMI, which
has output columns of "Name", "SystemType", and "TotalPhysicalMemory".  These values are then assigned to the opsi values of "name",
"systemType", and "totalPhysicalMemory".
Especially interesting is here the last value "dellexpresscode":
This is really useful when it queries a Dell-computer, about its condition.
The command line program dellexpresscode.exe was designed for Windows, and tells hwaudit.exe that the dellexpresscode is provided in the directory dellexpresscode\.
Items in between # are place holders for output.  So the statement at "dellexpresscode\dellexpresscode.exe" runs dellexpresscode.exe, and
produces output in the form : dellexpresscode=123456789.  The value that will be used is the one after the split on the place holder =, which is done in Python using the split() method as such .split('=')[1] .
Under Linux, there will be found a value for serialNumber for the elements (COMPUTER_SYSTEM or CHASSIS), that is then used to assign the Dell Express codes.  The call int(,36) converts the output integer to base-36.
The OPSI names of the values will be translated using the files found in /etc/opsi/hwaudit/locales/*.
The file /etc/opsi/hwaudit/locales/en_US may contain translations such as:
COMPUTER_SYSTEM = Computer
COMPUTER_SYSTEM.systemType = Type
The class name COMPUTER_SYSTEM will be translated into "Computer".  The Opsi attribute "systemType" of the class COMPUTER_SYSTEM will be translated into "Type" for English. If
one were to look in the file /etc/opsi/hwaudit/locales/de_DE, you could see that the attribute of "COMPUTER_SYSTEM.systemType" will be translated into "Typ" for German.
Finally another suggestion:  When a new field is created, it should be placed in these files, even if one does not translate the term explicitly.
This avoids any "Warning" messages.
After any change on the configuration file you should call:
opsi-setup --init-current-config
Also you should make a complete data reload in your opsi-configed by calling the menu: File/Reload all data.
The source code for this package can be found at GitHub: opsi-org/hwaudit

Software Inventory



The software inventory is done with the Localboot product swaudit.
In this case, information will be inherited from the uninstall of the Registry, and additional information will be obtained from the Hotfixes and License keys.
The source code for this package can be found at GitHub: opsi-org/swaudit


8.4. opsi subscriptions



Initial Deployment of opsi subscriptons



Add the abo repositories to the /etc/opsi/opsi-product-updater.conf
[repository_abo_mshotfix]
baseUrl = http://download.uib.de
dirs = abo/mshotfix/opsi4/glb
active = false
username = <user>
password = <pass>
autoInstall = false
autoUpdate = true
autoSetup = false
onlyDownload = false

[repository_abo_standard]
baseUrl = http://download.uib.de
dirs = abo/standard/opsi4
active = false
username = <user>
password = <pass>
autoInstall = false
autoUpdate = true
autoSetup = false
onlyDownload = false

[repository_abo_msoffice]
baseUrl = http://download.uib.de
dirs = abo/msoffice/opsi4
active = false
username = <user>
password = <pass>
autoInstall = false
autoUpdate = true
autoSetup = false
onlyDownload = false
Caution
If needed you can add a proxy to each section!

; Set Proxy handler like: http://10.10.10.1:8080
proxy =
Since opsi Version 4.0.5 one can choose specific packages for example:
opsi-product-updater -p "mshotfix,mshotfix-win7-x86-glb,mshotfix-win7-win2008r2-x64-glb"
for the mshotfix-packages for Windows 7.
Prior to opsi 4.0.5 one could download the opsi-packages and install them via opsi-package-manager -p ask -i <packagename>.opsi and set the default properties for the opsi-config-server. (Without the option -p ask the package defaults would be the depot defaults)-
Since opsi 4.0.5 it’s possible to set the product-property defaults per depot with the management interface opsi-configed
An equivalent approach ist the usage of for example an /etc/opsi/opsi-product-updater.conf.abo.standard which can  encalled via opsi-product-updater -c /etc/opsi/psi-product-updater.conf.abo.standard

Subscription MS-Hotfixes



Regular updates for the product MS-Hotfix (OS hotfixes for Windows 7 / 2008R2 /8.1 /2012 / 10 /2016).
Caution
Windows 10 1507 "non"-ltsb, 1511 und 1607 "non"-ltsb beside  Education and Enterprise will get Status "failed"

The updates will be provided within 3 working days after Microsoft publication of important and critical patches.
This opsi-packages are delivered via download area (restricted access).
http://technet.microsoft.com/en-us/security/gg309177.aspx
Rating  Definition
Critical

A vulnerability whose exploitation could allow code execution without user interaction. These scenarios include self-propagating Malware (e.g. network worms), or unavoidable common use scenarios where code execution occurs without warnings or prompts. This could mean browsing to a web page or opening an email.

Microsoft recommends that customers apply Critical updates immediately.

Important

A vulnerability whose exploitation could result in compromise of the confidentiality, integrity, or availability of user data, or of the integrity or availability of processing resources. These scenarios include common use scenarios where client is compromised with warnings or prompts regardless of the provenance, quality, or usability. Sequences of user actions that do not generate prompts or warnings are also covered.

Microsoft recommends that customers apply Important updates at the earliest opportunity.

Moderate

Impact of the vulnerability is mitigated to a significant degree by factors such as authentication requirements or applicability only to non-default configurations.

Microsoft recommends that customers consider applying the security update.
Low     Impact of the vulnerability is comprehensively mitigated by the characteristics of the affected component. Microsoft recommends that customers evaluate whether to apply the security update to the affected systems.
The opsi-mshotfix package uses (like WSUS Offline Update http://forums.wsusoffline.net/viewtopic.php?f=7&t=172 Coverage of WSUS Offline Update) Microsoft’s wsusscn2.cab.
wsusscn2.cab delivers all „critical“ and „important“ updates, but not all "optional" updates.
The base-package „mshotfix“ contains the  master-script for installing the patches contained in the other mshotfix-packages.
Caution
Wan/VPN-extension: mshotfix packages for Windows 8.1 / Windows 2012 R2 requires opsi-winst >= opsi-winst_4.11.3.11-1.opsi and opsi-client-agent >= 4.0.4.4-1.opsi

Caution
Wan/VPN-extension: mshotfix packages for Windows 10 / Windows 2016 requires opsi-client-agent >= 4.0.7.9-2

Table 2. mshotfix Client-Requirements
	OS
	

	Windows 7 / Windows 2008 R2
	Servicepack 1

	Windows Windows 2012
	Windows 8.1 / Windows 2012 R2

	
	Windows 10 / Windows 2016




Structure of the download area:
mshotfix
  !-opsi4/
     !-glb/     Base-package mshotfix  and global packages
                mshotfix-win7-x86-glb,
                mshotfix-win7-win2008r2-x64-glb
                mshotfix-win8-win2012-x64-glb
                mshotfix-win81-x86-glb
                mshotfix-win81-win2012r2-x64-glb
                mshotfix-win10-win2016-x64-glb
                mshotfix-win10-x86-glb
     !-misc/
                dotnetfx,
                dotnetfx-hotfix,
                mshotfix-uninstall,
                ms-ie11,
                ms-optional-fixes,
                silverlight
Table 3. mshotfix Client-OS
	OS
	Arch. Language
	Patch-package

	Windows 7
	32Bit
	mshotfix-win7-x86-glb

	Windows 7
	64Bit
	mshotfix-win7-win2008r2-x64-glb

	Windows 2012
	64Bit
	mshotfix-win8-win2012-x64-glb

	Windows 8.1
	32Bit
	mshotfix-win81-x86-glb

	Windows 8.1
	64Bit
	mshotfix-win81-win2012r2-x64-glb

	Windows 2008 Server R2
	64Bit
	mshotfix-win7-win2008r2-x64-glb

	Windows 2012 R2
	64Bit
	mshotfix-win81-win2012r2-x64-glb

	Windows 10
	32Bit
	mshotfix-win10-x86-glb

	Windows 10
	64Bit
	mshotfix-win10-win2016-x64-glb

	Windows 2016
	64Bit
	mshotfix-win10-win2016-x64-glb




Since mshotfix 201304-1 a list of installed patches is saved in file C:\opsi.org\mshotfix\deployed.txt.
	
Caution

	
Since mshotfix 201808-3 installs at first the ServingStack with an immediate reboot

	
noreboot

	
noreboot=on: Don’t Reboot if possible  Warning will be logged if a reboot is required. Will be ignored for Servicing stacks
values: ["off", "on"]
default: ["off"]

	
force

	
force=on: All Hotfixes will be forced installed
values: ["off", "on"]
default: ["off"]

	
excludes

	
Comma separated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 123456,789011,2222)
 Browser Choice update? (KB976002)

	
severity

	
choose the severity that will be installed. Possible Entries are Critical, Important, Moderate, all
values: ["Critical", "Important", "Moderate", "all"]
default: ["Critical", "Important"]

	
excludelist-superseded.txt

	
Use File ExcludeList-superseded.txt
values: ["", "ExcludeList-superseded.txt"]
default: [""]

	
monthly-updates

	
Handle windows-7-and-windows-8-1 : security Only Quality Update vs Monthly Quality Rollup (see Further simplifying servicing models for Windows 7 and Windows 8.1, More on Windows 7 and Windows 8.1 servicing changes, .NET Framework Monthly Rollups Explained)
values: ["all", "monthly_quality_rollup", "security_only_quality_update"]
default: ["security_only_quality_update"]



misc mshotfix-uninstall



mshotfix-uninstall        201512-1                  MS Hotfix BasePackage
Removes removable patches via wusa /uninstall  ... if possible
	
excludes

	
Commaseparated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 2553154,ms14-082)

	
noreboot

	
noreboot=on: Don’t Reboot.  Warning will be logged if a reboot is required.
values: ["off", "on"]
default: ["off"]

	
removefromdeployed.txt

	
Remove from deployed.txt
default: False

	
removekb

	
Remove KBXXXXX, (Only Number without beginning kb and no spaces f.e. 3097877)
multivalue: True
default: [""]




misc dotnetfx



dotnetfx                  4.7.2-3                 .NET Framework
Installation of dotnet framework 4.5 and above especially for windows  7 /2008 R2 / 8.1 / 2012 R2
On Windows installations (> Windows 7) you can also install Dotnet 3.5.
"The Microsoft .NET Framework 4.7.1 is a highly compatible in-place update to the Microsoft .NET Framework 4, 4.5, 4.5.1, 4.5.2, 4.6, 4.6.1, 4.6.2, and 4.7.  "
(see https://support.microsoft.com/en-us/help/3151802/the-.net-framework-4.6.2-web-installer-for-windows)
As a consequence
a) One cant install the 4.x-versions side by side
b) Third-party setups might not recognize this issue and insist for
example on version 4.5.1
After a successful dotnetfx-Installation on a windows client
dotnetfx-hotfix - if available on your opsi-server - will be set to setup.
	
version

	
["3.5", "4.0", "4.5", "4.5.1", "4.5.2", "4.6", "4.6.1", "4.6.2", "4.7", "4.7.1", "4.7.2", "latest", "latestAnd3.5"]
values: ["3.5", "4.0", "4.5", "4.5.1", "4.5.2", "4.6", "4.6.1", "4.6.2", "4.7", "4.7.1", "4.7.2", "latest", "latestAnd3.5"]
default: ["latest"]



rerundotnethotfix::rerun dotnetfx-hotfix after installation if possible
values: ["false", "true"]
default: ["true"]
	
install_language_languagepack

	
install_language_languagepack
values: ["auto", "de", "en", "fr"]
default: ["auto"]

	
os-package

	
Here you can switch from which OS-Version to be install Dotnet3.5,
auto=win10 or opsi-local-image-win10 (default); other ProductID for netboot-product
values: ["auto", ]
default: ["auto"]




misc dotnetfx-hotfix



dotnetfx-hotfix           201808-1                  dotnetfx-hotfix
at the moment our update subscription  MS-Hotfixes contains patches
for Microsoft .NET Framework if the version belongs to the installed
operating system.
For instance comes "Microsoft .NET Framework 3.5.1" with Windows 7 .
This provides patches from Microsoft for
	
Microsoft .NET Framework 4 and above for OS Windows 7



(The monthly rollups are contained in the mshotfix-packages)
The dotnetfx-hotfix patches - if available - versions 4.x
We tested the package thoroughly under Windows 7.
Please have a look at https://support.microsoft.com/en-us/lifecycle?p1=14380
"Support for .NET Framework 4, 4.5, and 4.5.1 ended on January 12, 2016"
(https://support.microsoft.com/en-us/lifecycle?p1=14380)
respectivly
https://support.microsoft.com/en-us/lifecycle#gp/Framework_FAQ
	
noreboot

	
noreboot=on: Don’t Reboot.  Warning will be logged if a reboot is required.
values: ["off", "on"]
default: ["off"]

	
force

	
force=on: All Hotfixes will be installed forced
values: ["off", "on"]
default: ["off"]

	
severity

	
choose the severity that will be installed.Possible Entries:Critical, Important, Moderate, all
values: ["Critical", "Important", "Moderate", "all"]
default: ["all"]




misc ms-ie11



ms-ie11                   11.0-11                   Internet Explorer 11
Win7 Internet Explorer 11
	
rerunmshotfix

	
rerun mshotfix after installation
values: ["false", "true"]
default: ["true"]

	
client_language

	
values: ["auto", "de", "en", "fr"]
default: ["auto"]




misc ms-optional-fixes



ms-optional-fixes         201808-1                  MS optional fixes
supplement to mshotfix and based on mshotfix
Contains:
kb2999226 win7-win8.1
	
message_language

	
Language for messages while installing
values: ["auto", "de", "en", "fr"]
default: ["auto"]

	
noreboot

	
noreboot=on: Don’t Reboot if possible  Warning will be logged if a reboot is required. Will be ignored for Servicing stacks
values: ["off", "on"]
default: ["off"]

	
excludes

	
Commaseparated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 123456,789011,2222)
 49  Browser Choice update? (KB976002)
 50 values: []
 51 default: []

	
rerunmshotfix

	
rerun mshotfix after installation
values: ["false", "true"]
default: ["true"]

	
client_language

	
values: ["auto", "de", "en", "fr"]
default: ["auto"]




misc silverlight



silverlight               5.1.50907.0-1             Microsoft Silverlight


Update subscription for MS-Office Hotfixes



Regular updates for the product:
Ms-Office 2010 (32 Bit International)
The updates will be provided within 3 working days after Microsoft’s publication of important and critical patches.
Updates for MS Office 2010 32-bit international: office_2010_hotfix



office_2010_hotfix               201808-1                  Microsoft Office 2010 Hotfixes
Contains global Office 2010 patches (inclusive Visio and Project 2010) . Requires Service pack 2.
Since office_2010_hotfix 201305-2 a list of installed patches is saved in file
C:\opsi.org\mshotfix\office_2010_hotfix_deployed
Since office_2010_hotfix 201503-1:
	
excludes

	
Comma separated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 2553154,ms14-082)




Updates for MS Office 2013 32-bit international: office_2013_hotfix



office_2013_hotfix               201808-1                  Microsoft Office 2013 Hotfixes
Contains global Office 2013 patches (includes Visio 2013).
 Requires Service pack 1
A list of installed patches is saved in the file
C:\opsi.org\mshotfix\office_2013_hotfix_deployed
Since office_2013_hotfix 201503-1:
	
excludes

	
Comma separated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 2553154,ms14-082)




Updates for MS Office 2016 32-bit international: office_2016_hotfix



office_2016_hotfix               201808-1                  Microsoft Office 2016 Hotfixes
Contains global Office 2016 patches.
A list of installed patches is saved in the file
C:\opsi.org\mshotfix\office_2016_hotfix_deployed
	
excludes

	
Comma separated list with kb-numbers or ms-no, that will be excluded (Only Number without beginning kb and no spaces. Example: 2553154,ms14-082)

	
CAUTION

	
For usage of  MS Office 2016 32-bit and 64-Bit or 64-Bit only



Adopt your repo uib_abo_msoffice u: x3264 / x64


Update subscription for the opsi standard packages



Adobe Reader DC Classic / Continuous (international / 32 Bit)
Adobe Flashplayer (international / 32 Bit / 64 Bit)
Apache OpenOffice.org (german / 32 Bit)
Google Chromium for business (international 32 Bit /64 Bit)
LibreOffice (international / 32 Bit)
Mozilla Firefox (dutch, german, english and french / 32 Bit) respectivle 32/64 Bit since 201706
Mozilla Thunderbird (german, english and french / 32 Bit)
Oracle Java VM (international / 32 Bit / 64 Bit)
Depending on your contracts we offer the subscriptions with:
Adobe Acrobat Reader XI (in addition danish, dutch, italian and spanish / 32 Bit)
Mozilla Firefox (in addition czech, danish, italian, norwegian or spanish / 32 Bit)
Mozilla Thunderbird (in addition italian / 32 Bit)
further languages can be obtained upon request.
The updates will be provided within 2 working weeks after manufacturers release. For critical security patches the opsi package will be provided within 1 working week after the patch release.
Customizing with central configuration files



For the opsi-packages
adobe.reader.dc.classic
adobe.reader.dc.continuous
firefox
flashplayer
javavm
thunderbird
one can provide configuration files and populate them via product-properties (for details see the relevant chapters)

Customizing with preinst/postinst-scripts



For the opsi-packages
adobe.reader.dc.classic
firefox         (since 17.0.6esrorstandard-1)
flashplayer     (since 13.0.0.182or11.7.700.275-1)
google-chrome-for-business
javavm          (since 1.7.0.51-4 )
libreoffice     (since 4.3.5or4.4.0-2)
ooffice         (since 4.1.1-2)
thunderbird     (since 17.0.6esrorstandard-1)
one can use custom-scripts in directory custom\scripts
Simple templates can be found in directory opsi\scripts
custom.actions.post.setup
custom.actions.post.uninstall
custom.actions.pre.setup
custom.actions.pre.uninstall
custom.declarations
custom.sections

custom scripts will be included at
- setup-script
- uninstall-script

custom pre-scripts will be included in
- setup-script
- uninstall-script

custom post-scripts will be included in
- in setup-script
- uninstall-script

custom.declarations
; intended for declaration of custom Variables and Stringlist Variables
; will be included with "include_insert" at top of [actions]
; but after GetProductProperties

custom.sections
; intended for declaration of custom secondary sections
; will be included with "include_append" at top of [actions]
; but after GetProductProperties

custom.actions.pre.setup  (or custom.actions.pre.uninstall)
; will be included with "include_insert" at at top of [actions]
; (but after GetProductProperties)

custom.actions.post.setup (or custom.actions.post.uninstall)
; will be included with "include_insert" in case of successful installation before "endof_"actions"
; in setup-script ( or uninstall-script)

Adobe Acrobat Document Cloud Classic : adobe.reader.dc.classic



adobe.reader.dc.classic 20151500630394or20171701130070-1          Adobe Acrobat Reader dc
The adobe.reader.dc.classic-Package contains Adobe Acrobat Document Cloud Classic (MUI-Version)
Adaptation in the transform file *.mst
cat transform.txt
Changes vs default the transform file *.mst

Personalization Options
Suppress Eula

Installation Options
acivated - Make Reader the default PDF viewer
IF REBOOT REQUIRED - suppress reboot


Shortcuts
deactivated - Destination Computer/Desktop/Adobe Reader XI (Icon)


Online and Acrobat.com Features
Online Features
activated - Disable product updates
Enable & Ask before Installing - Load trusted root certificates from Adobe

Online Services and Features
disable product updates
Load trusted root certificates from Adobe disable
DISABLE all Services
	
adobereader.mst

	
The Adobe Reader package uses a default transform
build with the Adobe Customization Wizard.
Own mst-files can be placed in the share opsi_depot in
/var/lib/opsi/depot/adobe.reader.dc.classic/custom
During the installation via opsi-package-manager -i <adobe.reader.dc.classic> the directory custom will preserved by the preinst/postinst-scripts and the names of any mst-file in the custom-directory will be appear as a possible property entry.



Caution
opsi WAN/VPN extension: The synchronization process is based on the file <product-id>.files. So any change in the custom share requires new installation of the package via opsi-package-manager.

	
client_language

	
The adobe.reader.dc.classic-package contains Adobe Acrobat Document Cloud Classic (MUI-Version)
"auto" tries to install the correct language. values: ["auto", "de", "en", "fr"] default: ["auto"]

	
classicversion

	
description: https://helpx.adobe.com/acrobat/release-note/release-notes-acrobat-reader.html Classic Track (2015 Release) or (2017 Release)
values: ["2015", "2017"]
default: ["2015"]

	
noreboot

	
description: noreboot=true: Don’t Reboot.  Warning will be logged if a reboot is required.
values: ["false", "true"]
default: ["false"]




Adobe Acrobat Document Cloud Continuous : adobe.reader.dc.continuous



adobe.reader.dc.continuous      2015.023.20056-1          Adobe Acrobat Reader dc
The adobe.reader.dc.classic-Package contains Adobe Acrobat Document Cloud Continuous (MUI-Version)
Adaptation in the transform file *.mst
cat transform.txt
Changes vs default the transform file *.mst

Personalization Options
Suppress Eula

Installation Options
acivated - Make Reader the default PDF viewer
IF REBOOT REQUIRED - suppress reboot


Shortcuts
deactivated - Destination Computer/Desktop/Adobe Reader (Icon)


Online and Acrobat.com Features
Online Features
activated - Disable product updates
Enable & Ask before Installing - Load trusted root certificates from Adobe

Online Services and Features
disable product updates
Load trusted root certificates from Adobe disable
DISABLE all Services
	
adobereader.mst

	
The Adobe Reader package uses a default transform
build with the Adobe Customization Wizard.
Own mst-files can be placed in the share opsi_depot in
/var/lib/opsi/depot/adobe.reader.dc.continuous/custom
During the installation via opsi-package-manager -i <adobe.reader.dc.continuous> the directory custom will preserved by the preinst/postinst-scripts and the names of any mst-file in the custom-directory will be appear as a possible property entry.



Caution
opsi WAN/VPN extension: The synchronization process is based on the file <product-id>.files. So any change in the custom share requires new installation of the package via opsi-package-manager.

	
client_language

	
The adobe.reader.dc.classic-package contains Adobe Acrobat Document Cloud Classic (MUI-Version)
"auto" tries to install the correct language. values: ["auto", "de", "en", "fr"] default: ["auto"]

	
noreboot

	
description: noreboot=true: Don’t Reboot.  Warning will be logged if a reboot is required.
values: ["false", "true"]
default: ["false"]




Adobe Flashplayer : flashplayer



flashplayer                      24.0.0.194-1 Adobe Flashplayer
The flashplayer-package contains Adobe Flashplayer standard or the Extended Support Release
	
flashplayer-version

	
Flashplayer standard as default; Version esr (Extended Support Release http://blogs.adobe.com/flashplayer/2014/03/upcoming-changes-to-flash-players-extended-support-release.html)



values: esr, standard
default: standard
	
mms.cfg

	
The configuration file mms.cfg



will be created during "setup" and patched according the properties below.
Since Version 13.0.0.250-2 one can use custom mms.cfg files in the share opsi_depot in
/var/lib/opsi/depot/flashplayer/custom
During the installation via opsi-package-manager -i <flashplayer> the directory custom will be preserved by the preinst/postinst-scripts and the names of any mms.cfg-file in the custom-directory will be appear as a possible property entry.
Caution
opsi WAN/VPN extension: The synchronization process is based on the file <product-id>.files. So any change in the custom share requires new installation of the package via opsi-package-manager.

	
mms.cfg

	
/var/lib/opsi/depot/flashplayer/custom custom mms.cfg-files.



Only the property autoupdatedisable will be populated if custom mms.cfg are used
Adobe Flashplayer Admin Guide: 

flash_player_11_1_admin_guide.pdf (flash_player_admin_guide.pdf)

#####################################
Chapter 4: Administration

You can create and place files on the end user’s machine to manage
features related to security, privacy, use of disk
space, etc.

Privacy and security settings (mms.cfg)

As a network administrator, you can install Flash Player across the
environment while enforcing some common global
security and privacy settings (supported with installation-time
configuration choices). To do this, you need install a file
named mms.cfg on each client machine.

The mms.cfg file is a text file. When Flash Player starts, it reads its
settings from this file, and uses them to manage
functionality as described in the following sections.

mms.cfg file location

Assuming a default Windows installation, Flash Player looks for the
mms.cfg file in the following system directories:

32-bit Windows - %WINDIR%\System32\Macromed\Flash

64-bit Windows - %WINDIR%\SysWow64\Macromed\Flash

Note: The %WINDIR% location represents the Windows system directory,
such as C:\WINDOWS.


	
assetcachesize

	
description: hard limit, in MB, on the amount of local storage that Flash Player uses for the storage of common Flash components
values: ["20"]
default: ["20"]

	
autoupdatedisable

	
description: Lets you prevent Flash Player from automatically checking for and installing updated versions.
values: ["0", "1"]
default: ["1"]

	
autoupdateinterval

	
description: (without meaning if AutoUpdateDisable=1) how often to check for an updated version of Flash Player

	
avhardwaredisable

	
description: Lets you prevent SWF files from accessing webcams or microphones
values: ["0", "1"]
default: ["1"]

	
disabledevicefontenumeration

	
description: Lets you prevent information on installed fonts from being displayed.
values: ["0", "1"]
default: ["1"]

	
fullscreendisable

	
description: Lets you disable SWF files playing via a browser plug-in from being displayed in full-screen mode
values: ["0", "1"]
default: ["1"]

	
localfilereaddisable

	
description: Lets you prevent local SWF files from having read access to files on local hard drives
values: ["0", "1"]
default: ["0"]

	
filedownloaddisable

	
description: Lets you prevent the ActionScript FileReference API from performing file downloads
values: ["0", "1"]
default: ["0"]

	
fileuploaddisable

	
description: Lets you prevent the ActionScript FileReference API from performing file uploads
values: ["0", "1"]
default: ["0"]

	
disableproductdownload

	
description: Lets you prevent native code applications that are digitally signed and delivered by Adobe from being downloaded
values: ["0", "1"]
default: ["1"]

	
disablesockets

	
description: enable or disable the use of the Socket.connect() and XMLSocket.connect() methods
values: ["0", "1"]
default: ["1"]

	
enablesocketsto

	
description: Lets you create a whitelist of servers to which socket connections are allowed

	
enforcelocalsecurityinactivexhostapp

	
description: Lets you enforce local security rules for a specified application.

	
legacydomainmatching

	
description: Lets you specify whether SWF files produced for Flash Player 6 and earlier can execute an operation that has been restricted in a newer version of Flash Player
values: ["0", "1"]
default: ["0"]

	
localfilelegacyaction

	
description: Lets you specify how Flash Player determines whether to execute certain local SWF files that were originally produced for Flash Player 7 and earlier
values: ["0", "1"]
default: ["0"]

	
allowuserlocaltrust

	
description: Lets you prevent users from designating any files on local file systems
values: ["0", "1"]
default: ["0"]

	
localstoragelimit

	
description: Lets you specify a hard limit on the amount of local storage that Flash Player uses (per domain) for persistent shared objects.
values: ["3"]
default: ["3"]

	
overridegpuvalidation

	
description: Overrides validation of the requirements needed to implement GPU compositing
values: ["0", "1"]
default: ["0"]

	
rtmfpp2pdisable

	
description: Specifies how the NetStream constructor connects to a server when a value is specified for peerID, the second parameter passed to the constructor
values: ["0", "1"]
default: ["1"]

	
disablenetworkandfilesysteminhostapp

	
description: 1 (Acrobat.exe,Acroread.exe,WINWORD.EXE,EXCEL.EXE,POWERPNT.EXE,PPTVIEW.EXE,OUTLOOK.EXE,MSACCESS.EXE,VISIO.EXE,thunderbird.exe)
values: ["0", "1"]
default: ["1"]

	
Known problems:

	
Installation "On Demand" may fail cause running browsers.










Google Chromium for Business



google-chrome-for-business 56.0.2924.76-1
Uses the msi-installer (see Chrome for Business FAQ https://support.google.com/chrome/a/answer/188447?hl=en )
remarks:
Installing and uninstalling google-chrome.msi seems sometimes to hang.
There are several approaches working around this issue.
One customer reported  a quote of 100% successful Installations on 40 installations with the following property setting:
	
install_architecture: 32

	
reboot_on_retry: True

	
reboot_after_uninstall: True

	
timeout: 240



In our internal tests we work with:
* install_architecture: system specific
* reboot_on_retry: True
* reboot_after_uninstall: True
* timeout: notimeout
	
autoupdate

	
!!! Will not work anymore!!!



https://support.google.com/chrome/a/answer/187207
ADM= use Policy based on Googles Template,
0=UpdatesDisabled,
1=UpdatesEnabled,
2=ManualUpdatesOnly,
3=AutomaticUpdatesOnly,
values: ["0", "1", "2", "3", "ADM"]
default: ["0"]
	
removeupdatehelper

	
default: ["true"]

	
install_architecture

	
description: which architecture (32/64 bit) has to be installed
values: ["32", "64", "system specific"]
default: ["system specific"]

	
reboot_on_retry

	
description: If installation fails and (timeout > 0) then reboot before retry
default: False

	
reboot_after_uninstall

	
description: reboot after uninstall old version
default: False

	
timeout

	
description: TimeOutSeconds msi installs
values: ["240", "300", "600", "notimeout"]
default: ["notimeout"]




Apache OpenOffice : ooffice



ooffice                         4.1.3-1                   Apache OpenOffice
The ooffice-package contains Apache OpenOffice in german.
	
handle_excel_xls
, 
handle_powerpoint_ppt 
, 
handle_word_doc 
, 
remove_ooo2 

	
remove OpenOffice.org 2
 true  = OpenOffice.org 2 will be removed




LibreOffice The Document Foundation  : libreoffice



libreoffice               5.1.6or5.2.5-1                   libreoffice
LibreOffice 5 international.
	
client_language 

	
client_language - only for messages important, because libre office is international
values: ["auto", "de", "en", "fr"]

	
msoregister 

	
Open Microsoft Office documents with LibreOffice (true)
values: ["false", "true"]
default: ["false"]

	
libreoffice-version

	
description: Stable - is an Extended Support Release from LibreOffice for the conservative user - default version (5.1.6); Experimental is a version for the experimental user from LibreOffice (5.2.5)
values: ["experimental", "stable"]
default: ["stable"]

	
hide_component

	
description: Hide component base by removing desktoplink and exe file
values: ["base", "none"]
default: ["none"]

	
ui_languages

	
description: which UI languages should be installed (comma separated), For example UI_LANGS=en_US,de,fr,hu will install English (US), German, French, and Hungarian.
default: ["auto"]

	
install_architecture

	
which architecture (32/64 bit) has to be installed
values: ["32", "64", "system specific"]
default: ["32"]




Mozilla Firefox : firefox



firefox                          60.2.2esror62.0.3-2
The firefox-package contains Mozilla Firefox german, englisch, french and dutch.
One can place customized configuration files
a) mozilla.cfg (see http://kb.mozillazine.org/Locking_preferences)
b) XOR policies.json (see https://github.com/mozilla/policy-templates/blob/master/README.md)
/var/lib/opsi/depot/firefox/custom/
The entries for the property "mozillacfg" will be populated via preinst-/postinst-scripts when installing the opsi-package
	
example

cat /var/lib/opsi/depot/firefox/custom/mozilla.cfg
//
lockPref("browser.startup.homepage", "http://www.uib.de");
lockPref("network.proxy.type", 1);
lockPref("network.proxy.http", "router.uib.local");
lockPref("network.proxy.http_port", 3128);



Instead of a mozilla.cfg one can provide an autoconfig.zip build with the  CCK2 and populate via Property "mozillacfg".
Caution
opsi WAN/VPN extension: The synchronization process is based on the file <product-id>.files. So any change in the custom share requires new installation of the package via opsi-package-manager.

	
client_language

	
      values: ["auto", "de", "en", "fr", "nl"]
      default: ["auto"]

	
firefox-version 

	
Firefox esr - is the Extended Support Release from Mozilla.org (60.2.2esr);  (62.0.3)     is the Mozilla.org standard version
values: ["esr", "esr", "standard"]
default: ["esr"]

	
pref_file

	
(user/prefs)= use
user.js or prefs.js. values: ["prefs", "user"]
default: ["prefs"]

	
noautoupdate

	
(on/off): disable auto update. default=on

	
setproxy

	
(off/direct/manual/file) proxy settings

	
off= do nothing

	
direct = direct

	
manual = use proxy settings via property proxysetting
(<ip-numme>:<port>) and property noproxy_hosts (host1,host2)

	
file = use proxy settings via property proxysetting
(<path_to_proxyconf.pac>) and property noproxy_hosts (host1,host2)

	
system

	
default=off




	
proxysetting

	
string for proxy setting (see: setproxy)

	
noproxy_hosts

	
comma separated list of hosts

	
mozillacfg

	
description: filename for mozilla.cfg in %scriptpath%\custom-directory, http://kb.mozillazine.org/Locking_preferences

	
profilemigrator

	
enable or disable Profilemigrator on first run
values: ["off", "on"]
default: ["off"]

	
Known problems:

	
Installation "On Demand" may fail cause running browsers.










Mozilla Thunderbird : thunderbird



thunderbird               45.7.0-1
The thunderbird-package contains Mozilla Thunderbird in german, englisch and french.
Customized configurations (see http://kb.mozillazine.org/Locking_preferences) can provided analogous the firefox-Package and property "mozillacfg"
	
client_language

	
values: ["auto", "de", "en", "fr"]
default: ["auto"]

	
thunderbird-version

	
45.7.0 - actual Thunderbird version
values: ["45.x"]
default: ["45.x"]

	
addonsactivation

	
description: Enable/Disable AddOns (default = enable)
values: ["off", "on"]
default: ["on"]



https://developer.mozilla.org/en/Addons/Add-on_Manager/AddonManager
http://mike.kaply.com/2012/02/09/integrating-add-ons-into-firefox/
https://developer.mozilla.org/en/Thunderbird/Deploying_Thunderbird_in_the_Enterprise/Thunderbird_Preferences_Relevant_to_Enterprises
Set_Netscape_User_Pref ("extensions.autoDisableScopes", 11)
Set_Netscape_User_Pref ("extensions.shownSelectionUI", true)
	
enigmail

	
description: Install GnuPG-Plugin
values: ["off", "on"]
default: ["off"]



Thunderbird 17.0. Enigmail 1.5.1
	
mozillacfg

	
description: filename for mozilla.cfg in %scriptpath%\custom-directory, http://kb.mozillazine.org/Locking_preferences

	
noautoupdate

	
description: disable automatic updates
values: ["off", "on"]
default: ["on"]

	
lightning

	
description: Install calender plugin lightning
values: ["off", "on"]
default: ["off"]



Thunderbird 17.0.  Lightning 1.9.1
	
Known problems:

	
Installation "On Demand" may fail if thunderbird is running.







Oracle Jre : javavm



javavm              1.8.0.121-1        Oracle Java Run
The javavm-package contains Oracle Jre version 8.x ( cpu and psu, if available)
(see http://www.oracle.com/technetwork/java/javase/downloads/cpu-psu-explained-2331472.html)
(Oracle announced "End Of Public Updates Februar 2013"  http://www.oracle.com/technetwork/java/eol-135779.html)
http://www.oracle.com/technetwork/java/javase/jre-install-137694.html
Existing "Patch-in-place" Jre-versions 1.6.x, 7.x and 8.x will be uninstalled.
- Existing Oracle JRE with "Static configuration" will not be uninstalled
- Earlier Oracle JRE (version 1.6.0 - version 1.6.7) will be uninstalledby default. One can change this behavior using the property "keepversion".
Starting with 8u20 the jre8 will be installed in static mode
Customized configurations deployment.properties (see http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/deployment-guide/properties.html
http://docs.oracle.com/javase/7/docs/technotes/guides/deployment/deployment-guide/properties.html) can be edited in
/var/lib/opsi/depot/javavm/custom/
The entries for the property "deployment.properties" will be populated via preinst-/postinst-scripts when installing the opsi-package
- example

cat /var/lib/opsi/depot/javavm/custom/deployment.properties
//
#deployment.properties
#Tue Dec 18 12:36:01 CET 2012
deployment.javaws.autodownload=NEVER
deployment.javaws.autodownload.locked=
deployment.security.validation.ocsp=true
deployment.security.validation.ocsp.locked=
deployment.security.validation.crl=true
deployment.security.validation.crl.locked=
Caution
opsi WAN/VPN extension: The synchronization process is based on the file <product-id>.files. So any change in the custom share requires new installation of the package via opsi-package-manager.

	
install_architecture

	
description: which architecture (32/64 bit) has to be installed
values: ["32 only", "64 only", "both", "system specific"]
default: ["both"]

	
javaversion

	
description: which version has to be installed (JRE 8 = 1.8.x); jre8 1.8.0_121-b13 (CPU); jre8psu 1.8.0_12-b13 (CPU)
values: ["jre8", "jre8psu"]
default: ["jre8"]

	
keepversion

	
description: Don’t uninstall jre version
values: ["1.6.0_0", "1.6.0_1", "1.6.0_2", "1.6.0_3", "1.6.0_4", "1.6.0_5", "    1.6.0_6", "1.6.0_7", "none"]
default: ["none"]

	
webjava

	
description: TESTING: http://java.com/en/download/help/silent_install.xml WEB_JAVA=0, if used, disables any Java application from running in the browser
values: ["0", "1", "none"]
default: ["none"]

CAUTION: Setting WEB_JAVA=0 results in misleading browsermessages ("missing plugin")

	
uninstalljava16

	
description: Uninstall Java 1.6 "Patch in Place" Installations
default: True

	
uninstalljava17

	
description: Uninstall Java 1.7 "Patch in Place" Installations
default: True

	
deployment.properties

	
description: filename for deployment.properties in %scriptpath%\custom-directory, http://docs.oracle.com/javase/7/docs/technotes/guides/deployment/deployment-guide/properties.html saved by pre- postinstscript

	
startmenuentry

	
Create Entry for java in common startmenu aboutJava,CheckForUpdates,ConfigureJava,GetHelp,VisitJava.com
default: False

	
timeout

	
TimeOutSeconds msi installs
values: ["180", "240", "300", "notimeout"]
default: ["300"]

	
copy.java.exe.to.system32

	
Copy java.exe,javaw.exe, javaws.exe to system32
default: False

	
environment_set_java_home

	
Set the environment variable JAVA_HOME
default: False

	
Known problems:

	
Installation "On Demand" may fail due to running browsers.













9. opsi Extensions



9.1. Activation of non free modules



opsi is open source, nevertheless there are some components which are at the moment not free but in their cofunding periods. That is
they are developped and maintained in a project which has to come up for its costs.
At this time (December 2016), this refers to the the following components :
	
the MySQL backend for configuration data (see the section called “mysql backend for configuration data”)

	
UEFI Support (see Section 9.6, “opsi with UEFI / GPT”)

	
the opsi license management module (see Section 9.9, “opsi License Management”)

	
support for clients accessed in a WAN/VPN connection  (see Section 9.10, “opsi WAN/VPN extension”)

	
opsi WIM Capture (see Section 9.4, “opsi WIM Capture”)

	
opsi Local Image (see Section 9.7, “opsi local image”) and opsi-vhd-reset (see Section 9.8, “opsi vhd reset”)

	
opsi Linux Agent (see Section 9.5, “opsi Linux Support”)

	
opsi Nagios Connector (see Section 9.11, “opsi-Nagios-Connector”)

	
the user roles functionality (see the section called “Management of user rights and roles”)

	
the scalability1 extension to increase performance for very large installations



For additional information please have a look at our website: opsi cofunding projects
As long as the components are in their cofunding state  they are only allowed to be used for evaluation purposes or based on paying the cofunding fee.
To verify the use of these components as long as they are not free the opsi files include an activation file /etc/opsi/modules.
It is just a plain text file with the data which module is activated for how many clients, protected via a digital signature.
MIssing entries in the file are supplemented with the default values  If the activation file doesn’t exist at all only the free parts of opsi will work.
If you need a temporary valid activation file to evaluate extensions please contact info@uib.de.
If you become a co-funder, you will get an activation file for permanent and regular use.
When you got an activation file, put it with root privileges into the directory /etc/opsi (and rename it to modules if yet necessary). If this is done, execute:
opsi-setup --set-rights /etc/opsi
and restart the opsiconfd.
You may then check your activation state with one of the following methods:
Using the opsi-configed choose the menu entry Help/opsi-Module which shows a window with the activation state.
Figure 78. Display of activation state in opsi-configed
[image: Display of activation state in opsi-configed]


At the command line you may use the command opsi-admin with the method backend_info.
(Remark: Never give your activation file or the output of this command to third people without removing its signature entry).
opsi-admin -d method backend_info
{
"opsiVersion" : "3.99.0.0",
"modules" :
{
"customer" : "uib GmbH",
"vista" : true,
"vpn" : true,
"license_management" : true,
"expires" : "never",
"valid" : true,
"multiplex" : true,
"signature" : "THIS-IS-NO-VALID-SIGNATURE",
"treeview" : true,
"mysql_backend" : true
}
}

9.2. User roles (via opsi-configed)



The feature user roles must be activated in the modules file. The functioning is explained in the section called “Management of user rights and roles”

9.3. opsi directory connector



Introduction



The opsi directory connector is a tool to transfer data from a directory service
to an opsi installation.
This avoids the need of maintaining data in two separate systems.

Prerequisites for the opsi extension opsi directory connector



This module is currently a
co-funded opsi extension.
Some preconditions are required, in order to use this module. That means that you need a suitable modules file to unlock this extension. You can get this file by purchasing the extension module. For evaluation purposes you can get a temporary modules file without charge. ( → mail us at info@uib.de).
General Requirements



The source directory service must implement the LDAP protocol.
Samba 4 or Active Directory are examples for directory services that support the LDAP protocol.
The target opsi server should run at least opsi 4.0.7.
Prior versions may work but have not been tested.
The machine running the connector must have access to the ones running
the directory and opsi over the network.
It is possible to have everything running on the same server but this manual will assume that different machines are used.

Hardware Requirements



These requirements are intended for a basic use in a small-sized environment
with up to 500 clients.
The requirements may change running the connector in larger environments
so please be aware that adjustments may be necessary.
	
256 MB of free RAM

	
Network connection




Software Requirements



The installation and operation is only supported on Linux.
Support for Windows is not planned.
The connector uses Python 3 which has to be available in at least version 3.2.
The connector uses standardized protocols and therefore does not require any further opsi- or directory-components to be installed.


Installation



To install the connector please add the opsi repository as described in the Getting Started document.
Then use your operating system’s package manager to install the package opsi-directory-connector.
On an Debian-based machine installation can be done like this:
apt-get install opsi-directory-connector
Note
CentOS and RedHat version 6 and 7 do not have Python 3 as part of their core repositories.
Therefore we currently can not support installation on these operating systems.


Configuration



The connector features a variety of settings to fit into different
environments.
The configuration is made in a JSON-formatted file and must contain valid JSON!
To specify any boolean value please use true or false. Text has to
be entered in double quotes like "this is text".
An example configuration will be provided at /etc/opsi/opsidirectoryconnector.example.conf.
This file can be used as a template for your own configurations.
cp /etc/opsi/opsidirectoryconnector.example.conf /etc/opsi/opsidirectoryconnector-custom.conf
Directory settings



These are the settings required to access the directory and limit
the search scopes to specific areas and entries.
{
    "directory": {
        "address": "ldap://192.168.12.34",
        "user": "DOMAIN\\opsiconnector",
        "password": "insertpasswordhere",
        "passwordFile": "",
        "search_base": "dc=testcompy,dc=local",
        "search_query_computers": "(objectClass=computer) ",
        "search_query_groups": "(objectClass=organizationalUnit)",
        "connection_options": {
            "start_tls": true,
            "paged_search_limit": 768
        }
    },
    …
}
Under address you specify the directory-server.
user and password are required for authentication at the directory.
If passwordFile is set the value will be interpreted as path to a file that contains the password. The content of the file will be used as password.
This allows for not having the password written in plaintext in the file.
This will override the value set for password if the file can be read.
Tip
We recommend using a dedicated user account.

Note
Depending on the used directory software and it’s configuration the format for the username can be different.
Besides Down-Level Logon Name in the format of DOMAIN\\username it is possible that the format uses User Principal Name with the format of user@domain or a Distinguished Name (DN) like uid=opsiconnect,cn=users,dc=test,dc=intranet.

With search_base you specify the location from where on the connector
looks for matching entries.
Through search_query_computers and search_query_groups the conditions
for finding entries can be configured.
Either search_query_computers or search_query_groups or both need to be configured. To disable one of these set them to "".
The search for groups will be implemented in a future version. Until then the setting has no effect.
The parameter connection_options contains additional options to configure the connection.
With start_tls it is possible the control if a secure connection should be used.
Note
Additional connection options will be implemented on demand.

If the optional parameter paged_search_limit is present and it’s value is an integer multiple queries are made to the directory in order to read it’s elements.
How many elements a response contains is limited through the given value.
This is supported since version 20.
Through the optional parameter identifying_attribute it is possible to set the attribute used for the unique identification of an client. This is possible since version 23.
The default is the usage of dn.
Since version 14 it is possible to test the connection to the directory through the paramter --check-directory without connecting to the opsi server.

Configure connnection for UCS



For a connection to Univention Corporate Server a full Distinguished Name hast do be used as username.
This has the form uid=<username>,cn=users,dc=company,dc=mydomain.
On UCS LDAP is reachable through ports 7389 (unsecured) resp. 7636 (secured via SSL).
If Samba is installed on the Server and used as AD-compatible domain controller then it is listening on ports 389 (unsecured) resp. 636 (secured via SSL).
To make use of the secured ports set the connection option start_tls to true.
The different connections also change the DN used for authentication.
LDAP uses uid=… where are Samba works with dn=….
Usually clients are found in the container computers. The following command shows a matching value for search_base:
echo "cn=computers,$(ucr get ldap/base)"
To search for Windows clients you can set search_query_computers to (objectClass=univentionWindows).
How you can create a user with read only access is described in the Univetion wiki: Cool Solution - LDAP search user

Behaviour settings



These settings defines the behaviour of the connector.
{
    …
    "behaviour": {
        "write_changes_to_opsi": true,
        "root_dir_in_opsi": "clientdirectory",
        "update_existing_clients": true,
        "prefer_location_from_directory": true
    },
    …
}
If write_changes_to_opsi is set to false no data will be written to
opsi. This can be used to check settings before applying them.
Via root_dir_in_opsi you define what group should be used as the root
in opsi. You need to make sure that this group exists.
Note
The group clientdirectory is shown as DIRECTORY in configed.
If clients or groups are to appear directly below DIRECTORY the value for root_dir_in_opsi has to be clientdirectory.

If update_existing_clients is set to false clients already
existing in opsi will not be altered.
If this is set to true clients may have any manually set data overridden
with the values from the directory.
If prefer_location_from_directory is set to true clients will be
moved in opsi to the same location they have in the directory.
If you want to disable this set it to false.

Attribute-Mappings



With a system as flexible as a directory service the connector must
be given information about what attributes in the directory match these
of the corresponding opsi objects.
{
    …
    "mapping": {
        "client": {
            "id": "name",
            "description": "description",
            "notes": "",
            "hardwareAddress": "",
            "ipAddress": "",
            "inventoryNumber": "",
            "oneTimePassword": ""
        },
        "group": {
            "id": "name",
            "description": "description",
            "notes": ""
        }
    },
    …
}
There is a mapping for clients and one for groups.
The key of each mapping is the attribute in opsi and the value is the attribute from the directory. If the value (in the mapping) is empty no mapping will be done.
Note
If the value read from the directory for the client ID does not seem to be an FQDN an FQDN will be created. The domain part for this will be created from the DC of the read element.

Tip
On UCS the value for hardwareAddress can be set to macAddress if the connection is made through LDAP (ports 7389 or 7636).


Manual assignment of group names



Group names are usually used without any major adjustments.
But this may lead to cases where names should be used that are invalid in opsi.
For this special cases a manual assignment of group names can be helpful.
To configure this an entry group_name has to be created in mapping.
This holds the mapping from the directory to opsi.
Names that are not present in this mapping aren’t changed.
The group names are always processed in lowercase.
This can be configured since version 23.
The following example handles the group _server originating from the directory as server in opsi.
{
    ...
    "mapping": {
        ...
        "group": {
        ...
        },
    "group_name" {
        "_server": "server"
    }
    },
    ...
}
Warning
Please be careful with this feature as it may introduce undesired side effects. It should only be used for special cases!


opsi connection settings



This specifies how the connector accesses opsi.
{
    …
    "opsi": {
        "address": "https://localhost:4447",
        "username": "syncuser",
        "password": "secret",
        "exit_on_error": false
        "passwordFile": "",
        "connection_options": {
            "verify_certificate": true
        }
    }
}
Set address to the address of your opsi server. Please include the
port.
Note
To use a proxy for the connection use the environment variable HTTPS_PROXY.

username and password should be set accordingly to authenticate
at the opsi server.
If passwordFile is set the value will be interpreted as path to a file that contains the password.
The content of the file will be used as password.
This allows for not having the password written in plaintext in the file.
This will override the value set for password if the file can be read.
Tip
We recommended setting up a dedicated user for this task. Refer to the document Getting Started on how to do this.

If the parameter exit_on_error is true then any problem that appears when updating data in opsi opsi - this could be triggered by submitting values that are invalid in opsi - results in a break.
If this is false then problems will be logged but the run will not be stopped.
With connection_options the options for connecting to opsi can be set.
verify_certificate configures the verification of the server certificate.
For selfsigned certificates this can be set to false.
Since version 14 it is possible to test the connection to the opsi server through the paramter --check-opsi without connecting to the directory.


Running the connector



After installation a binary called opsidirectoryconnector will
be present on the system.
It is required to pass an argument --config together with the path to
the configuration.
opsidirectoryconnector --config /etc/opsi/opsidirectoryconnector-custom.conf
Note
The user running the binary does not require any access to opsi as this is all specified in the configuration.

Example: recurring runs with systemd



The connector currently does one synchronisation run when executed but
the chances are good that you want to have a constant synchronisation of data.
It is easy to automate the execution of the connector to have recurring runs.
We will use systemd for this.
In contrast to cronjobs systemd will avoid overlapping runs and is therefore
a good choice.
The following example will set up the connector so that it is run five minutes after the machine was booted and from then on every hour.
In the directory /etc/systemd/system/, this is the directory for user-defined units, you need to place the two following files.
One for the timer that makes the job recurring and one for the job itself.
Please put this inside opsi-directory-connector.timer:
[Unit]
Description=Start the opsi-directory-connector in regular intervals

[Timer]
OnBootSec=5min
OnUnitActiveSec=1hour

[Install]
WantedBy=timers.target
And this is the content of opsi-directory-connector.service:
[Unit]
Description=Sync clients from AD to opsi.
Wants=network.target

[Service]
Type=oneshot
ExecStart=/usr/bin/opsidirectoryconnector --config /etc/opsi/opsidirectoryconnector-custom.conf
To enable the timer and start it right away use the following commands:
systemctl enable opsi-directory-connector.timer
systemctl start opsi-directory-connector.timer
If the timer does not get started it will be first run after the next reboot of the machine.

Example: recurring runs as cronjob



It is easy to automate recurring runs through a cronjob.
Please be aware that overlapping runs may happen with cron and therefore the interval should be higher.
To avoid this problem it is recommended to use systemd instead of cron
The cronjob file can usually be edited through crontab -e.
For an synchronisation that happens every hour there can be used the following:
0 * * * * /usr/bin/opsidirectoryconnector --config /etc/opsi/opsidirectoryconnector-custom.conf



9.4. opsi WIM Capture



Prerequisites for the opsi extension opsi wim capture



This module is currently a
co-funded opsi extension.
Some preconditions are required, in order to use this module. That means that you need a suitable modules file to unlock this extension. You can get this file by purchasing the extension module. For evaluation purposes you can get a temporary modules file without charge. ( → mail us at info@uib.de).
Technical requirements are opsi 4.0.6 with package versions:
Table 4. required packages
	opsi-package	version
	opsi-linux-bootimage
	>= 20160111

	opsi-client-agent
	>= 4.0.6.3-8

	Windows Netboot >=7
	>= 4.0.6.1-3

	opsi-clonezilla
	




Caution
For the product opsi-wim-capture the share opsi_depot_rw must have read/write permission for the pcpatch. Check your Samba configuration.

	
Since opsi-wim-capture Version 4.1.x there is a full uefi support

	
install.esd (instead of install.wim) as target format is supported since opsi-wim-capture Version 4.1.x.




Quick Info



For the people who are looking for a quick guide, this is the place to start. More detailed information follows below.
Pre-requirements
	
Set boot priority of PXE-Boot / LAN-Boot on Computer BIOS to first priority

	
Computer must be configure with the following specifications on the properties of the Netboot-Products:
boot_partition_size=0
preserve_winpe_partion = true
windows_partition_label = WINDOWS
windows_partition_size=100%

	
Target product completion:
The target product used is usually one of the provided capture products, e.g.: win7-x64-capture
Winpe and Drivers directory can be created as symbolic links from the standard product.
The install files folder must be copied because the install.wim must be adapted.
In addition, Files from the custom directory are copied or linked, e.g.: unattend.xml

	
The property opsi-clonezilla imageshare = auto (is the default, deprecated //<servername>/opsi_images)
imagefile and runcommand will be replaced automatically opsi-wim-capture

	
All software, which should be integrated in the image, must be install on the computer.

	
Start of the product opsi-wim-capture:*

	
Completion from the following properties is required:
image_description = <Image description>
imagename = <image name>
target_product = win7-x64-captured

	
Set opsi-wim-capture on setup



Install the computer with the new image:
	
Target product (e.g. win7-x64-captured) adjusting the following to setup:
Imagename= (Apply the same name from the property opsi-wim-capture)




Introduction



With NT6 (i.e. from Vista), Microsoft has introduced a new Image Format/ Container for OS Installation. Its called Windows Imaging Format (WIM).
A WIM Image is not exactly an image of a disk or partition, but rather an archive of files and Metadata. A WIM file can contain several images. The default installation of an NT6 operating system works like this:
setup.exe unzips an image from an install.wim file, configures it, and adds some additional drivers.
This way, an installation is quicker than with NT5. But then installation of Hotfixes with NT6 takes significantly longer, so that the basic install of Windows 7 will take 30 minutes, but adding all required Hotfixes may take several hours.
With this opsi extension, it is possible to read an installed Windows OS, including installed software, Hotfixes and configurations, and save it as a WIM image. This WIM file can then be used as a source for a fresh Windows Installation.
Our product opsi-wim-capture is made exactly for this purpose. Roughly, we boot off a PE partition, so that the PE can read the system partition and save it into a WIM file.

Overview of the Sequence



Capturing an installed Windows image works like this:
Preparation:
	
opsi - installation of a Windows OS with set property:
preserve_winpe_partition=true
boot_partition_size=0
windows_partition_size=100%



run the product opsi-wim-capture.
All the following steps will be controlled by the product opsi-wim-capture:
	
via opsi-clonezilla, makes a backup of the disk (OS and winpe partition)

	
backup of the opsi metadata

	
make winpe partition bootable, create winpe script (work.cmd)

	
sysprep of the installed systems (depersonalization)

	
boot winpe, capture of OS disk, write to destination product

	
restore of the original disk (OS and winpe partition) via opsi-clonezilla




Sequence Details



Preparation
Installation of a Windows OS must have the property set to true like this preserve_winpe_partition=true, because the winpe partition will be needed later.
Figure 79. Schema: Deployment of Windows OS
[image: Schema: Deployment of Windows OS]


After the Windows OS installation you can install additional Software and Hotfixes, configure the system manually or via opsi.
Figure 80. Schema: Installation of opsi products
[image: Schema: Installation of opsi products]


opsi-wim-capture
The whole sequence will need time, at least an hour. It will work unattended, though.
In case the property disabled is set to true (default=false), the process will be canceled immediately. This switch is for development only.
The setting of the property always_backup_before_sysprep will be checked.
If yes, it’ll make a backup of the system via opsi-clonezilla.
Note
In opsi-clonezilla, the runcommand is ocs-sr -q2 --batch -j2 -rm-win-swap-hib -i 2000 -p true savedisk imagefile sda . Within this command, imagefile will be set according to the value of the property clonezilla_imagefile . In case its set to auto (default), we’ll configure the value for imagefile automatically. This will be done with the help of property values and the client name according to the following pattern:
<FQDN of client>_<target_product>_<imagename>
If the value is not auto, the value contained will be used as imagefile. Furthermore, we’ll set the product opsi-clonezilla to setup. In order to initiate opsi-clonezilla, reboot.
In order to avoid a never ending loop, we write a reboot flag, so that after writing the backup, we can see that this step has already been done.
Technical note: We do not want to reboot again after restoring the backup, though (but the reboot flag is contained in the backup). Thats why the reboot flag is being set as a time stamp. In case the time stamp is older than 0.1 days (i.e. 2.4 hrs), it will be ignored.

The system will reboot now, leaving the product opsi-wim-capture set to setup. opsi-clonezilla will start up and do the backup.
Figure 81. Schema: Backing up the disk via opsi-clonezilla
[image: Schema: Backing up the disk via opsi-clonezilla]


Tip
Why backup via opsi-clonezilla ?
The sysprep action to follow will leave the OS partition unusable.
An OS, that is set up from a captured WIM Image, will contain information about the sysprep run. Thus, it cannot be used for further capturing via opsi-wim-capture.
Only perform repeat capturing using a previously restored opsi-clonezilla image.

The product opsi-clonezilla is now being configured in a way that it will perform a restore on next run.
Figure 82. Schema: Saving opsi-meta-data to c:\opsi.org\tmp
[image: Schema: Saving opsi-meta-data to c:\opsi.org mp]


Now information about the installed opsi-products (and versions) will be stored on the client.
Note
The productOnClient objects of all Localboot Products are being written to  c:\opsi.org\tmp\productonclients.json .

Figure 83. Schema: Deactivating the opsi-client-agent
[image: Schema: Deactivating the opsi-client-agent]


The machine’s opsi-client-agent is now being deactivated, so that it cannot run after deployment based on this image.
Figure 84. Schema: Depersonalization of the OS partition via sysprep
[image: Schema: Depersonalization of the OS partition via 'sysprep']


In order to be able to deploy the captured image like a default Windows Setup to any machine, it needs to be depersonalized. This will be done via sysprep.
Tip
This does not mean all of the software will be depersonalized. It’s , that installed software holds data regarding on which computer it was originally installed. A config of that kind will be likely to cause problems, specially if you deploy the image to different machines. It might be a good idea not to capture all the software on the computer.

If the property startcapture is set to false (default=true), will stop working after the sysprep, and shut down the machine. This makes sense only if you plan to take an image of the machine using a different tool.
Figure 85. Schema: Activating and boot-enable the PE partition
[image: Schema: Activating and boot-enable the PE partition]


In order to read the OS partition and writing it into the WIM file, we have to use a Windows OS, which cannot be the Windows OS we want to read (for obvious reasons). Therefore, we use the Windows PE we created and preserved at the initial installation.
And afterwards:
	
Activation of the WinPE as bootable partition, creation of the required boot record, (if necessary) deactivation of drive letters of other partitions

	
Reading opsi metadata concerning installed products on the client, saving the data to a temporary folder on the client

	
some cleaning on the system we want to capture



Figure 86. Schema: Creating work.cmd inside the PE
[image: Schema: Creating work.cmd inside the PE]


	
Writing a command file, which will initiate the capturing at next WinPE boot.

	
Provisioning of further data for the WinPE run, like list of products from the property start_after_capture

	
Reboot the client



Figure 87. Schema: Capturing the OS partition when on PE
[image: Schema: Capturing the OS partition when on PE]


Now the WinPE starts and will do the actual capturing. Here are the details:
	
Mounting the opsi_depot_rw share, so that we can write to it.

	
Checking the architecture of the WinPE (32/64 Bit); start of the corresponding opsi-script interpreter.

	
Establishing a connection to the opsi-webservice

	
Re-activation of the drive letters

	
If the property check_disk_before_capture contains the value true (default=false), we perform chkdsk on the Windows OS partition. That will take time.

	
Checking for existence of the target product stated in the property target_product on our opsi_depot_rw share, and whether it contains an install.wim file in the right place.

	
Checking and creating a lock file within the target_product folder. If this file exists already, we cancel the process in order to prevent several capturing processes writing to the same WIM file.

	
If the property force_imagex is set to true (default=true), then we use the imagex command of our product opsi-wim-capture for capturing, even if the Windows PE has a dism command. Otherwise dism will be used, if available. Dism is faster, but might produce images that cannot be used for successful deployment.

	
If the property capture_mode is set to append: Check, if there is an image of that name contained in the install.wim, and delete it.
The value always_create will only be accepted, if dism is being used. In this case, a new install.wim file will be created.

	
Start of the capture process. The previously mentioned tool (imagex vs dism) and the capture_mode chosen will be used. The name of the image is set by the property imagename. The property image_description will determine the description of the image.
This can take a long time to be completed.

Caution
Keep in mind the name of the Image! The name of the image created can’t be automatically added to the list of installable images at the current time. You have to keep the name in mind and state the image name when deploying!


	
Deleting of the lock file in the target_product folder.

	
Merging the resulting log files.



	
Request action setup for products contained in the property setup_after_capture.
At this time, also product dependencies will be resolved.
The property is a list and can contain several product IDs.



Tip
leave settings so that opsi-clonezilla will be set to setup!
The machine will be depersonalized after the capture run, and thus remain unusable. Our product opsi-clonezilla is prepared, so that the backup taken earlier will be restored automatically.

	
Deactivation of the WinPE partition, and re-activation of the OS partition (Windows).

	
Transfer of the logfile to the server. It will be appended to the existing logfile of the opsi-wim-capture run.

	
Reboot



If the product opsi-clonezilla has been set to setup, a restore of the disk is being performed automatically.
Figure 88. Schema: Restore using opsi-clonezilla
[image: Schema: Restore using opsi-clonezilla]



Products



Main Product opsi-wim-capture



The product opsi-wim-capture contains the following product properties:
	
always_backup_before_sysprep:
(true/false), Default=true,
Always make an opsi-clonezilla backup before sysprep.

	
startcapture:
(true/false), Default=true,
Sets the product opsi-local-image-capture to setup, and reboots the machine

	
disabled:
(true/false), Default=false,
If set to true, nothing will happen. Its only there for debugging.

	
target_product:
Name of the target product: (Default = '')



Important
This property is not intelligent, i.e. we do not check, if the image being copied matches the target product. You could easily write a win7-32Bit Image into a Win81-64Bit product without errors. But you shoud not do that! Furthermore, we recommend separated products for capturing, that are only target products in the capture process. (for instance win7-x64-captured).

The target product has to be prepared for deployment like any other Windows OS product. The target file within the target product will be the install.wim file (installfiles/sources/install.wim), which also contains the images provided by Microsoft. Our new OS image will either be created as a new install.wim , or be appended to the existing file. This is being controlled by the property :
	
capture_mode:
(append/always_create) Default=append:



append will append the newly created image to the existing install.wim .
Important
If the install.wim contains an image that’s named like the new one, it will be deleted without warning. always_create will always create a new install.wim .
always_create will not work with a WinPE based on Windows < 8 .

An Install.wim file is a container, that can contain several images. All of them have a name and a description, which can be controlled by the following properties:
	
imagename:
Default = ''

	
image_description:
Default = ''

	
The property start_after_capture
this is a list of products that will be set to setup after completion of the capture process. Could be good to use for instance opsi-clonezilla, which will restore the backup taken before sysprep.

	
force_imagex:
true/false (default=true) This will use the imagex tool, even if dism is available.

	
opsi_depot_rw_host:
Normally auto (default) or leave empty.
If not auto or empty: the host from which we mount the opsi_depot_rw share.
If the host is given, it must be a hostname, a FQDN or a IP Number
This property is only for situations where the opsi_depot_rw share is not reachable at the opsi depot where the client is assigned to.

	
checkdisk_before_capture:
Should we make a file system check on the system partition before we capture.
Default = false.

	
verify_clonezilla_images:
Should Clonezilla check the images after_save, before_restore, never, always
A verify check takes nearly the same time as the save or restore process.
Default = never




Target Products



The target products shall host the captured images.
Why target products ?
The target products do not differ from default opsi Windows netboot products. Technically, a standard win7-x64 they can be used as a target product.
We recommend the usage of dedicated target products, so that it is easy to differentiate a modified installation (opsi-wim-capture) from an unmodified installation (original Microsoft DVD).
Furthermore, it might be wise to keep a fall back product you can switch to in case the captured install.wim becomes unusable for some reason.
This decision is for you to make.
We provide the following target products:
	
win7-x64-captured

	
win81-x64-captured

	
win10-x64-captured



These products have to be equipped with required files from the OS DVDs like any other Windows netboot product (see our opsi-getting-started document).
Still, folders like winpe or drivers/drivers/additional/byAudit can be symbolic links to a directory in a suitable non-target product. Watch out: the Subfolder installfiles needs to be physically there (copy from Windows DVD).


Windows Installation via Target Product



(Deployment from a captured Image)
Restore of the opsi metadata from installed Products
The Problem:
If you reinstall a Windows with opsi, e.g. win7-x64, then during the installation of the opsi-client-agent all the local Boot products, which in this computer were previously marked as` installed`, will automatically be set to setup and thus reinstalled later.
This can not be completely carried out exactly in the rolling of a captured Image.
In the image is the backup from the opsi data that was stored during the capture process. This will be discovered when you install the opsi-client-agent and re-imported into the depot server. With it the products that were installed in the captured Image, now are on the newly installed computer mark as installed.
Should now all the products that are mark as installed set to` setup`, this would imply that all products installed already in the image will be re-installed. This is not desirable.
By the restoring from the opsi metadata of installed products there are two alternatives available now with opsi 4.0.7:
	
Alternative 1:
Restoring the metadata and retention of setup -Action Requests.
Products that are mark as installed will not be set to setup.
This is the default, and the behavior before opsi 4.0.7

	
Alternative 2:
Restoring the metadata. Products that are mark as installed will be set to setup except those which were contained in the restore metadata.



Alternative 1
By the deploy from a captured image, after the install, only the products which were already from the beginning of the OS-install set to setup will be automatically installed. These can be done through your intervention, or through the property setup_after_install.
Therefore only the products which stood at setup before installing the operating system will be installed in this case.
This is the default, and the behavior before opsi 4.0.7
Alternative 2
Variant 2 behaves similar to what would be the case of an installation without a captured Image:
* Restore of the metadata.
* Products that are mark as installed are then set to setup except those which were contained in the restore metadata.
This behavior is only available since opsi 4.0.7 and is not the default. Option 2 is made possible by enhancements to the opsi script and is part of the opsi-client-agent of 4.0.7.
In order to be able to apply this behavior a config must be set on (Host parameters) :
The Boolean configuration entry: clientconfig.capture.switch_installed_products_to_setup. If the entry for this client has the value true then variant 2 is applied, otherwise variant 1
host parameter can have specific client events activated or deactivated.
The host parameter can be applied using the opsi-configed or the opsi-admin.
To create the host parameter over the opsi-admin the following commands are to be executed on the’opsi-config-server':
opsi-admin -d method config_createBool clientconfig.capture.switch_installed_products_to_setup "capture.switch_installed_products_to_setup" true
With that you set for all computers Alternative 2.
To create the host parameter over the opsi-server select there Server Configuration / ClientConfig / And on the right side with the right mouse button: Add Boolean configuration entry.

Helper product opsi-wim-info



The product opsi-wim-info is useful to gather information about the images that are stored inside a install.wim. These information is written to the logfile.
Properties:
	
target_produkt
ProductId of the product where the install.wim file is searched.




Known Restrictions and Problems



The following restrictions are known as of today (13.7.2018):
	
none





9.5. opsi Linux Support



Supported as opsi-client: Linux



(Stand / as of 26.09.2018)
Table 5. Supported Linux OS as Client in opsi 4.1 and 4.0.7 / Unterstützte Linux-OS als Client in opsi 4.1 und 4.0.7
	Distribution
	OS-Installation
	netboot products
	client-agent
	opsiclientd

	Debian 9 Stretch
	[image: supported.png]
	debian, debian9
	[image: supported.png]
	[image: supported.png]

	Debian 8 Jessie
	[image: supported.png]
	debian, debian8
	[image: supported.png]
	[image: supported.png]

	Debian 7 Wheezy
	[image: discontinued.png]
	debian, debian7
	[image: discontinued.png]
	[image: discontinued.png]

	Debian 6 Squeeze
	[image: discontinued.png]
	
	
	

	Ubuntu Bionic 18.04 LTS
	[image: supported.png]
	ubuntu, ubuntu18-04
	[image: supported.png]
	[image: supported.png]

	Ubuntu Xenial 16.04 LTS
	[image: supported.png]
	ubuntu, ubuntu16-04
	[image: supported.png]
	[image: supported.png]

	Ubuntu Wily 15.10
	[image: discontinued.png]
	ubuntu,ubunt15-10
	[image: discontinued.png]
	[image: unsupported.png]

	Ubuntu Vivid 15.04
	[image: discontinued.png]
	ubuntu, ubunt15-04
	[image: discontinued.png]
	[image: unsupported.png]

	Ubuntu Utopic 14.10
	[image: discontinued.png]
	ubuntu
	[image: discontinued.png]
	[image: unsupported.png]

	Ubuntu Trusty 14.04  LTS
	[image: supported.png]
	ubuntu, ubunt14-04
	[image: supported.png]
	[image: supported.png]

	Ubuntu Precise  12.04 LTS
	[image: discontinued.png]
	ubuntu
	[image: supported.png]
	[image: supported.png]

	Ubuntu Lucid 10.04  LTS
	[image: discontinued.png]
	
	
	

	RHEL 7
	[image: supported.png]
	rhel70
	[image: supported.png]
	[image: develop.png]

	RHEL 6
	[image: discontinued.png]
	
	
	

	CentOS 7
	[image: supported.png]
	centos70
	[image: supported.png]
	[image: develop.png]

	CentOS 6
	[image: discontinued.png]
	
	
	

	SLES 15
	[image: develop.png]
	
	[image: develop.png]
	[image: develop.png]

	SLES 12.3
	[image: develop.png]
	
	[image: develop.png]
	[image: develop.png]

	SLES 12.2
	[image: supported.png]
	sles12sp2
	[image: supported.png]
	[image: develop.png]

	SLES 12.1
	[image: supported.png]
	sles12sp1
	[image: supported.png]
	[image: supported.png]

	SLES 12
	[image: supported.png]
	sles12
	[image: supported.png]
	[image: supported.png]

	SLES 11SP4
	[image: supported.png]
	sles11sp4
	[image: supported.png]
	[image: develop.png]

	SLES 11SP3
	[image: discontinued.png]
	sles11sp3
	[image: discontinued.png]
	[image: unsupported.png]

	openSuse Leap 15.0
	[image: develop.png]
	opensusel15
	[image: develop.png]
	[image: develop.png]

	openSuse Leap 42.3
	[image: supported.png]
	opensusel42-3
	[image: supported.png]
	[image: develop.png]

	openSuse Leap 42.2
	[image: discontinued.png]
	opensusel42-2
	[image: discontinued.png]
	[image: discontinued.png]

	openSuse Leap 42.1
	[image: discontinued.png]
	opensusel42-1
	[image: discontinued.png]
	[image: discontinued.png]

	openSuse 13.2
	[image: discontinued.png]
	opensuse13-2
	[image: discontinued.png]
	[image: discontinued.png]

	openSuse 13.1 RC2
	[image: discontinued.png]
	
	
	

	openSUSE 12.3
	[image: discontinued.png]
	
	
	

	openSuse Tumbleweed
	[image: unsupported.png]
	
	[image: unsupported.png]
	[image: unsupported.png]

	UCS 4.3
	[image: supported.png]
	ucs43
	[image: supported.png]
	[image: supported.png]

	UCS 4.2
	[image: supported.png]
	ucs42
	[image: develop.png]
	[image: develop.png]

	UCS 4.1
	[image: discontinued.png]
	ucs41
	[image: discontinued.png]
	[image: discontinued.png]

	UCS 4.0
	[image: develop.png]
	
	[image: discontinued.png]
	[image: discontinued.png]

	UCS 3.2
	[image: unsupported.png]
	
	[image: unsupported.png]
	[image: unsupported.png]

	UCS 3.0
	[image: unsupported.png]
	
	[image: unsupported.png]
	[image: unsupported.png]




[image: supported.png]: Supported
[image: unsupported.png]: Unsupported
[image: develop.png]: Under Development
[image: discontinued.png]: Discontinued
Table 6. Linux netboot products and the used installer type in opsi 4.1 and 4.0.7 / Linux Netboot-Produkte nach Installer-Typ in opsi 4.1 und 4.0.7
	Netbootproduct
	Installer
	State
	Remark

	debian
	opsi
	[image: supported.png]
	squeeze - stretch

	debian9
	distribution
	[image: supported.png]
	

	debian8
	distribution
	[image: supported.png]
	

	debian8
	distribution
	[image: supported.png]
	

	debian7
	distribution
	[image: discontinued.png]
	

	ubuntu
	opsi
	[image: supported.png]
	trusty - artful

	ubuntu18-04
	distribution
	[image: supported.png]
	

	ubuntu16-04
	distribution
	[image: supported.png]
	

	ubuntu15-10
	distribution
	[image: discontinued.png]
	

	ubuntu15-04
	distribution
	[image: discontinued.png]
	

	ubuntu14-04
	distribution
	[image: supported.png]
	

	centos70
	distribution
	[image: supported.png]
	

	redhat70
	distribution
	[image: supported.png]
	

	sles15
	distribution
	[image: develop.png]
	

	sles12sp2
	distribution
	[image: supported.png]
	

	sles12sp1
	distribution
	[image: supported.png]
	

	sles12
	distribution
	[image: supported.png]
	

	sles11sp4
	distribution
	[image: supported.png]
	

	sles11sp3
	opsi
	[image: discontinued.png]
	

	opensusel15
	distribution
	[image: develop.png]
	

	opensusel42-3
	distribution
	[image: supported.png]
	

	opensusel42-2
	distribution
	[image: discontinued.png]
	

	opensusel42-1
	distribution
	[image: discontinued.png]
	

	opensuse13-2
	distribution
	[image: discontinued.png]
	

	opensuse13-1
	opsi
	[image: discontinued.png]
	

	ucs43
	distribution
	[image: supported.png]
	

	ucs42
	distribution
	[image: supported.png]
	

	ucs41
	distribution
	[image: discontinued.png]
	





Preconditions for using the opsi Linux Support



Technical precondition is opsi 4.0.5 with following packet versions:
Table 7. Required packets
	opsi packet	version
	opsi-linux-bootimage
	>= 20140805-1




The opsi support for Linux is based on a free Open Source component (the netboot products) and a co-funded component (the client-agent).
The opsi-linux-client-agent is a
co-funded opsi extension module.
In order to use the opsi Linux extension module, an activation file is required, this file can be acquired by buying the extension module. To obtain a temporary activation file for evaluation, please email us at info@uib.de.
For further details on handling extension modules please refer to the opsi manual.

opsi-linux-client-agent: 15 Free starts



The opsi-linux-client-agent includes 15 Free starts by which the agent can be used without any activation
In detail: After the initial Install from the opsi-linux-client-agent the opsi-script can be started 15 times in service context without the need of activation.
This gives you the possibility to set a Linux computer with the corresponding opsi-products for the configuration needed.
For example, after the installation of the system you could use the product l-opsi-server to make of the newly installed computer an opsi-server.
For a long lasting maintenance of the installed Linux computers after the 15 free starts, it is recommended the activation of the feature, in order to continue taking advantage of its benefits.

Deployment of the products



The Linux related Localboot and Netboot products can be loaded over the opsi-product-updater.
To that end, you have to make sure that in the /etc/opsi/opsi-product-updater.conf the corresponding directories are listed. The easiest way is, when you find the following section in your configurations file:
[repository_uib_linux]
active = true
baseUrl = http://download.uib.de
dirs = opsi4.0/products/opsi-linux
autoInstall = false
autoUpdate = true
autoSetup = false
; Set Proxy handler like: http://10.10.10.1:8080
proxy =
Then you can with the following command, invoke the opsi-linux products and deploy them:
opsi-product-updater -i -vv

Introduction



A single management tool for Windows and Linux
The objective of the opsi Linux extension module is to provide an homogenous management system for heterogenous environments. The focus is on integrating both worlds into the same management processes and tools
This means, that a Linux installation is triggered the same way as a Windows installation. The Linux opsi-client-agent is based on the same source code as the Windows client and provides (when applicable) the same opsiscript instruction sets.
Independent from Linux distribution
The opsi Linux Support is designed to be independent from any special Linux distribution.
The following distributions are supported:
	
Debian

	
Ubuntu

	
OpenSuse / SLES (Suse Linux Enterprise Server)

	
RHEL (RedHat Enterprise Linux)

	
CentOS

	
UCS




Linux netboot products v406 based on the distibution installer



With opsi v405 the installation of Linux targets has been controlled by the netboot product. The opsi v406 Linux netboot products are based on installer of the respective distribution.
This is a fundamental change of the structure and behavior of these products.
Overview of the changes:
	
Like with the unattended Windows installation, the Linux installer is equipped with an answer file to configure the unattended installation.

	
The installer of a distribution is not like with Windows an executable program, but is a combination of the distribution kernel and initrd implementation.

	
The system installation including partitioning, LVM, and all the basic software, are performed by the installers and not by the bootimage anymore.

	
For the Suse and RedHat like distributions, the installation sources have to be provided by you by introducing the DVD as an ISO-file on the depot share. This is comparable to the Windows installation, with the difference that the Windows installation files are stored in a different place and stored as the content of the DVD and not as an ISO file.

	
For the Debian like distributions, the installation sources are taken from the internet. Just the netboot versions of the distribution kernel with the associated initrd are placed on the depot share. These files are small, so they are included in the opsi package.
Since opsi 4.0.7 it is also possible to provide for some netboot products a local http repository.

	
For further maintenance of the installation the opsi-linux-client-agent can be installed with the basic installation.



Description of the automated installation process:
	
The opsi-linux-bootimage boots, deletes the partition table and creates a small temporary partition.

	
The opsi-linux-bootimage fetches the initrd for the distribution and unpacks it on the temporary partition.

	
The opsi-linux-bootimage fetches the generic answer file, patches it (personalisation) and moves it to the initrd directory.

	
The opsi-linux-bootimage creates some helper scripts and configuration files (e.g. for installing the opsi-linux-client-agent) and moves them to the initrd directory.

	
The opsi-linux-bootimage packs the patched initrd directory

	
The opsi-linux-bootimage boots the distribution kernel with the patched initrd per kexec.

	
The distribution kernel with the patched initrd performs the unattended installation of the target system and finally installs the opsi-linux-client-agent.



Advantages:
	
The installation is done as specified by the distributor, which is of special importance for providing support in the business context.

	
The opsi integration of new releases is easier and faster available.

	
For Suse and RedHat like distributions, the installation is done from the sources on the opsi-server, and therefore is faster and more stable than installing from the internet repositories.



Disadvantages:
	
Currently there is no UEFI support available. The information about UEFI gets lost during kexec boot. We hope to fix this with a future bootimage.



Providing the installation media on the server



For Suse and RedHat like distributions, the installation media is provided by an additional nfs-share: opsi_nfs_share.
To configure this share, there must be a NFS server installed and configured on the opsi-server:
Since opsi v4.0.6 stable this is done by the special package opsi-linux-support. This package is not installed by default and must be installed manually once, e.g.
apt-get install opsi-linux-support
If a firewall is running on your system you need to configure it to accept
TCP connections at port 80.
Please consult the appropriate manual on how to do this.
The opsi-linux-support package performs the following tasks:
	
Installation of the applicable nfs-server package on the opsi-server. For Debian, Ubuntu, Suse this is the package: nfs-kernel-server. For Centos, Redhat it is the package nfs-utils.

	
The share opsi_nfs_share is created and exported:

	
Create directory:
mkdir -p /var/lib/opsi/depot/opsi_nfs_share

	
Add the share entry to /etc/exports:
/var/lib/opsi/depot/opsi_nfs_share *(ro,no_root_squash,insecure,async,subtree_check)

	
Activate the export:
exportfs -r

	
Check the successful export:
showmount -e localhost
The output should be:
Export list for localhost: +
/var/lib/opsi/depot/opsi_nfs_share *




	
The share opsi_nfs_share has the following directory structure:
opsi_nfs_share/<productId>/<arch>/<dvd>.iso
example:
opsi_nfs_share/opensuse13-2/64/openSUSE-13.2-DVD-x86_64.iso
The installation file must have an extension .iso, the name of the file does not matter. If there are several .iso files in the same directory, it is not specified which one to use.

	
Copy the installation DVD to the opsi_nfs_share and execute:
opsi-set-rights /var/lib/opsi/depot/opsi_nfs_share
IMPORTANT: use the standard installation DVDs of the distribution. Modified installation DVDs might have a different structure and therefore cannot be used in this context.

	
If for any reasons the directory /var/lib/opsi/depot/opsi_nfs_share cannot be exported by the opsi-server per NFS (for instance because the depot share is already a NAS NFS share), so the NFS share to be used can be specified by a server config. Like clientconfig.opsi_nfs_share=172.16.166.1:/var/lib/opsi/depot/opsi_nfs_share



The opsi v406 netboot products for Debian and Ubuntu do not get their installation files from an ISO file. They are provided by opsi with the standard netboot kernel and initrd. All further packages are taken from the internet. To relieve the network connection, using an apt-cache might be useful.
See chapter the section called “Proxy for .deb-packages”
See chapter  the section called “Setting up a local deb http repository”
Start order of involved services for SLES 11
It may occur that the showmount command exits with an error message
like the following:
# showmount -e localhost
clnt_create: RPC: Program not registered
Please make sure that after installing the NFS-server a reboot has been done.
Then the services rpcbind and nfsserver need to be started in that exact order.
The services can be restarted by the following commands:
# service rpcbind restart
# service nfsserver restart
Then showmount works as expected:
# showmount -e localhost
Export list for localhost:
/var/lib/opsi/depot/opsi_nfs_share *


Common properties of the opsi v406 Linux netboot products



The following properties are available with all v406 netboot products to configure the Linux installation:
	
askbeforeinst:
Starting an installation has to be confirmed from the client console?  (Default=true)

	
architecture:
architecture selection, which affects the selection of bootimages and the installation architecture.  (Default=64bit)

	
language or locale:
Which language / locale is to be installed.  (Default=distribution dependent / de)

	
console_keymap:
keyboard layout to be installed.  (Default=distribution dependent / de)

	
timezone:
Timezone to be installed?. (Default=Europe/Berlin)

	
root_password:
root password.  (Default=linux123)

	
user_password:
user password.  (Default=linux123)

	
proxy:
Proxystring (if required) as: http://<ip>:<port>. (Default='')

	
install_opsi-client-agent:
Install the Linux opsi-client-agent (co-funded project: a module file is required for activation. (Default=true)

	
‘setup_after_install`:
Which opsi products should be installed after the installation of the operating system (opsi products set to setup). (Default=’')




The products debian7, debian8 and ubuntu14-04, ubuntu16-04



The basic OS installation files are taken from the internet.
This product has the productive state.
This product has the following additional properties:
	
online_repository:
distribution repository for the installation. (only for the Debian/Ubuntu family) (Default=distribution dependent)

	
encrypt_password:
Password for disk encryption (only if encrypt_logical_volumes=true)
Example: linux123 Default: linux123

	
partition_disk:
Disk to use.: first or complete device path
Examples: "first", "/dev/sda", "/dev/sdb"
Default: first

	
partition_method:
The method use for partitioning of the disk:
regular: use the usual partition types for your architecture / lvm: use LVM to partition the disk / crypto: use LVM within an encrypted partition
Possible: "regular", "lvm", "crypto"
Default: lvm

	
partition_recipe:
The kind of partitions that will be used:
atomic: all files in one partition / home: separate /home partition / multi: separate /home, /usr, /var, and /tmp partitions
Possible: "atomic", "home", "multi"
Default: atomic

	
desktop_package:
Desktop package to install (standard = no desktop)
Possible: "standard", "ubuntu-desktop", "kubuntu-desktop", "lubuntu-desktop", "xubuntu-desktop", "ubuntu-gnome-desktop"
Default: standard

	
language_packs:
Possible: "ar", "bg", "by", "cf", "de", "dk", "en", "es", "et", "fa", "fi", "fr", "gr", "il", "it", "kg", "kk", "lt", "mk", "nl", "no", "pl", "ro", "ru", "sg","sr", "ua", "uk", "us", "wo"
Default: de



Videos (time lapse)
	
http://download.uib.de/press-infos/videos/opsi-linux/debian7_406_1fps.mp4

	
http://download.uib.de/press-infos/videos/opsi-linux/debian8_406_1fps.mp4

	
http://download.uib.de/press-infos/videos/opsi-linux/ubuntu14-04_406_1fps.mp4




The product ucs41 and ucs42



The basic OS installation files are taken from the the official UCS repositories.
This product has a productive state.
With this product one can install a master, slave, backup and even a memberserver.
It is recommended to use the l-opsi-server localboot product to make an opsi server out of the UCS machine.
Memberserver are supported when an opsi server is installed through l-opsi-server.
This localboot products makes special adjustments to the server, so it can deploy clients like other UCS roles.
This product has the same properties as described above for debianX or ubuntuX and the following additional ucs specific properties:
	
dns_domain:
The DNS domain name: Example: example.com Default: ucs.test

	
ldap_base:
The ldap base. Example: dc=example,dc=com Default: dc=ucs,dc=test

	
ucs_code_name:
The code name of the ucs version that is provided in the repository.
Example: ucs414 Default: ucs414

	
organisation:
The name of the organisation that will be used for the ucs installation.
Example: uib gmbh Default: uib gmbh

	
windomain:
The name of the Samba/Windows domain.
Example: MYDOMAIN Default: MYDOMAIN

	
external_nameserver:
Which nameserver is included to the ucs installation ?
Example: 10.11.12.13 Default: auto = the name server given by dhcp

	
ucs_master_ip:
What is the IP Number of the UCS Domain Controller (needed for other roles to join) ?
Example: 10.10.10.10 Default: 10.10.10.10

	
ucs_master_admin_password:
What is the password of the user Administrator of the UCS Domain Controller (needed for other roles to join) ?
Example: linux123 Default: linux123

	
ucs_role:
Which UCS role should be installed ?
Possible: "domaincontroller_master", "domaincontroller_backup", "domaincontroller_slave", "memberserver", "base"
Default: domaincontroller_master




Setting up a local deb http repository



With debian8, ubuntu 16-04 and ucs41 package it is now possible to install from a local Apache2 repository.
To do that on Product as property '' you must introduce the Address based on this example http://<opsi-server>/opsi/<productId> e.G http://opsiserver/opsi/debian8
Furthermore, the local repository must be of course created.
To do this please make sure that the product opsi-linux-support is installed on your opsi-server. This package installs the required packages for each Distribution(apache2) and also creates the necessary folders. These must be then completed with the corresponding Distribution repository.
To that end there are two possibilities:
	
Simple: You download a built and tested Repository from us and unpack it

	
Elaborate: You build it yourself



Simple:
Execute the following command as root.
Note that the path to the Apache2 DocumentRoot has different defaults which are dependent to each distribution.
Therefore, you may need to use the second line of the script !

debian8



#! /bin/bash
DOCUMENTROOT=/var/www/html
URL=http://download.uib.de/opsi4.0/products/opsi-linux
FILE=debian8.tgz
mkdir -p ${DOCUMENTROOT}/opsi
cd ${DOCUMENTROOT}/opsi
wget ${URL}/${FILE}
tar xzf ${FILE}
opsi-set-rights .

ubuntu16-04



#! /bin/bash
DOCUMENTROOT=/var/www/html
URL=http://download.uib.de/opsi4.0/products/opsi-linux
FILE=ubuntu16-04.tgz
mkdir -p ${DOCUMENTROOT}/opsi
cd ${DOCUMENTROOT}/opsi
wget ${URL}/${FILE}
tar xzf ${FILE}
opsi-set-rights .

ucs41



#! /bin/bash
DOCUMENTROOT=/var/www/html
URL=http://download.uib.de/opsi4.0/products/opsi-linux/univention-repository/
FILE=univention-repository-4.1.tgz
mkdir -p ${DOCUMENTROOT}/opsi
cd ${DOCUMENTROOT}/opsi
wget ${URL}/${FILE}
tar xzf ${FILE}
opsi-set-rights .

ucs42



#! /bin/bash
DOCUMENTROOT=/var/www/html
URL=http://download.uib.de/opsi4.0/products/opsi-linux/univention-repository/
FILE=univention-repository-4.2.tgz
mkdir -p ${DOCUMENTROOT}/opsi
cd ${DOCUMENTROOT}/opsi
wget ${URL}/${FILE}
tar xzf ${FILE}
opsi-set-rights .
Please take notice of the folllowing file:
http://download.uib.de/opsi4.0/products/opsi-linux/univention-repository/opsi-ucs-repository-readme.txt
Alternatively one can create an own repository from an UCS DVD.
Caution
An own repository created from an UCS 4.2-0 DVD leads to an uninstalable state. The package depootstrap on this DVD is not able to install the system without interaction. However our provided repository is not affected by this.

#! /bin/bash
set -x
BASE_DIR=/var/www/opsi
DVD_PATH=UCSISOMOUNTPOINT
UCS_VERSION=4.1
UCS_SUBVERSION=4
UCS_REPODIR=univention-repository/mirror
UCS_REPODIR2=${UCS_VERSION}/maintained/${UCS_VERSION}-${UCS_SUBVERSION}
UCS_RELEASE_PATH=dists/ucs414/main/binary-amd64/Release

cd ${BASE_DIR}
mkdir -p ${UCS_REPODIR}
cd ${UCS_REPODIR}
pwd
ln -s . univention-repository
mkdir -p ${UCS_REPODIR2}
cd ${UCS_REPODIR2}
pwd
cp -r ${DVD_PATH}/all .
cp -r ${DVD_PATH}/amd64 .
cp -r ${DVD_PATH}/dists .
mkdir -p i386
cd all
dpkg-scanpackages . /dev/null | gzip -9c > Packages.gz
dpkg-scanpackages . /dev/null > Packages.gz
cd ..
cd amd64
dpkg-scanpackages . /dev/null | gzip -9c > Packages.gz
dpkg-scanpackages . /dev/null > Packages.gz
cd ..
cd i386
dpkg-scanpackages . /dev/null | gzip -9c > Packages.gz
dpkg-scanpackages . /dev/null > Packages.gz
cd ..
echo "Archive: stable" > ${UCS_RELEASE_PATH}
echo "Origin: Univention" >> ${UCS_RELEASE_PATH}
echo "Label: Univention" >> ${UCS_RELEASE_PATH}
echo "Version: ${UCS_VERSION}.${UCS_SUBVERSION}" >> ${UCS_RELEASE_PATH}
echo "Component: main" >> ${UCS_RELEASE_PATH}
echo "Architecture: amd64" >> ${UCS_RELEASE_PATH}
cat  ${UCS_RELEASE_PATH}
cd ${BASE_DIR}
chown -R www-data:www-data univention-repository
echo "all done"

The products sles11sp4, sles12, sles12sp1



This product has the following additional properties:
name: productkey
multivalue: False
editable: True
description: email:regcode-sles for suse_register. Is only used if the  host parameter  `license-management.use` is set to  false . If it set to  True  the license key will be get from the license management module. / La clé de licence pour l'installation. Est utilisée uniquement si dans "Réseau et paramètres supplémentaires" `license-management.use` est défini à false (faux) . Si c'est réglé sur True (vrai) la clé de licence sera obtenue du module de gestion des licences.
values: ["", "myemail@example.com:xxxxxxxxxxxxxx"]
default: [""]

name: suse_register
description: set to false, if you don't want to register your system online, if you set this to false you have to give local repositories
default: True

name: local_repositories
multivalue: True
editable: True
description: list of local repositories to use. Syntax: "repository description", example entry: "http://sles.example.com/suse/repo NameForRepo"
values: [""]
default: [""]

name: install_unattended
description: If false then do interactive installation
default: True
Source of installation. To download the installation DVD you need an account on SUSE.
Installation DVD should have the name (we’ve made tests with files with these names):
sles11sp4: SLES-11-SP4-DVD-x86_64-GM-DVD1.iso
sles12: SLE-12-Server-DVD-x86_64-GM-DVD1.iso
sles12sp1: SLE-12-SP1-Server-DVD-x86_64-GM-DVD1.iso
Copy the ISO-File to /var/lib/opsi/depot/opsi_nfs_share/opensusel42-1/64/
Please don’t forget to execute opsi-set-rights.
Videos (time lapse). The following video shows an installation.
It is made with one frame per second and because of that, the installation that you see it is much more faster than a normal installation.
	
http://download.uib.de/press-infos/videos/opsi-linux/sles12_406_1fps.mp4




The products redhat70 and centos70



This product has the following additional properties:
name: install_unattended
description: If false then do interactive installation
default: True

name: selinux_mode
multivalue: False
editable: False
description: In which mode should SELinux run ?
values: ["enforcing", "permissive", "disabled"]
default: ["permissive"]

name: partition_method
multivalue: False
editable: False
description: plain: Regular partitions with no LVM or Btrfs. / lvm: The LVM partitioning scheme. / btrfs: The Btrfs partitioning scheme. / thinp: The LVM Thin Provisioning partitioning scheme.
values: ["plain", "lvm", "btrfs", "thinp"]
default: ["lvm"]

name: productkey
multivalue: False
editable: True
description: email:regcode for subscription_register. Is only used if the  host parameter  `license-management.use` is set to  false . If it set to  True  the license key will be get from the license management module. / La clé de licence pour l'installation. Est utilisée uniquement si dans "Réseau et paramètres supplémentaires" `license-management.use` est défini à false (faux) . Si c'est réglé sur True (vrai) la clé de licence sera obtenue du module de gestion des licences.
values: ["", "myemail@example.com:xxxxxxxxxxxxxx"]
default: [""]

name: subscription_register
description: set to false, if you don't want to register your system online, you need to set this to false and you have to introduce your local repository
default: True
Source of installation CentOS. Download the installation DVD here:
e.G.:
http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1511.iso
Copy the ISO-File to /var/lib/opsi/depot/opsi_nfs_share/centos70/64/
Please don’t forget to execute opsi-set-rights.
Source of installation RedHat. To download the installation DVD you need an account on RedHat.
Installation DVD should be named we’ve made tests with a file with these name:
rhel-server-7.0-x86_64-dvd.iso
Copy the ISO-File to /var/lib/opsi/depot/opsi_nfs_share/redhat70/64/
Please don’t forget to execute opsi-set-rights.
Videos (time lapse). The following video shows an installation.
It is made with one frame per second and because of that, the installation that you see it is much more faster than a normal installation.
	
http://download.uib.de/press-infos/videos/opsi-linux/centos70_406_1fps.mp4

	
http://download.uib.de/press-infos/videos/opsi-linux/redhat70_406_1fps.mp4





Linux v405 netboot products without distribution installer



Basic OS installation per netboot
To install Linux on a client, at the beginning the standard opsi-linux-bootimage boots per netboot. It is the same image as the one used for the Windows installation.
The bootimage automatically performs the partitioning and formatting of the hard disc (/ and swap). Next the installation of the basic Linux Operating System is performed (including network and ssh, but without X11). The installation process itself is quite different for the individual distributions, but has in common, that the installation is performed directly from the original distribution packages.
The basic Linux installation can be extended with optional opsi packages, for instance to turn the system into an opsi-Server (a new depotserver for instance).
Also the opsi-client-agent for Linux can be installed, which enables the automated installation and configuration of further software packages.
The opsi-client-agent for Linux is available as a co-funded opsi extension module, the required opsi netboot products for Linux installation are available as free Open Source modules.
Because the base installation is done from the Standard opsi-linux-bootimage, there are some distribution dependent differences, that have to be installed and configured after the first reboot of the installed system. This is for example the SELinux installation of the RedHat like or the keyboard configuration of the Debian like systems. These after boot installations and patches are done by the standard localboot product l-os-postinst.
Common properties of the v405 Linux netboot products



The following properties for controlling the Linux installation are available with all netboot products:
	
askbeforeinst:
confirm start of the new installation on the client? (default=true)

	
architecture:
architecture selection - affects the selection of the bootimage and the installation architecture. (default=64bit)

	
system_partition_size:
size of the system partition - the size may be given as percent of the hard disk size or as absolute size (G=Gigabyte). If you choose another value than 100%, the remaining rest will be used as data_partition. (default=100%)

	
swap_partition_size: +size of the swap partition. (default=2000M)

	
data_partition_create:
create a data partition if there is some space left. (true/false) (default=true)

	
data_partition_preserve:
preserve an existing data partition?
always = cancel the installation in case the preservation of an existing partition with the label data is not possible with the given partition data.
if_possible = an existing partition with the label data is preserved if possible according to the given partitioning parameters. Otherwise it will be deleted.
never = a new partition table will be created. (default=never)

	
language:
language / locale to be installed (default=de)

	
console_keymap:
keyboard layout to be used (default = distribution dependent / de)

	
timezone:
time zone to be configured (default=Europe/Berlin)

	
root_password:
root password  (default=linux123)

	
user_password:
user password (default=linux123)

	
install_opsi_server:
install opsi server packages (default=false)

	
online_repository:
repository to use for installation -
repository of the Linux distribution to be used for installation (not for SLES) (default = distribution dependent)

	
opsi_online_repository:
repository for opsi-server installation -
repository for the opsi-server packets (default = distribution dependent)

	
proxy:
proxystring (if required) as: http://<ip>:<port> (default='')

	
additional_packages:
additional packages to install. Packages names separated by blanks. (default='')

	
wget_and_execute:
fetch a file via wget and execute it -
URL (http) of a file to be executed at the end of installation. (default='')

	
install_opsi-client-agent:
install the Linux opsi-client-agent (cofunding project: has to be activated by the /etc/opsi/modules) (default=false)

	
release:
(Debian and Ubuntu only)
which release of the distribution is to be installed? (default = distribution dependent)

	
setup_after_install:
opsi product(s) to be installed after the OS installation is done
(opsi products to be set to setup) (default=l-os-postinst)




Netboot products for Linux distributions



====== ubuntu
The basic installation is performed per debootstrap directly from the network.
This product has the status productive.
It is UEFI/GPT compatible (tested for release=trusty).
For this product applicable opsi-server packets are available, that can be installed by setting install_opsi_server=true.
====== debian
The basic installation is performed per debootstrap directly from the network.
This product has the status productive.
It is UEFI/GPT compatible (tested for release=wheezy).
For this product applicable opsi-server packets are available, that can be installed by setting install_opsi_server=true.


opsi-linux-client-agent



The opsi-client-agent for Linux is part of the cofunding project Linux Agent, which is liable to pay costs.
The opsi-client-agent for Windows is based on two components:
	
the service opsiclientd

	
the action processor opsi-script / opsi-script-nogui



The opsi-client-agent for Linux is based on the Linux port of the Windows client agent.
The opsiclientd is  not ported to all supported Linux distributions.
If no opsiclientd is available, it is substituted by a direct opsiscriptstarter call.
A Linux opsiclientd  is available for:
	
Debian 7 / 8

	
Ubuntu 12.04 / 14.04 / 16.04

	
openSuse 13.2 / 42.1

	
SLES 12 / 12SP1

	
UCS 4.0 / 4.1



If there is no opsiclientd, so it is replaced by the opsiscriptstarter, which performs the following opsiclientd tasks at system start:
	
connect to the opsi-server: check whether actions are to be performed

	
mount the depot share

	
start the action processor

	
unmount the depot share

	
transfer the logfile to the server



The Linux action processor is named opsi-script and is built from the same sources as the Windows opsi-winst. So on Linux the same scripting syntax is available as on Windows. All common features, that are not Windows specific, are available, as there are e.g.:
	
file handling

	
string and stringlist functions

	
executing external scripts and programs

	
communication with the opsi-Server

	
patching config files



Of course Windows specific features (like patching the Windows registry) are not available on Linux, but there are some additional Linux specific functions like e.g.:
	
getLinuxDistroType

	
getLinuxVersionMap



Logging of the opsi-script ist available (like with the opsi-winst on Windows).
Linux opsi-script is available as a graphical version for working with X-Windows and a noGUI version for systems without graphical user interface.
opsi-linux-client-agent: Installation: service_setup.sh



This method is the first choice for installations on a single computer.  service_setup.sh can also be used for maintenance or repair of a client. For mass roll-out, see the chapter below.
	
login to the Linux client with root privileges

	
mount the shared directory on the opsi server at \\<opsiserver>\opsi_depot to any mount point

	
change to directory opsi-linux-client-agent at the mountpoint

	
start as this place the script ./service_setup.sh




Caution
After the installation, the client will be restarted


opsi-linux-client-agent: Installation: opsi-deploy-client-agent



The opsi-deploy-client-agent script installs the opsi-client-agent directly from the opsi-server to the clients.
Requirements for the opsi-server:
	
The Python 2 package paramiko has to be installed. It is available as python-paramiko on most distributions and can be installed through the corresponding package manager.



Requirements for the clients are:
	
ssh access as root or as a user that has the possibility to run sudo without entering the password



The script creates the client on the server, then copies the installation files and the configuration information including the pckey to the client.  After copying the necessary information, opsi-deploy-client-agent starts the installation on the client.
With the opsi-deploy-client-agent script a whole list of clients can be processed.
These can include any number of clients that can be passed as the last parameter, or with the option -f by which the clients can be read from a file.
When using a file, on each line a client must be present.
The script can work with IP addresses, host names and FQDNs. It will automatically try to recognize what kind of Address was passed.
The script can be found at /var/lib/opsi/depot/opsi-linux-client-agent
Run the script with root privileges.
It could happen that you must first make the script executable with:
Chmod u + x /var/lib/opsi/depot/opsi-linux-client-agent/opsi-deploy-client-agent
bonifax:/var/lib/opsi/depot/opsi-linux-client-agent# ./opsi-deploy-client-agent --help
usage: opsi-deploy-client-agent [-h] [--version] [--verbose]
                                [--debug-file DEBUGFILE] [--username USERNAME]
                                [--password PASSWORD]
                                [--use-fqdn | --use-hostname | --use-ip-address]
                                [--ignore-failed-ping]
                                [--reboot | --shutdown | --start-opsiclientd]
                                [--hosts-from-file HOSTFILE]
                                [--skip-existing-clients]
                                [--threads MAXTHREADS]
                                [--keep-client-on-failure | --remove-client-on-failure]
                                [host [host ...]]

Deploy opsi client agent to the specified clients. The clients must be
accessible via SSH. The user must be allowed to use sudo non-interactive.

positional arguments:
  host                  The hosts to deploy the opsi-client-agent to.

optional arguments:
  -h, --help            show this help message and exit
  --version, -V         show program's version number and exit
  --verbose, -v         increase verbosity (can be used multiple times)
  --debug-file DEBUGFILE
                        Write debug output to given file.
  --username USERNAME, -u USERNAME
                        username for authentication (default: root). Example
                        for a domain account: -u "<DOMAIN>\\<username>"
  --password PASSWORD, -p PASSWORD
                        password for authentication
  --use-fqdn, -c        Use FQDN to connect to client.
  --use-hostname        Use hostname to connect to client.
  --use-ip-address      Use IP address to connect to client.
  --ignore-failed-ping, -x
                        try installation even if ping fails
  --reboot, -r          reboot computer after installation
  --shutdown, -s        shutdown computer after installation
  --start-opsiclientd, -o
                        start opsiclientd service after installation
  --hosts-from-file HOSTFILE, -f HOSTFILE
                        File containing list of clients (one hostname per
                        line). If there is a space followed by text after the
                        hostname this will be used as client description for
                        new clients.
  --skip-existing-clients, -S
                        skip known opsi clients
  --threads MAXTHREADS, -t MAXTHREADS
                        number of concurrent deployment threads
  --keep-client-on-failure
                        If the client was created in opsi through this script
                        it will not be removed in case of failure. (DEFAULT)
  --remove-client-on-failure
                        If the client was created in opsi through this script
                        it will be removed in case of failure.

opsi-linux-client-agent: Installation: Via opsi netboot product



If you install a Linux via opsi netboot product, you only have to switch the property install_opsi-client-agent to true (which is the default) in order to install the opsi-linux-client-agent.

opsi-linux-client-agent: opsiclientd configuration



The opsiclientd for Linux is a port of the opsiclientd for Windows.
So it works withe similar configuration file which is located at:
/etc/opsi-client-agent/opsiclientd.conf.
A detailed description of this file you will find at the chapter for the opsi-client-agent for Windows:  the section called “Configuration”
At the moment there are not all of the features and events available on Linux.
Available are:
	
Start at boot time (or via explicit start of the service opsiclientd). At Linux is the name of this event opsiclientd_start (not gui_startup)

	
event_on_demand

	
The event_timer but only with the configuration: super = default



Not available are:
	
Everything that is related to local caching (WAN-Extension).

	
Modification of events via preconditions.

	
The opsiclientd notifier

	
The event_net_connection

	
The event_on_shutdown

	
The event_silent_install




opsi-linux-client-agent: installation paths



As usual on Linux, the linux-opsi-client-agent is spread to several directories:
The binaries:
/usr/bin/opsi-script (X11)
/usr/bin/opsi-script-nogui (without X11)
/usr/bin/opsiscriptstarter (preliminary opsiclientd replacement)
/usr/bin/opsiclientd
Auxiliary files:
Skin files:
/usr/share/opsi-client-agent/opsi-script/skin (depricated)
Since opsi-script 4.12.0.31 / opsi-linux-client-agent (4.1.0.9-1):
default : /usr/share/opsi-script/skin
custom : /usr/share/opsi-script/customskin
opsi-script Library:
/usr/share/opsi-script/lib
Translation files:
/usr/share/locale/<LANG>/LC_MESSAGES/opsi-script.po
Config files:
/etc/opsi-client-agent/opsiclientd.conf (configuration of the opsiscriptstarter/opsiclientd)
/etc/opsi-client-agent/opsi-script.conf  (depricated)
Since opsi-script 4.12.0.31 / opsi-linux-client-agent (4.1.0.9-1):
/etc/opsi-script/opsi-script.conf
Logfiles / temporary files:
/var/log/opsi-client-agent
/var/log/opsi-client-agent/opsiclientd
/var/log/opsi-client-agent/opsi-script (depricated)
Since opsi-script 4.12.0.31 / opsi-linux-client-agent (4.1.0.9-1):
/var/log/opsi-script/


opsi-linux-client-agent: Known Bugs



Copy a bundle of files via Files section from a smb share may fail according to the Samba version
This problem was reported from some samba3 Versions but seems to be vanished in samba4.
Workaround:
Instead of:
[Files_copy_netboot]
copy -s "%scriptPath%/installfiles/*" "$target$/installfiles/"
you may use:
[ShellInAnIcon_opsi_copy_netboot]
set -x
export PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin
cd "%scriptPath%"
tar cf - installfiles | ( cd "$target$/installfiles/" ; tar xf - )
Script examples



For software deployment on Windows clients there can be said: the installation of software itself is as important as the subsequent configuring of the software.
On Linux most packets are available from the distribution repositories. So the installation part is less, but the configuration part stays the same. Also there are applications, that are not available from the standard repositories.
In this case special repositories or installation sources have to be added to the system. The important feature is, that all installation and configuration settings can be managed and logged on the opsi-server.
Here are some example snippets for an opsi-linux-client-agent opsi-script:
	
exit in case the script detects a non Linux system

	
detecting the distribution type (to use apt-get, zypper or yum)

	
detecting the Linux version

	
installing a packet

	
adding a repository



Example: exit in case the script detects a non Linux system:
[Actions]
requiredWinstVersion >= "4.11.4.1"
ScriptErrorMessages=off

DefVar $OS$

set $OS$ = GetOS

if not($OS$ = "Linux")
        LogError "Wrong OS: Product: " + $ProductId$ + "is only for Linux"
        isFatalError "Wrong OS"
endif
Example: detecting the distribution type:
[Actions]
requiredWinstVersion >= "4.11.4.1"
ScriptErrorMessages=off

DefVar $distrotype$

set $distrotype$ = getLinuxDistroType

if $distrotype$ = 'debian'
        Message "Try to get Package Lock..."
        if waitForPackageLock("60","false")
                comment "we got the package lock."
        else
                LogError "could not get Package Lock"
                isFatalError "package lock failed"
        endif
        ShellInAnIcon_Upgrade_deb
else
        LogError "Wrong Distro: This Product is for Debian/Ubuntu only"
        isFatalError "Wrong distro"
endif

if not("0" = getLastExitCode)
        Message "failed ShellInAnIcon_Upgrade"
        LogError "failed ShellInAnIcon_Upgrade"
        isFatalError "failed Upgrade"
endif


[ShellInAnIcon_Upgrade_deb]
set -x
export DEBIAN_FRONTEND=noninteractive
apt-get --yes install aptitude
apt-get update
apt-get --yes dist-upgrade
exit $?
Example: detecting the Linux version and installing a packet:
[Actions]
requiredWinstVersion >= "4.11.4.1"
ScriptErrorMessages=off

DefVar $distCodeName$
DefVar $distroName$
DefVar $distRelease$
DefVar $desktop$

DefStringList $linuxInfo$

set $linuxInfo$ = getLinuxVersionMap
set $distCodeName$ = getValue("Codename", $linuxInfo$)
set $distRelease$ = getValue("Release", $linuxInfo$)
set $distroName$  = getValue("Distributor ID", $linuxInfo$)

set $desktop$ = GetProductProperty("desktop", "kde")


if $distrotype$ = 'suse'
        if $desktop$ = "unity"
                Message " No Unity on SUSE - fallback to KDE ..."
                set $desktop$ = "kde"
        endif ; unity

        Message "Try to get Package Lock..."
        if waitForPackageLock("60","false")
                comment "we got the package lock."
        else
                LogError "could not get Package Lock"
                isFatalError "package lock failed"
        endif

        if $desktop$ = "kde"
                if ($distroName$ = 'openSUSE project')
                        ShellInAnIcon_kde_suse
                endif
                if ("SUSE LINUX" = $distroName$) and ($distRelease$ = "11")
                        ShellInAnIcon_kde_sles11
                endif
                if not("0" = getLastExitCode)
                        LogError "failed ShellInAnIcon"
                        Message "failed kde"
                        isFatalError "failed kde"
                endif
        endif ; kde
endif; suse type

[ShellInAnIcon_kde_suse]
set -x
zypper --no-gpg-checks --non-interactive install patterns-openSUSE-kde4 patterns-openSUSE-kde4_basis
zypper --no-gpg-checks --non-interactive install splashy-branding-openSUSE
exit $?

[ShellInAnIcon_kde_sles11]
set -x
zypper --no-gpg-checks --non-interactive install --auto-agree-with-licenses -t pattern kde
exit $?
Example: adding a repository:
[Actions]
requiredWinstVersion >= "4.11.4.1"
ScriptErrorMessages=off

DefVar $distCodeName$
DefVar $distroName$
DefVar $distRelease$
DefVar $desktop$

DefStringList $linuxInfo$

set $linuxInfo$ = getLinuxVersionMap
set $distCodeName$ = getValue("Codename", $linuxInfo$)
set $distRelease$ = getValue("Release", $linuxInfo$)
set $distroName$  = getValue("Distributor ID", $linuxInfo$)

set $desktop$ = GetProductProperty("desktop", "kde")


if $distroName$ = 'Ubuntu'

        if $desktop$ = "cinnamon"
                set $desktopPackage$ = $desktop$
                Message "Try to get Package Lock..."
                if waitForPackageLock("60","false")
                        comment "we got the package lock."
                else
                        LogError "could not get Package Lock"
                        isFatalError "package lock failed"
                endif
                ShellInAnIcon_ubuntu_cinnamon
                if not("0" = getLastExitCode)
                        Message "failed ShellInAnIcon_ubuntu_cinnamon"
                        LogError "failed ShellInAnIcon_ubuntu_cinnamon"
                        isFatalError "failed cinnamon"
                endif
        endif ; cinnamon
endif; ubuntu

[ShellInAnIcon_ubuntu_cinnamon]
set -x
export DEBIAN_FRONTEND=noninteractive
# we need to get the add-apt-repository command
apt-get --yes --force-yes install python-software-properties
# the cinnamon repository
add-apt-repository ppa:gwendal-lebihan-dev/cinnamon-stable
apt-get update
apt-get --yes install ubuntu-desktop
exit $?


Linux localboot products



Here some localboot products that are part of the standard opsi Linux support.
The product l-opsi-server



The product l-opsi-server serves to install on a Linux computer an opsi-server via opsi-linux-client-agent
in an automated way. This can serve to install quickly a new opsi-depot-server
or e.G. an opsi Test system.
Caution
Currently for a opsi-config server an other maschine can’t be a opsi-linux-client and a opsi-depot-server at the same time.
To work around this limitation, you have two possibilities:
1. Using one opsi-config-server: After the installation of opsi via l-opsi-server and before you register this maschine as opsi-depot-server, you have to delete it as client in the configed.
2. Using two opsi-config-servers: Setup a second independent opsi-config-server, which is only used to administrate (install and mantain) your opsi-servers. So this second opsi-config-server knows the other opsi-servers only as linux-clients. Your other (first) opsi-config-server know theses other opsi-servers as depots.
In a UCS environment method 2 is recommended and the second opsi-config server must not be a UCS Server.

The product l-opsi-server has the following Properties:
	
opsi_online_repository:
(Base-) Repository for opsi-server installation.
(Default="http://download.opensuse.org/repositories/home:/uibmz:/opsi:/opsi40")
see also repo_kind

	
opsi_noproxy_online_repository:
(Base-) Repository for opsi-server installation (without any cache proxy).
(Default="http://download.opensuse.org/repositories/home:/uibmz:/opsi:/opsi40")
Should you require on opsi_online_repository to introduce a Proxy or deb-cacher
(e.G. 'http://mydeb-cacher:9999/download.opensuse.org/repositories/home:/uibmz:/opsi:/opsi40"),
than introduce the URL without Proxy. Otherwise introduce the same as opsi_noproxy_online_repository.

	
repo_kind:
Which kind of repository ["experimental", "stable", "testing"] should be installed ?. (Default=stable)
With the Client OS, opsi_online_repository and repo_kind the URL will be built and the client
will be added to an opsi repository.

	
backend:
Which backend should be installed ? (mysql needs a valid activation file). (Default=file)
A modules file with the require Activations can be stored in the custom directory of the product.
If a modules file is found there, then will this one used.

	
opsi_admin_user_name:
The name of the opsi_admin_user to create (empty= nothing created). (Default=adminuser)
If a user is introduced here, it will applied, also it will be added to the group opsiadmin, pcpatch/opsifileadmin
and become as unix and samba password the value opsi_admin_user_password

	
opsi_admin_user_password:
What is the password of the opsi_admin_user to create (empty= not allowed). (Default=linux123)
see opsi_admin_user_name

	
setup_after_install:
Which opsi product(s) should we switch to setup after l-opsi-server installation is done ?. (Default="")

	
allow_reboot:
May the server reboot if script is finished ?. (Default=true)

	
install_and_configure_dhcp:
Should we run the dhcp server on this machine ?. (Default=False)
If this property is false then the following properties: netmask, network,
dnsdomain,nameserver and gateway are meaningless because they are only used for
dhcp configuration.

	
myipname:
Set a different IP name (FQDN) (auto= use standard) (Default=auto)
Meaningless if install_and_configure_dhcp=false

	
myipnumber:
Set a different IP number (auto= use standard) (Default=auto)
Meaningless if install_and_configure_dhcp=false

	
netmask:
Netmask  (for dhcp). (Default="255.255.0.0")
Meaningless if install_and_configure_dhcp=false

	
network:
network address (for dhcp). (Default="192.168.0.0")
Meaningless if install_and_configure_dhcp=false

	
dnsdomain:
DNS domain (for dhcp). (Default="uib.local")
Meaningless if install_and_configure_dhcp=false

	
nameserver:
Primary nameserver (for dhcp). (Default="192.168.1.245")
Meaningless if install_and_configure_dhcp=false

	
gateway:
gateway (option routers for dhcp). (Default="192.168.1.245")
Meaningless if install_and_configure_dhcp=false

	
ucs_master_admin_password:
Only needed for opsi installation on UCS Server with other Roles than Role Master. (Default=linux123)

	
update_test:
Do not use: Internal Debugging. (Default=False)

	
ucs_master_admin_password:
On a UCS machine  the roles Slave, Backup and Member have to be joined correctly with the Mas
ter. This property takes the password to perform the join.



The product has setup required before dependency to the product l-system-update.
That means when you set l-opsi-server on setup it will also automatically set l-system-update also on setup
and installed before.
In the directory custom of the product l-opsi-server the activated file (modules) is stored, which is used in the Installation of the product l-opsi-server and will be preserved in the case of a new version of the product.

l-os-postinst



This product installs and configures those parts of the base installation, that cannot be done from the bootimage in a proper way.
This is for the different distributions:
	
CentOS:

	
installation of SELinux






This product has a dependency to the product l-system-update which is executed before running l-os-postinst.
This product has a high priority, so it is executed before common products.

l-desktop



The product l-desktop installs a desktop packet on the computer.
The property desktop selects the desktop to be installed. Not all of the desktops are available for every distribution. For instance Unity is available for Ubuntu only. If the selected desktop is not available, the distribution specific default desktop will be installed. Furthermore the scope of the desktop packets differs according to the distribution and the selected desktop. It can be just the actual desktop software, or might also contain some base products like libreoffice, firefox, PDF Reader etc.
The property desktop can have the following values:
	
Gnome
Default for Debian, CentOS, RHEL.
Available for all distributions.

	
KDE
Default für SLES, OpenSuse.
Available for all distributions.

	
Unity
Available for Ubuntu only.

	
Cinnamon
Available for Ubuntu only.

	
xfce4
Available for Ubuntu, Debian.

	
lxde
Available for Ubuntu, Debian.




l-system-update



This product updates the system.

l-swaudit



Software inventory, based on the packet manager

l-hwaudit



Hardware inventory.
The hardware inventory currently is based on the Python implemented method as also used by the bootimage. Therefore the packet python-opsi from the opsi-repository of the distribution must be installed. So if there is no opsi-repository available for this distribution, the hardware inventory fails.

l-jedit



Java based editor with syntax highlighting for opsi-script. If Java is missing on the system, it will be installed automatically.


Inventory



To create an inventory, the data are collected on the client and sent to the server. The hardware inventory is based on the methods implemented in the bootimage.
The software inventory is based on the data from the packet management of the deployed Linux distribution.

UEFI / GPT support



Some of the opsi 4.0.5  Linux netboot products are UEFI/GPT compatible.
The 4.0.6 Linux netboot products are not UEFI/GPT compatible. At the moment they loose their information about the uefi environment at the kexec boot of the distribution kernel. We hope to fix this at a later point.
For details refer to the list of netboot products above or see at the UEFI chapter of the opsi-manual.

Roadmap



Linux support is a brand new opsi feature. Therefore not all of the planned features have been implemented yet with the first release.
Planned features to follow are:
	
configurable partitioning

	
logical volume management

	
patching XML files

	
patching hierarchical configuration files like dhcpd.conf




Proxy for .deb-packages



Instructions for installation and use of servers for local caching of  debian packages:
	
Ubuntu help: Apt-Cacher-Server

	
How to set up Apt caching server on Ubuntu or Debian





9.6. opsi with UEFI / GPT



Netboot products with uefi support



(Stand / as of 25.08.2018)
Table 8. opsi-clonezilla
	Netboot product
	Opsi 4.0.7 / 4.1
	Remark

	opsi-clonezilla
	[image: supported.png]
	




Table 9. Standard Windows
	Netboot product
	Opsi 4.0.7 / 4.1
	Remark

	Server 2016
	[image: supported.png]
	

	win10 64 Bit
	[image: supported.png]
	

	win10 32 Bit
	[image: develop.png]
	

	Server 2012 R12
	[image: supported.png]
	

	win8.1 64 Bit
	[image: supported.png]
	

	win8.1 32 Bit
	[image: unsupported.png]
	

	Server 2012
	[image: supported.png]
	

	win7 64 Bit
	[image: supported.png]
	

	win7 32 Bit
	[image: unsupported.png]
	

	Server 2008 R2
	[image: supported.png]
	

	winvista 32 Bit
	[image: unsupported.png]
	

	winvista 64 Bit
	[image: discontinued.png]
	

	Server 2008 64 Bit
	[image: discontinued.png]
	

	winxp
	[image: unsupported.png]
	




[image: supported.png]: Supported
[image: unsupported.png]: Unsupported
[image: develop.png]: Under Development
[image: discontinued.png]: Discontinued
Table 10. Linux
	Netboot product
	Opsi 4.0.7 / 4.1
	Remark

	ubuntu
	[image: supported.png]
	

	ubuntu18-04
	[image: supported.png]
	

	ubuntu16-04
	[image: supported.png]
	since ubuntu16-04_4.0.7.2-1

	ubuntu14-04
	[image: unsupported.png]
	

	debian
	[image: supported.png]
	

	debian9
	[image: supported.png]
	

	debian8
	[image: supported.png]
	since debian8_4.0.7.2-1

	debian7
	[image: develop.png]
	

	centos70
	[image: develop.png]
	

	centos65
	[image: discontinued.png]
	

	redhat70
	[image: develop.png]
	

	opensusel15
	[image: develop.png]
	

	opensusel42-3
	[image: supported.png]
	

	opensusel42-2
	[image: discontinued.png]
	

	opensusel42-1
	[image: discontinued.png]
	

	opensuse13-2
	[image: discontinued.png]
	

	opensuse13-1
	[image: discontinued.png]
	

	sles15
	[image: develop.png]
	

	sles12sp1
	[image: develop.png]
	

	sles12
	[image: develop.png]
	

	sles11sp4
	[image: develop.png]
	

	sles11sp3
	[image: discontinued.png]
	




[image: supported.png]: Supported
[image: unsupported.png]: Unsupported
[image: develop.png]: Under Development
[image: discontinued.png]: Discontinued
Table 11. opsi-local-image
	Netboot product
	Opsi 4.0.7 / 4.1
	Remark

	opsi-local-image-prepare
	[image: supported.png]
	

	opsi-local-image-backup
	[image: supported.png]
	

	opsi-local-image-restore
	[image: supported.png]
	

	opsi-local-image-wim-capture
	[image: supported.png]
	

	opsi-local-image-win*
	[image: supported.png]
	

	opsi-local-image-ubuntu
	[image: supported.png]
	

	opsi-local-image-opensuse13-2
	[image: discontinued.png]
	

	opsi-local-image-opensusel42-2
	[image: develop.png]
	

	opsi-vhd-win10-x64
	[image: supported.png]
	




[image: supported.png]: Supported
[image: unsupported.png]: Unsupported
[image: develop.png]: Under Development
[image: discontinued.png]: Discontinued

Preconditions for working with UEFI / GPT



This module currently is a
co-funded opsi extension.
Some preconditions are required to work with that module, which is to get a suitable modules file to unlock the feature. You can get this unlock file by purchasing the extension module. For evaluation you can get a time limited modules unlock file without charge. ( → mail to info@uib.de).
Technical requirements are opsi 4.0.5 with package versions:
Table 12. required packages
	opsi package	version
	Netboot products
	>=4.0.5

	opsi server packages
	>=4.0.5





Furher remarks regarding the pxe-installation with the opsi-Moduls UEFI / GPT



	
opsi 4.0.6 supports only 64-Bit UEFI-Installations

	
PXE-boot installs require a winpe that is capable of booting in UEFI mode. Often, an existing winpe will be capable of doing so, check by verifying there is a folder named EFI, as well as a file named bootmgr.efi inside your winpe folder.
If that is not the case, create a recent winpe as explained in our opsi-getting-started Manual, Chapter "Creating a PE". A winpe, that is UEFI capable, needs to reside in the winpe_uefi folder of the opsi netboot product.
Provided your winpe is already capable of booting UEFI and MBR modes, you could simply place a softlink winpe_uefi > winpe .

	
you have to configure your external DHCP server with the bootfile
linux/pxelinux.cfg/elilo.efi

	
Activate in the opsi-configed the checkbox "Uefi-Boot" for uefi-clients (since version 4.0.5.8.1) or set hostparameter clientconfig.dhcpd.filename=linux/pxelinux.cfg/elilo.efi

	
BIOS settings:
Since the BIOS menus are very different and use different terminology, you need to consider here what is the best fit for your BIOS.

	
Secureboot disabled
This entry is usually in the Boot or Startup but it can also be found in the Security area.

	
Turn the BIOS on in the UEFI-Mode. If you have the choice between UEFI only,Legacy only, or Both, then you should select UEFI only. If the selected option is Both this is not the best practice but it can eventually work. If the Legacy Support it is present, it should be disable. CSM Support in conjunction with UEFI only can remain enabled. Otherwise just disable it. UEFI Network Boot must be enabled. It could happened that the entry is also named Network Stack and also can be found under the UEFI category. If there are two categories for IPv4 and IPv6 here the right choice is IPv4.







Introduction



Recent PCs, tablets and server often are equpped with an UEFI BIOS. Often there is a legacy mode available to support the old features including PXE boot. But more and more devices come with an UEFI only BIOS (especially tablets). So they cannot be managed with the previous opsi environment.
To integrate these devices into opsi and to be able to use the advantages of UEFI, the uib gmbh developed the opsi extension for UEFI support.

What is UEFI and what is different about it?



UEFI is the abbreviation of Unified Extensible Firmware Interface and is the follow-up to the classic PC-BIOS (MBR-BIOS).
For detailled information on UEFI there are some links listed below.
UEFI has much more features than the old BIOS. Basically UEFI is a small operating system by itself. But in this place, we just consider some features, that are of special interes to the system administrator:
	
The recent (by January 2014) implementations of UEFI by the hardware manufacturers have not developed any clear standards yet. As soon as the system is to be booted from any other device but the hard disc, you face the utter chaos. Often UEFI and classic BIOS are implemented both, sometimes they can be deactivated individually, or sometimes not. UEFI can be implemented with the Compatibility Support Module (CSM), or without. Netboot might work, or might not.
Especially the availability of netboot is essential for structurd client management.

	
With the classic PC-BIOS the BIOS and its configuration usually are separated from the operating system. So BIOS configurations like the boot sequence cannot be changed by the operating system.
This is different with UEFI. The operating system can change the boot sequence (and usually it does). This has consequences for a client management that relies on netboot.

	
The UEFI Bios comes with its own boot manager, which not only can be used by the operating systems to change the boot sequence, but also contains the start entries for the operating systems themselves. This is to support the parallel installation of different operating systems, so that there is no conflict with the different boot loaders.

	
The UEFI BIOS can be implemented for 32 or 64 bit, which also presets a 32 or 64 bit operating system. So there cannot be installed a 32 bit OS on a 64 bit UEFI system.

	
Secureboot (not supported yet by opsi)

	
partitioning with GPT and additional partitions for the bootloader:

	
1. partition: EFI system partition (ESP) 100 - 260 MByte ; VFAT

	
2. partition: Microsoft reserved (MSR) 32 - 128 MB; NTFS

	
following the actual OS partitions






Links :
http://de.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

What is different about GPT



GPT (GUID Partition Table) id the follow-up for the previous MBR partition tables. GPT is part of the UEFI specification.
	
The main features for the sysadmin are

		
overriding the 2 Terabyte limit (now it is 8 Zebibyte)

	
almost unlimited number of primary partitions

	
changed partition types / GUIDs

	
new: partition GUIDs

	
new: partition attributes (hidden, read only, …)

	
different tools: gdisk






Basically GPT can be used without UEFI. But UEFI depends on GPT. With UEFI there are up to two additional partitions:
	
the EFI system partition (ESP) with the bootloaders

	
Microsoft reserved (MSR)



Links :
http://de.wikipedia.org/wiki/GUID_Partition_Table

UEFI Boot



In contrary to the old BIOS the boot sequence not only can be defined for devices, but also can be set for different bootloaders on the EFI system partition. Furthermore the sequence can be changed by a running operating system. So if you set netboot as the first boot priority, this setting will not survive the first OS installation.

UEFI Netboot



Unfortunately early UEFI implementations do not support netboot at all, but netboot support is increasing.
Meanwhile there are a lot of UEFI bootloader (like grub2 or elilo), but mostly without netboot support.
With the UEFI support extension module uib gmbh has developed a succesfull UEFI netboot support for integrating UEFI clients into opsi. Because the UEFI standard is still under development and changing, in future the opsi UEFI module will continue to adapt to the technical changes, which might require structural redesigns of the module.

opsi support for UEFI netboot



The opsi support for UEFI is based on several components:
	
adaption of the netboot UEFI bootloader ELILO to the opsi / client-management requirements.

	
new opsipxeconfd, which also supports config files for the opsi-ELILO (in addition to the PXE config).

	
new (64 bit) opsi-linux-bootimage with the tools for UEFI- and GPT management

	
redesigned netboot products for OS installation (Windows/Linux) with additional support of UEFI/GPT (of course only for OS that support UEFI).

	
client setting on the opsi-server whether to be treated as UEFI client or not.  (clientconfig.dhcpd.filename=linux/pxelinux.cfg/elilo.efi)

	
support of a software triggered switch to UEFI netboot.
The label of the UEFI netboot entry of the Bios can be saved on the opsi-server (clientconfig.uefinetbootlabel), as far as the BIOS supports it (so there is an activatable netboot entry in the Bios). This allows opsi-product to enbale netboot selective for the next reboot. This technique is implemented in several opsi products. An important example is the product opsi-uefi-netboot:
This product tries to configure the Bios for netboot and then triggers a reboot. If there is no uefinetbootlabel or it is a non UEFI client, just a reboot is triggered.
This product is available for Windows and for Linux.




Installation



All packages required are installed automatically with opsi version 4.0.5.

Configuration of the DHCP server



Configuration example of a Linux isc-dhcp-server:
filename "linux/pxelinux.0";

# this is the UEFI detection:
if substring (option vendor-class-identifier , 19,1 ) = "0" {
        log (info, "pxe client");
        filename "linux/pxelinux.0";
}
else if substring (option vendor-class-identifier , 19,1 ) = "6" {
        log (info, "efi32 client");
        filename "linux/pxelinux.cfg/elilo-x86.efi";
}
else if substring (option vendor-class-identifier , 19,1 ) = "7" {
        log (info, "efi64 client");
        filename "linux/pxelinux.cfg/elilo.efi";
}
else {
        log (info, concat ( "Unhandled vendor class Arch: ", substring (option
        vendor-class-identifier , 19,1 )));
}
See also: Fedora: PXE Boot Configuration
Example for the configuration of a Windows DHCP server 2012 R2



	
As standard for this variant the PXE boot file for x64 Uefi installations is entered as default. DHCP options 66 and 67 are adjusted as it follows:
066 Host name of the start server: <IP of the opsi server>
067 Name of the start file: linux/pxelinux.cfg/elilo.efi

	
To distinguish the Bios clients, a manufacturer class identifier (PXEClient:Arch:00000:UNDI:002001) must be defined on the DHCP server:



  Define manufacturer class
  Add new manufacturer class
  Edit class
    Display name: Legacy BIOS
    Asci: PXEClient:Arch:00000:UNDI:002001
	
The predefine options must be order under the manufacturer class:



  Set predefined options
  Options
    Option class: Legacy BIOS
    Add
  Adjust the option type
    Name: Legacy BIOS
    Data Type: String
    Code: 60
    Description: PXEClient Class Legacy BIOS
  Predefined options and values
    String: PXEClient
	
Define the DHCP policy that is assigned to the boot file for the PXE boot (BIOS) of the manufacturer class:



  New policy
    Policy Name: PXE BootFile Legacy BIOS
    continue
  Add conditions
    Criteria: Manufacturer class
    Operator: equals
    Value: Legacy BIOS
    add
  Would you like to configure an IP address range for the following policy: No
  Manufacturer class: DHCP Standard Options
    067 Name of the start file
    file input
      String value: linux/pxelinux.0
	
In the range options, there are two entries for the start file, which is linked to a policy in case a bios client is detected:



067 Name of the Start file: linux/pxelinux.cfg/elilo.efi        Policy: None
067 Name of the Start file: linux/pxelinux.0       Policy: PXE BootFile Legacy BIOS
Reference: http://www.pix.net/software/pxeboot/archive/pxespec.pdf


opsipxeconfd configuration



Since opsipxeconfd 4.0.7.7 it is possible to configure the path of the files used as templates for UEFI netboot in the configuration file opsipxeconfd.conf.
This is possible through the options uefi netboot config template x86
and uefi netboot config template x64.

Alternative elilo.uefi



The elilo.efi distributed by default is configured to wait indefinite time for information to perform a netboot.
In most scenarios this is not a problem because after an succesful installation the boot order will be automatically changed to boot from harddisk.
However the UEFI of some devices is unable to follow the UEFI specification in this regard and this is impossible.
There is an alternative elilo.efi that only waits a short time before attempting to boot from a local disk.
Unfortunately this does not work with all devices, especially when using NVME disks, and therefore is not the default.
If you want to use this alternative you can find this altarnative elilo.efi at https://download.uib.de/opsi4.1/misc/uefi/elilo_with_timeout/ and then can place it at your tftpboot directory (usually /tftpboot/linux/pxelinux.cfg/elilo.efi) replacing the original.

Criteria for a good BIOS



Whether an UEFI BIOS meets the requirements of a client management system like opsi depends on several criteria. These criteria do not estimate the qualitiy of the device, but only whether it can be managed by using netboot. This requires BIOS functions for UEFI netboot. Hier an example comparison:
Table 13. Example for UEFI BIOS differences
	 	Lenovo Twist	MS-Surface	Dell Venue 11
	UEFI pure
	√
	√
	√

	UEFI + CSM
	√
	x
	√

	Legacy
	√
	x
	√

	Both
	√
	x
	x

	UEFI Netboot
	√
	√
	√

	activatable entry
	√
	x
	√

	netboot without interaction
	√
	x
	√




In this case activatable entry means, that for the next reboot a netboot can be activated by standard software. netboot without interaction means, that an activated netboot will be executed at the next reboot without any require4d interaction (like pressing any key combinations, F12 key, …). If these preconditions are met, special opsi products can trigger a netboot. This feature is very important for automated processing. A product using this feature is for instance the localboot product for Windows and Linux opsi-uefi-netboot.

Technical details



The following sub chapters provide some information for scripted or manual handling of UEFI / GPT. For understanding how opsi works with UEFI/GPT, knowing these details is not required.
Technichal details about UEFI



UEFI Bootloader entries can be managed on Linux with the program efibootmgr.
List of boot entries:
efibootmgr -v
BootCurrent: 000D
Timeout: 0 seconds
BootOrder: 0012,0011,000D,0010,000B,0009,0007,0008,000A,000C
Boot0000  Setup
Boot0001  Boot Menu
(..)
Boot0007* USB CD        030a2400d23878bc820f604d8316c068ee79d25b86701296aa5a7848b66cd49dd3ba6a55
Boot0008* USB FDD       030a2400d23878bc820f604d8316c068ee79d25b6ff015a28830b543a8b8641009461e49
Boot0009* ATA HDD0      030a2500d23878bc820f604d8316c068ee79d25b91af625956449f41a7b91f4f892ab0f600
Boot000D* PCI LAN       030a2400d23878bc820f604d8316c068ee79d25b78a84aaf2b2afc4ea79cf5cc8f3d3803
Boot0010* ubuntu        HD(1,800,31801,faffb7b9-bdf9-4767-b475-0b8aee68d3ac)File(\EFI\ubuntu\grubx64.efi)
Boot0011* opsitempwinpe HD(4,3c72800,7cf801,dc1cea68-a296-4fb8-a97a-263227ed86f4)File(\EFI\boot\bootx64.efi)
Boot0012* Windows Boot Manager  HD(1,800,31801,5e4ffde2-3e25-42dd-b0f7-fcb7ee5d2b20)File(\EFI\Microsoft\Boot\bootmgfw.efi)WINDOWS.........x...B.C.D.O.B.J.E.C.T.=.{.9.d.e.a.8.6.2.c.-.5.c.d.d.-.4.e.7.0.-.a.c.c.1.-.f.3.2.b.3.4.4.d.4.7.9.5.}...a.............�...
On Windows UEFI boot loader entries can be managed with the program bcdedit.
List of boot entries:
bcdedit /enum firmware

Start-Manager für Firmware
- - - - - - - - - - - - - - -
Bezeichner              {fwbootmgr}
displayorder            {bootmgr}
                        {99a9f9be-9a98-11e3-b22f-806e6f6e6963}
                        {11a8b97e-99df-11e3-ae5c-b888e3e3cbb4}
                        {11a8b986-99df-11e3-ae5c-b888e3e3cbb4}
Windows-Start-Manager
- - - - - - - - - - - - - - -
Bezeichner              {bootmgr}
device                  partition=\Device\HarddiskVolume1
path                    \EFI\Microsoft\Boot\bootmgfw.efi
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b971-99df-11e3-ae5c-b888e3e3cbb4}
description             Setup
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b972-99df-11e3-ae5c-b888e3e3cbb4}
description             Boot Menu
(...)
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b978-99df-11e3-ae5c-b888e3e3cbb4}
description             USB CD
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b979-99df-11e3-ae5c-b888e3e3cbb4}
description             USB FDD
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b97a-99df-11e3-ae5c-b888e3e3cbb4}
description             ATA HDD0
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {11a8b97e-99df-11e3-ae5c-b888e3e3cbb4}
description             PCI LAN
Firmwareanwendung (101fffff)
- - - - - - - - - - - - - - -
Bezeichner              {99a9f9be-9a98-11e3-b22f-806e6f6e6963}
device                  partition=X:
path                    \EFI\boot\bootx64.efi
description             opsitempwinpe
Both programs can be used to create or delete entries, setting netxtboot or change the boot order.
Example: Setting the entry for the next boot:
	
Linux:



efibootmgr /bootnext <hexId>
	
Windows:



bcdedit /set {fwbootmgr} bootsequence <GUID>

Technichal details about GPT



GPT partitions know some new partition types. These are derived from the standard types. So the partition type for NTFS 07 becomes GPT 0700. The Linux partition types 82 and 83 become 8200 and 8300.
The list of known partition types can be shown:
# sgdisk -L
0700 Microsoft basic data  0c01 Microsoft reserved    2700 Windows RE
4100 PowerPC PReP boot     4200 Windows LDM data      4201 Windows LDM metadata
7501 IBM GPFS              7f00 ChromeOS kernel       7f01 ChromeOS root
7f02 ChromeOS reserved     8200 Linux swap            8300 Linux filesystem
8301 Linux reserved        8302 Linux /home           8400 Intel Rapid Start
8e00 Linux LVM             a500 FreeBSD disklabel     a501 FreeBSD boot
a502 FreeBSD swap          a503 FreeBSD UFS           a504 FreeBSD ZFS
a505 FreeBSD Vinum/RAID    a580 Midnight BSD data     a581 Midnight BSD boot
a582 Midnight BSD swap     a583 Midnight BSD UFS      a584 Midnight BSD ZFS
a585 Midnight BSD Vinum    a800 Apple UFS             a901 NetBSD swap
a902 NetBSD FFS            a903 NetBSD LFS            a904 NetBSD concatenated
a905 NetBSD encrypted      a906 NetBSD RAID           ab00 Apple boot
af00 Apple HFS/HFS+        af01 Apple RAID            af02 Apple RAID offline
af03 Apple label           af04 AppleTV recovery      af05 Apple Core Storage
be00 Solaris boot          bf00 Solaris root          bf01 Solaris /usr & Mac Z
bf02 Solaris swap          bf03 Solaris backup        bf04 Solaris /var
bf05 Solaris /home         bf06 Solaris alternate se  bf07 Solaris Reserved 1
bf08 Solaris Reserved 2    bf09 Solaris Reserved 3    bf0a Solaris Reserved 4
bf0b Solaris Reserved 5    c001 HP-UX data            c002 HP-UX service
ea00 Freedesktop $BOOT     eb00 Haiku BFS             ed00 Sony system partitio
ef00 EFI System            ef01 MBR partition scheme  ef02 BIOS boot partition
fb00 VMWare VMFS           fb01 VMWare reserved       fc00 VMWare kcore crash p
fd00 Linux RAID
Actually the partition types shown in this list are just short forms for the actual GUIDs that are used. The partition schema is named after that.
So:
0700 stands for Microsoft basic data and for the GUID EBD0A0A2-B9E5-4433-87C0-68B6B72699C7
A list of GUIDs can be found at Wikipedia:
https://de.wikipedia.org/wiki/GUID_Partition_Table#Partitionstyp-GUIDs
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
Furtheron the tool gdisk (and sgdisk, …) has an internal substitution table for unknown partition types. For the old partion type for vfat32 0b there is no corresponding 0b00. By passing the type 0b00 to sgdisk, it will be translated to 0700 without any message. Perhaps because of the consideration: vfat32 - this must be some Microsoft data partition …
GPT partitionen can have attributes.
List of the currently known attributes
	Value
	Description
	Attribute value (sgdisk --info / diskpart gpt attribute)

	nix
	nix
	0000000000000000

	0
	system partition
	0000000000000001

	1
	partition hidden from EFI
	0000000000000002

	2
	legacy boot flag (legacy BIOS bootable)
	0000000000000004

	60
	read-only
	1000000000000000

	62
	hidden
	4000000000000000

	63
	do not automount
	8000000000000000



On Linux the attributes can be set with sgdisk by the option -A, --attributes and using the short form. On Windows they can be set with diskpart by the command gpt attributes and using the long form.
Examples:
select disk 0
select partition 1
gpt attributes=0x0000000000000000
sgdisk -t 1:0700 --attributes 1:clear:63 --attributes 1:set:62 -p /dev/sda
show the partition table with -p , --print:
sgdisk -p /dev/sda
show detailled infos for a partition (1) with --info=:
sgdisk --info=1 /dev/sda

opsi UEFI/GPT Roadmap



	
UEFI 32 Bit support

	
other netboot capable UEFI boot loader (grub2)

	
Secureboot






9.7. opsi local image



Preconditions for the opsi extension opsi local image



This module currently is a
cofunding project.
Some preconditions have to be met to use this module. So it requires a special modules file to unlock this feature. This module file can be obtained by buying the extension module. For evaluation we also provide a temporary modules file without charge ( → mail to info@uib.de).
Further details on extension modules can be found in Section 9.1, “Activation of non free modules”.
If get the right to use opsi-local-image you als get the right to use the opsi extension opsi-vhd-reset (see Section 9.8, “opsi vhd reset”)
As a technical precondition opsi 4.0.3 is required with the packet versions:
Table 14. Required packets
	opsi packet	version
	opsi-linux-bootimage
	>= 20130207-1




Caution
For the product opsi-local-image-capture the share opsi_depot_rw must have write permission for pcpatch. Check your Samba configuration.


Introduction



Opsi offers a good basis for the automated installation and maintenance of Windows clients - especially when there is heterogeneous hardware to be managed. But the opsi standard installation technique based on installation packages is not fast enough to restore class room workstations in a short time, during breaks between two classes, for example. So this module is introducing a new concept, by saving the result of the package based installation as an image on a second partition. From this partition a recovery can be performed in a small amount of time.
	
Initial installation concluding with a local image backup

	
Fast recovery based on different techniques

	
System maintenance also concluding with a local image backup

	
Integration of captured installations to WIM

	
Integration of Linux clients into the Backup/Restore procedure.




Concept



The requirements of computer networks for education / trainings / class rooms differ from those of other networks. An important requirement, which will be discussed in the following, is the fast recovery of workstations to regain a clean and well known installation status, which has been spoiled by temporary use. This is required for workstations in class rooms, but also for computer pools at universities or any networks for commercial trainings.
The restore must be completed within a brief amount of time (about 15 minutes) and should also be able to switch the workstations to a different base installation (like Win XP / Win 7 / Linux). Also the continuous system maintenance by installing security updates must be included.
The standard approaches for the system maintenance have different advantages and disadvantages:
Table 15. Advantages and disadvantages from Unattended and Image based solutions
	 Feature 	 Unattend 	 Image
	Performance
	(-) slow
	(+) fast

	Sensitivity to heterogenous Hardware
	(+) low
	(-) high

	Network load
	(-) high
	(-) high




The concept of opsi-local-image tries to combine the advantages of the different approaches:
Table 16. opsi-local-image
	 Feature 	 Unattend
	Performance
	(+) fast

	Sensitivity to heterogeneous Hardware
	(+) low

	Network load
	(+) low




The main features of this combined concept are:
	
Initial Windows installation per PXE boot, based on packages with individual driver integration by using the opsi-Linux-Bootimage

	
Storing the result of the initial installation as a backup image on another partition on the local disc by using the opsi-Linux-Bootimage

	
Fast recovery of the installation by using the opsi-Linux-Bootimage

	
Maintenance of the local installation (security updates) by using the opsi system and storing the updated system to the local backup-image by using the opsi-Linux-Bootimage




Technical Concept



The workstation is being used with a static partition table of three or four partitions.:
	
Partition 1 (System)
holds the currently installed operating system (Windows / Linux).
The size of this partition is set during partitioning by the product opsi-local-image-prepare according to the particular property state.

	
Optional: Partition 2 (sysdata)
These are user data that are to sustain during the restore. The format is NTFS.
The size of this partition is set during partitioning by the product opsi-local-image-prepare according to the particular property state.

	
Partition 3 (winpe / swap)
The size of this partition is static and set to 4GB.
With Windows XP this partition is not used.
With NT6 (Windows 7) this partition is used during installation for the winpe (which is required for installation) and will not be visible during the operating state of the workstation.
With Linux this partition is used as swap.

	
Partition 4 (backup)
This partition is used to hold the backup images and their meta data.
The size of this partition is whatever is left by the other partitions.



The netboot products for the operating system installation use the first two or three partitions (XP the first one only) and do not interact with the last partition. So the backup images on the partition four are still available after the install of a new operating system.

Process steps



Initial Installation



The product opsi-local-image-prepare first generates the required static partitioning.
Figure 89. schema: static partitioning with opsi-local-image-prepare
[image: schema: static partitioning with opsi-local-image-prepare]


Then the products opsi-local-image-win* or others can install several operating systems with different client configuration and different application software.
Figure 90. schema: OS installation with opsi-local-image-win*
[image: schema: OS installation with opsi-local-image-win*]


Per default after the installation they will be backuped as image.
Figure 91. schema: image backup with opsi-local-image-backup
[image: schema: image backup with opsi-local-image-backup]



Restoring an image



Executing the product opsi-local-image-restore per default restores the image that has been generated recently. In case a different image is to be restored, the name of the image has to be specified on the property imagefile.
Figure 92. schema: image restore with opsi-local-image-restore
[image: schema: image restore with opsi-local-image-restore]



Deleting an image



Figure 93. Schema: Deleting an Image
[image: Schema: Deleteing an Image]


By executing the product opsi-local-image-delete the image that is specified by the property imagefile will be deleted.

Updating an image: automatic work flow



Figure 94. Schema: Steps of automatic image upgrade work flow
[image: Schema: Steps of automatic image upgrade work flow]


By executing the product opsi-local-image-restore with the property setting update_and_backup = true the following will happend:
	
the given Image (inclusive its opsi Meta-Data) will be restored,

	
on the basis of the restored Meta-Data it will be determined which product can be updated via opsi

	
the updates will also be deploy

	
from the updated system partition a new Image will be created through the backup.





The opsi-local-image products



The opsi-local-image products with version 4.1 and up are supporting systems with more than one harddisks. For more information to this topic please see here: the section called “Some hints to the NT6 netboot products (Win7 to Win 10)”
The packet opsi-local-image consists of several products:
The netboot product used for partitioning
	
opsi-local-image-prepare



The netboot products fr OS installation:
	
opsi-local-image-winxp

	
opsi-local-image-win7

	
opsi-local-image-win7-x64

	
opsi-local-image-win81

	
opsi-local-image-win81-x64

	
opsi-local-image-win10

	
opsi-local-image-win10-x64

	
opsi-local-image-ubuntu



The netboot products for the local image handling:
* opsi-local-image-backup
* opsi-local-image-restore
* opsi-local-image-delete
The local boot product for the process control:
	
opsi-local-image-backup-starter



To install those products please set the attribute active of the repository uib_local_image in the file /etc/opsi/opsi-product-updater.conf to True.
Executing opsi-product-updater -i -vv will then install the new products.
UEFI Compatibility



The opsi-local-image Products are UEFI enabled with some exceptions.
Not UEFI enabled are the following opsi-local-image products:

netboot product for partitioning



	
opsi-local-image-prepare
To create the static partitioning of the hard disc for all other products.
Properties:

	
ask_before_inst

	
Should we ask to the client before we start. (Default=true)

	
system_partition_size

	
The size of partition 1 (system). (Default = 30G)

	
data_partition_size

	
The size of partition 2 (data). If set to 0G, no partition will be created for data (default = 0G).

	
start_os_installation

	
selects a product for installing an operating system and to be started after the partitioning automatically.
When installing this product, the product properties imagefile and imagefiles_list of the product opsi-local-image-restore are deleted, for they have become invalid after the repartitioning.

	
delay_for_reboot

	
Seconds between the end of the work and the reboot to give the opsi-server time to create the netboot pipes.

	
minimal_backup_partition_size

	
This property is used for a plausibility check of the other partion size entries.
The size of the backup partition is given by:
Harddisk size - (system_partition_size + data_partition_size + winpe_partition_size).
Normally opsi-local-image is used to have the posibility to make local backup. Therefor we need a backup partition which is at least a littl bit larger than the system partition. If the resulting backup partition size is smaller than the value of minimal_backup_partition_size the process stops with an error.
(Default=55%)

	
winpe_partition_size

	
Size of the winpe partition (Default=4G)

	
multi_disk_mode

	
This property is used to select the target disk of the Windows installation.
Possible values are: "0","1","2","3","prefer_ssd","prefer_rotational"
The values "0","1","2","3" are the index of the hard disks ("0"= 1. harddisk)
The value "prefer_ssd" selects the first SSD.
The value "prefer_rotational" selects the first rotational (classic) disk.
This property is ignored on systems with only one disk.
Default = "0"

	
backup_partition_on_same_disk

	
true : create the backup partition on the system disk. false : create the backup partition on the first disk that is not the system disk.
This property is ignored on systems with only one disk.
Default = "true"






Important
Use this product only for the initial preparation of the disc for it deletes all existing images.


netboot products for the installation of Windows



The special netboot products for the installation of Windows are derived from the opsi standard products for windows installation. Therefore the structure and the driver integration are the same as with the standard. For details please refer to the opsi-getting-started manual.
The properties of the opsi-local-image Windows NT6 products are a subset of the properties of the standard opsi NT6 products. So you should have a look to the description of these products in chapter: the section called “Some hints to the NT6 netboot products (Win7 to Win 10)”.
You will find the missing properties for disk and partition information at the product opsi-local-image-prepare. These properties  will used by the other products to get informations about the disk and partition configuration.
	
ATTENTION

	
Do not change the property values of opsi-local-image-prepare after you preparded the disk, because the subsequent products will access these properties.

	
opsi-local-image-winxp
Installation of Windows XP. Uses the first partition only.
Administrator password is empty.

	
opsi-local-image-win7
Installation of Windows7 32 Bit.

	
opsi-local-image-win7-x64
Installation of Windows 7 64 Bit.

	
opsi-local-image-win81
Installation von Windows 8.1 32 Bit.

	
opsi-local-image-win81-x64
Installation von Windows 8.1 64 Bit.

	
opsi-local-image-win10
Installation von Windows 10 32 Bit.

	
opsi-local-image-win10-x64
Installation von Windows 10 64 Bit.






The following products have special properties for opsi-local-image:
	
backup_after_install with default value true. In this case this means, that after the OS installation at first the application software is being installed and then an image backup of the installation is generated. Furthermore the value of imageFile of the product opsi-local-image-restore will be deleted. So the generated backup will be named like the current netboot product (e.g. opsi-local-image-win7).

	
setup_after_install
Here one or more products can be listed, that after the OS installation shall be set to setup. This includes the dependencies of these products.




Netboot products for installing Linux



	
opsi-local-image-ubuntu
Installation of Ubuntu Linux 12.04/14.04 32Bit/64Bit.
The installed system has 2 users: root and user. The password for root will be set according to the product property root_password (default: linux123). For user the password will be set according to user_password (default: linux123).
Details of the installation can be configured with some product properties. The main product properties are:

	
askbeforeinst:
Has the start of the installation to be confirmed at the client? (default=true)

	
architecture:
architecture selection, affects the selection of the bootimage and the installation architecture  (default=64bit)

	
additional_packages:
list of additional packets to be installed, separated by blanks (default = '')

	
language:
language / locale to be installed  (default=de)

	
console_keymap
keyboard layout to be installed  (default=de-latin1-nodeadkeys)

	
timezone:
timezone to be set  (default=Europe/Berlin)

	
online_repository
the online repository to get the install packets from. Default is http://de.archive.ubuntu.com/ubuntu

	
proxy:
Proxystring (if required) with following syntax: http://<ip>:<port>  (default = '')

	
backup_after_install
(true/false) default = true. If true, after the installation an image backup will be generated.

	
setup_after_install
Here one or more products can be listed, that are to be set to setup and so will be installed after the OS installation. This also includes the dependencies of these products.

	
wget_and_execute:
Url (http) of a file to be fetched and executed at the end of the installation (default = '')

	
release:
Ubuntu release to be installed  (default="trusty")

	
install_opsi-client-agent:
The Linux opsi-client-agent is to be installed if true (this is a cofunding project and requires activation by /etc/opsi/modules)  (default=false)







Netboot product for backup and restore



	
opsi-local-image-backup
This product saves the OS which is installed on partition 1 as an image on partition 3. The image name will be set according to the property imageFile. If this is empty, the name of the opsi netboot product will be used, that currently is set to installed (e.g. opsi-local-image-winxp). This name also is set as the product property imagefile of the product opsi-local-image-restore, so that a following call of opsi-local-image-restore is going to restore this image. This name also will be added to the product property imagefiles_list of the product opsi-local-image-restore. So this property holds the list of all available images. Furthermore (for Windows products) the current opsi product settings will be saved together with the image, so they also can be restored.
The backup tool in use is partclone.
Properties:

	
askbeforeinst:
Has the start of the installation to be confirmed at the client? (default=false)

	
free_on_backup:
This is a read-only property which shows you the some infos about the backup partition: device, size, used, remaining, use in %, mount point

	
imagefile
name of the image file to be generated (default = empty = the name of the installed opsi-local-image operating system product will be used). The name may include spaces, but no umlauts (like ä, ö, ü). (In case of spaces they will internally be treated as underscore. So my image = my_image.

	
setup_after_install
Here one or more products can be listed, that are to be set to setup and so will be installed after tis product is finished. This also includes the dependencies of these products.




	
opsi-local-image-restore
This product restores the image defined by the product property imagefile to partition 1 and makes it bootable. Furthermore (for Windows products) the product settings connected with this image will be restored.
Properties:

	
askbeforeinst:
Has the start of the installation to be confirmed at the client? (default=true)

	
architecture:
architecture selection, affects the selection of the bootimage and the installation architecture  (default=64bit)

	
imagefile
Name of the image to be restored. The value of this property has been set automatically by the last backup. The list of available images is to be found in the property imagefiles_list.

	
imagefiles_list
List of all available images. This list is managed automatically by the backup product.

	
update_and_backup
(true/false) default = false. If set to true, after the restore all localboot products, that have a different version on the server, will be set to setup and the product opsi-local-image-backup-starter will be set to once. This results in installing all available updates of the products and then automatically generating a backup.

	
setup_after_restore
can be set to one or multiple opsi products, that after the restore are to be set to setup, so that after the reboot they will execute automatically. The default is set to the product windomain to add the restored client to the Windows domain again.




	
opsi-local-image-delete
This product deletes the image given by the product property imagefile from the backup partition

	
imagefile
Name of the image to be deleted (default = empty, results in an error when executing)







Localboot product for process control



	
opsi-local-image-backup-starter
This localboot product sets the Netboot product opsi-local-image-backup to setup and reboots the client. This product has a very low priority of -98. This means, that all usual localboot products will be installed first. This feature can be used as follows:
For a client the following products are set to setup:

	
The product opsi-local-image-restore

	
all localboot products that are outdated

	
The product opsi-local-image-backup-starter



This results in the following process order:
	
restore of the image

	
update of the restored operating system (all outdated products are updated)

	
backup of the updated  operating system





Extended opsi service methods



With this extension the clients of a training classroom can be listed as a opsi-client group. The following extensions have been implemented to provide comfortable collective action management for all clients of a classroom:
	
setProductActionRequestForHostGroup
Parameter: hostGroupId, productId, actionRequest
allows to start a defined action (like image restore) for all members of a group (e.g. clients of a training classroom).

	
setProductPropertyForHostGroup
Parameter: productId propertyId propertyValue hostGroupId
allows to set a given product property (like which image is to be restored) for all members of a group (e.g. clients of a training classroom).

	
getPossibleImagefileValuesForHostGroup
Parameter: groupId
gets the list of present imagefile names that have been generated by opsi-local-image-backup on all members of the group. If a special image (like opsi-local-image-winxp) is not available on one or more of the clients, it will not be on the returned list.



These methods will be integrated into the opsi standard packets at a later date. Until then these extensions are available by executing the file 40_groupActions.conf, which is part of this release. Please copy it with  root rights to /etc/opsi/backendManager/extend.d and execute:
opsi-setup --set-rights /etc/opsi.

Backup partition



The backup partion is (with MBR BIOS without data partition and on one disk systems) the third partition of the system disk.
On systems with more than one disk the system disk may be configured by the
opsi-local-image-prepare property: multi_disk_mode.
On systems with more than one disk the backup partiton may according to the property backup_partition_on_same_disk the first partition of the first non system disk.
It contains:
	
The file master.log with information about all image operations performed. This logfile is transfered to the bootimage logs.

	
The image files
The image directories have the same name as the image and hold the image and the meta files of the image.
To give an idea about file sizes, here as an example the sizes of different image files with OS and standard software (Libreoffice, Adobereader, firefox, thunderbird, javavm, flashplayer):

	
opsi-local-image-ubuntu: 3.6G

	
opsi-local-image-winxp: 6.4G

	
opsi-local-image-win7: 9.4G

	
opsi-local-image-win7-x64: 13G




Capture Images (WIM) generating and distribution



Capture Images (WIM) Introduction



Starting with NT6 (Vista) Microsoft has introduced the new image format Windows Imaging Format (WIM) for installation.
A WIM image is not a disc or partition image anymore, but a file and meta archive. A WIM file can hold several images. The standard installation of a NT6 client is based on a setup.exe extracting an installation image from the file install.wim which is then to be configured and equipped with additional drivers.
From an existing client the Windows operating system including the installed software and configuration can be extracted and saved in form of a WIM. Then such a WIM can be the starting point for a new installation.

Capture Images (WIM) Components



In order to create a captured WIM image you need with product version 4.1 and up only the product:
	
opsi-local-image-wim-capture



The older products:
	
opsi-local-image-capture

	
opsi-local-image-sysprep



are obsolete and should be removed.
In addition there are the target products which should be used to hold the captured images:
	
opsi-local-image-win7-capture

	
opsi-local-image-win7-x64-capture

	
opsi-local-image-win81-capture

	
opsi-local-image-win81-x64-capture

	
opsi-local-image-win10-capture

	
opsi-local-image-win10-x64-capture




Capture Images (WIM) Processing



The configuration and process sequence of the product opsi-local-image-wim-capture is very similar to the product opsi-wim-capture which is described over here: Section 9.4, “opsi WIM Capture”. A detailed description of the properies of the product opsi-wim-capture is placed here: the section called “Main Product opsi-wim-capture”.
The main difference between these both products is the way how the backup and restore of the target partition is done:
opsi-local-image-wim-capture use the products. opsi-local-image-backup/opsi-local-image-restore.
For the same purpose opsi-wim-capture use the product opsi-clonezilla.
TIPP::opsi-local-image-wim-capture will fail if you setup your system with a data partition. Install your master system with the opsi-local-image-prepare property data_partition_size=0.


Restore from opsi metadata from Images



Restore of the opsi metadata from installed Products
The Problem:
If you reinstall a Windows with opsi, e.g. win7-x64, then during the installation of the opsi-client-agent all the local Boot products, which in this computer were previously marked as` installed`, will automatically be set to setup and thus reinstalled later.
This can not be completely carried out exactly in the rolling of a captured Image.
In the image is the backup from the opsi data that was stored during the capture process. This will be discovered when you install the opsi-client-agent and re-imported into the depot server. With it the products that were installed in the captured Image, now are on the newly installed computer mark as installed.
Should now all the products that are mark as installed set to` setup`, this would imply that all products installed already in the image will be re-installed. This is not desirable.
By the restoration of the opsi metadata of installed products there are two alternatives available now with opsi 4.0.7:
	
Alternative 1:
Restoring the metadata and retention of setup -Action Requests.
Products that are mark as installed will not be set to setup.
This is the default, and the behavior before opsi 4.0.7

	
Alternative 2:
Restoring the metadata. Products that are mark as installed will be set to setup except those which were contained in the restore metadata.



Alternative 1
By the deploy from a captured image, after the install, only the products which were already from the beginning of the OS-install set to setup will be automatically installed. These can be done through your intervention, or through the property setup_after_install.
Therefore only the products which stood at setup before installing the operating system will be installed in this case.
This is the default, and the behavior before opsi 4.0.7
Alternative 2
Variant 2 behaves similar to what would be the case of an installation without a captured Image:
* Restore of the metadata.
* Products that are mark as installed are then set to setup except those which were contained in the restore metadata.
This behavior is only available since opsi 4.0.7 and is not the default. Option 2 is made possible by enhancements to the opsi script and is part of the opsi-client-agent of 4.0.7.
In order to be able to apply this behavior a config must be set on ( Host parameters) :
The Boolean configuration entry: clientconfig.capture.switch_installed_products_to_setup. If the entry for this client has the value true then variant 2 is applied, otherwise variant 1
About this host parameter can then specific client events activated or deactivated.
The host parameter can be applied using the opsi-configed or opsi-admin.
To create the host parameter over the opsi-admin the following commands are to be executed on the’opsi-config-server':
opsi-admin -d method config_createBool clientconfig.capture.switch_installed_products_to_setup "capture.switch_installed_products_to_setup" true
With that you set for all computers Alternative 2.
To create the host parameter over the opsi-server select there Server Configuration / ClientConfig / And on the right side with the right mouse button: Add Boolean configuration entry.

Helper product opsi-wim-info



The product opsi-wim-info is useful to gather information about the images that are stored inside a install.wim. These information is written to the logfile.
Properties:
	
target_produkt
ProductId of the product where the install.wim file is searched.




Creating an own Ubuntu proxy



For a helpful manual for creating an own Ubuntu proxy refer to:
http://wiki.ubuntuusers.de/Lokale_Paketquellen/Apt-Cacher-ng
http://www.gambaru.de/blog/2011/10/26/apt-cacher-ng-ein-proxy-server-fur-debian-und-ubuntu/


9.8. opsi vhd reset



Preconditions for the opsi extension 'opsi vhd reset



This module currently is a
cofunding project.
Some preconditions have to be met to use this module. So it requires a special modules file to activate this feature. This module file can be obtained by buying the extension module. For evaluation purposes we also provide a temporary modules file free of charge ( → mail to info@uib.de).
This extension is bundled with the extension opsi-local-image, which means that in order to use it, you need an activation for opsi-local-image.
If you have one, you may use it without any additional costs.
As a technical precondition opsi >= 4.0.7 is required with the package versions:
Table 17. Required packages
	opsi package	version
	opsi-winst
	>= 4.12.0.13





Introduction



The requirements of computer networks for education / trainings / class rooms differ from those of other networks. An important requirement, is the fast recovery of workstations to regain a clean and well known installation status, which has been altered by temporary use.
opsi has with the extension opsi-local-image the solution for this problem.
With the extension opsi-vhd-reset there is another solution which have a different technical approach.
So both solutions have their specific advantages and disadvantages.
The technical approach here is:
* Installation of a windows 10 into a vhd container
* Snapshot of the original installation by creating a child vhd, which records any future changes.
* Fast recovery by replacing the old child vhd with a new empty one.
* Upgrade of the initial installation by merging updates from the child VHD to the parent VHD
* In a nutshell we use the well known snapshot features found in virtualization engines just without virtualization.

Process steps



Initial Installation



By running the netboot product opsi-vhd-win10-x64 a Windows 10 will be installed directly into a VHD file.
Figure 95. Scheme: Initial Installation 1: Creation of the VHD
[image: Scheme: Initial installation with opsi-vhd-win10-x64]


Figure 96. Scheme: Initial Installation 2: Windows Installation
[image: Scheme: Initial installation with opsi-vhd-win10-x64]


The next step is the installation of the application software.
Figure 97. Scheme: Initial Installation 3: Software Installation
[image: Scheme: Initial installation with opsi-vhd-win10-x64]


By running the localboot product opsi-vhd-control the following actions will be done:
	
The opsi meta data (which products are installed on which version) will be stored on the client.

	
The Windows-PE partition will be activated for the next boot and reboot is triggered.



The product opsi-vhd-control has a very low installation sequence priority (-97). Therefore this product will start after all the normal applications software is installed. So it’s possible to switch this product to setup together with the applications.
Figure 98. Scheme: Initial Installation 4: Activating the PE partition
[image: Scheme: Initial installation with opsi-vhd-win10-x64]


After the Windows-PE boots, the second part of opsi-vhd-control starts to work and creates a child VHD which seals the initial installation and records all further changes.
Figure 99. Scheme: opsi-vhd-control: Sealing the initial installation
[image: Schema: Sealing the inital installation with opsi-vhd-control]


All changes while working are stored in the child VHD.
Figure 100. Scheme: Working with the sealed system
[image: Schema: Working with the 'sealed' system]



Fast recovery



In order to recover the sealed installation you have to run opsi-vhd-control again. The stored opsi-meta data will be restored to the opsi server and a reboot to the Windows-PE is performed.
Figure 101. Scheme: opsi-vhd-control: Recovery of the initial installation 1
[image: Scheme: Recovery of the inital installation with opsi-vhd-control 1]


From the Windows-PE the child VHD is replaced by a new empty one and we can reboot to the cleaned initial installation.
Figure 102. Scheme: opsi-vhd-control: Recovery of the initial installation 2
[image: Scheme: Recovery of the inital installation with opsi-vhd-control 2]



Updating an image using opsi-vhd-auto-upgrade



In order to update the initial installation with patches and software updates you need to start the following workflow:
	
Recover the initial installation with opsi-vhd-control

	
Install all the updates (They will be stored in the child VHD)

	
Integrate the changes in the child to the parent by running opsi-vhd-control with the property upgrade=true. This will also store the new meta data to the client for the next recovery.



You may run all these processes fully automatically controled by starting the product opsi-vhd-auto-upgrade.


The opsi-vhd products



The extension opsi-vhd-reset consists of the following products:
The netboot product for the initial installation:
	
opsi-vhd-win10-x64



The localboot product to control the creation, the exchange and merge of the child VHD’s:
	
opsi-vhd-control



The localboot product to control the full automatic upgrade of the parent VHD.
	
opsi-vhd-auto-upgrade



UEFI Compatibility



All opsi-vhd-reset products are UEFI compatible.

The opsi netboot product opsi-vhd-win10-x64 and its properties



This netboot products are very similar to the standard netboot products (4.1.0) for the Windows installation.
After installation on the server it has to be filled like it’s described for the windows netboot products in the getting-started manual.
Also most of the properties are equal.
The following properties are special for opsi-vhd-reset:
	
windows_vhd_size
This propery gives the size of the base (parent) VHD in absolute sizes or in percent of the disk size minus the size of the windows PE partition.
The default value of 100% will be shortened to 80% in order to get space for the child VHD. If you give any other value which lead to a size of above 80% it will be also shortened to 80%.
This property replaces the standard property windows_partition_size
(Default = 100%)

	
installto:
The value is vhd and you should not try to change this.



The following standard properties are not existing at opsi-vhd:
	
windows_partition_size, windows_partition_label
see above. The Label of the partition which holds the VHD files is CONTAINER.

	
data_partition_size, data_partition_letter, data_partition_create, data_partition_preserve
There is no possibility for a data partitions in opsi-vhd-reset currently.

	
boot_partition_size, boot_partition_letter, boot_partition_label
There is no possibility for a boot partitions in opsi-vhd-reset currently.

	
pre_format_system_partitions, preserve_winpe_partition
The value for this property is always true at opsi-vhd-reset.




The opsi localboot product opsi-vhd-control and its properties



The product opsi-vhd-control has a very low installation sequence priority (-96). Therefore this product will start after all the normal applications software is installed. So it’s possible to switch this product to setup together with the applications.
	
disabled
This property is for debugging.
If true no actions will be done.
Default = false

	
upgrade
If true: Merge the changes that are collected in the child VHD to the parent VHD. Afterwards replace the child VHD with an empty one.
If false: Replace the child VHD with an empty one.
At the end of a successful upgrade run this property will switch back to false.
Default = false

	
stop_on_no_network_in_pe
This property is for debugging.
If true: Abort with an error message if there is no network connection to the server, so it’s possible to analyze where the problem is.
Default = false




The opsi localboot product opsi-vhd-auto-upgrade and its properties



The product opsi-vhd-auto-upgrade has a very low installation sequence priority (-97). It is lower than opsi-vhd-control so opsi-vhd-control can be controled by opsi-vhd-auto-upgrade
	
disabled
This property is for debugging.
If true no actions will be done.
Default = false

	
rebootflag
Please do not touch while running. Should be "0" before start.

	
stop_after_step
This property is for debugging.
If not "0" then it is the number of reboots after we need a debugging stop.
Default = 0




Known Problems and Restrictions



	
There is also an experimental 32 Bit version. But a bug in the merge command of the windows PE 32 bit diskpart.exe restricts the use of this version. So it stays in experimental (at least for the time being).

	
Implementations for Windows 8.1 or Windows 7 Enterprise are possible. We’ll build them at request. Windows 7 Professional does not support installations to VHD.

	
It’s known that the last Windows 10 Release Upgrade (1709) crashes on VHD based installations. So it’s possible that this is a principle restriction.
(https://www.heise.de/newsticker/meldung/VHD-Boot-Windows-Update-demoliert-Aktivierung-3806023.html)






9.9. opsi License Management



Conditions for using the opsi License Management extension



This module currently is a co-funded extension and therefore not free.
For more details see Section 9.1, “Activation of non free modules”.

Overview



Main features



The opsi license management module is designed for managing the software licenses for proprietary software installed on opsi clients.
The main features are:
	
Providing the license management functions from within the opsi-configed management interface.

	
Automated supplying, assignment, and reservation of license keys.

	
The following different types of licenses can be managed:

	
standard single license (one installation, possibly identified by a specific license key, on one computer),

	
volume (or campus) licenses (a certain number or an unlimited number of installations for which license keys are provided if required)

	
client bound license (a single license only valid for a specific client, e.g. OEM licenses),

	
concurrent licenses (managed by a license server)




	
License keys are released when deinstalling software.

	
Licenses can be manually edited, including licenses that were not assigned by an opsi installation.

	
Reporting functions that use the software inventory to gather data on licenses installed by opsi and non-opsi software, and then match the opsi and non-opsi data.




Overview database model



In the world of non free software license management ist a complex subject. To represent it, opsi uses a relatively complex data base model.
The involved tables in the opsi database are sketched in the following diagram. The meaning of the different relations should peu à peu become clear by the following
explanations of the opsi license management concepts and usages.
The blue line in the diagram marks the border of the tables which are automatically generated by the software audit functions and the data
which are constructed especially for license management. Only the license pool table has connections to both spheres. This demonstrates the importance of this construct.
Figure 103. Data base tables relevant for license management
[image: Data base tables relevant for license management]



Invoking the license management from the opsi-configed



A separate window in the opsi-configed management GUI is used for the license management.
It is available by pressing the button "licenses" at the top right corner of the opsi-configed management GUI.  If the license management module is disabled, #
then a note will be displayed.(see the entry for "license management" in the main menu under /Help/Modules).
Figure 104. opsi-configed: Menu bar with the button "licenses" (rightmost)
[image: top right of opsi-configed interface: Menu bar with button licenses (rightmost)]


The opsi license management module is a co-financed opsi extension module.


license pools



What is a license pool?



A license pool has to be defined for every type of license.
The license pools represent the use cases of licenses, and provide the license keys for installing the licensed software on the clients.
The license pool is the central element of the opsi license management.
Therefore, the first tab of the opsi-configed license management window is the management license pools tab.
Figure 105. License management: tab "License pools" from the license management window
[image: License management: Tab license-pools]



Administration of license pools



At the top of the license pools window is a table of available license pools.
The input field description can be edited.
More editing functions are available from the context menu (right mouse button). The most important is: creating a {New license-pool}.
When inserting a new line into the table, a (unique) licensePoolId must be entered, e.g. softprod_pool.
Please do not use special characters. When saving the new entry, any capitals will be converted to lower case.
The new licensePoolId cannot be changed after it is saved, because it is used as the master key.
The table at the top of the window contains the available license pools.
The context menu provides several functions for managing license pools, especially to insert a {New license-pool}.
After any changes to the data in the window, the green check checkmark changes to red and the cancel option is enabled.
The changes can be saved by clicking the red checkmark, or changes can be cancelled by clicking the cancel option (also available from the context menu).

license pools and opsi-products



The standard method to manage licenses is to include the license, from a single license pool, when installing the software (i.e. using the opsi-product installation software to install Acrobat Writer).
Not unusal is the case that multiple products share the same license pool. This is normal if these products are variants of the same same software. For example: the products win10-x64 and opsi-local-image-win10-x64 using the license pool p_win10-x64).
A more complicated situation (which you should avoid) might occur while installing software that requires licenses from several license pools (i.e. "Designer tools" which installs Adobe Photoshop as well as Acrobat Writer). + In this case, the opsi-product requests licenses from several license pools. At the same time, there might be other opsi-products requesting licenses from the same license pools
(e.g. the Acrobat Writer license pool).
So the relation between opsi-products and license pools can be ambiguous. This can be avoided by using unambiguous policies when building opsi-products.
Tip
Do not integrate more than one license needing software in one opsi product. Assign this product to the license pool which hold the licenses for this product. (Wthout this assignment the license management will not work together with the opsi WAN extenstion. see also chapter Section 9.10, “opsi WAN/VPN extension” )

The second part of the license pool tab manages the relationship between license pools and productIds  (from opsi-products).
All tables in the license management module can have their columns sorted by clicking on the column header. Clicking again inverts the order (ascending or descending).
Sorting can be used to display the connections between opsi-products and license pools.
Sorting by opsi-product displays all license pools connected to a certain opsi-product, whereas sorting by license pool shows which opsi-products are connected to a license pool.
The context menu provides an option for inserting a new relationship between opsi-product and license pool.
An empty row is inserted on top of the table. Clicking into the field licensePoolId or productId displays a dropdown with the available options.

license pools and Windows software IDs



The third section of the license pools tab displays the Windows software IDs connected to the currently selected license pool (in the first section of the tab).
A Windows software ID is an unique key identifying a software packet as detected by opsi software audit.
These software IDs are also used by the opsi software inventory module to identify which software is actually installed on the client.
The assignment of software IDs to the current license pool can be changed by setting or removing the selection (ctrl-click or shift-click).
From the context menu the display can be toggled between showing all available software IDs detected by the software audit or just showing the software IDs connected to the current license pool.
Displaying the relationship between Software IDs and license pools is useful for comparing the number of actual software installations
(detected by the software audit) with the number of legal installations available from the license pool (tab "Statistics", see below).


Setting up licenses



Setting up a license for being provided by a license pool requires several steps. The second tab New license is for setting up and editing licenses.
On top is the table of available license pools to select the license pool the new license is to be assigned to.
So the first step is to select the license pool for the new license.
Figure 106. License management: tab "New license" from the license management window
[image: Tab 'New license']


Before continuing with the next steps, some basic concepts and terms of license management have to be introduced:
Some aspects and terms of the license concept



Licensing means  the actual deployment of a permission to use a software by installing the software on a client. This might (but doesn’t have to) include the use of a special license key (license key).
The software license is the permission to install and use a software as defined by the license contract.
Within the opsi database a software license is identified by a softwareLicenseId.
There are several types of software licenses (volume license, OEM license, time limited license etc.) which are the different license models.
A software license is based on a license contract (license contract), which is defining and documenting the juristic aspects of the license.
A license option defines the option to use a software license for a selected license pool.
Within opsi the license option is defined by a combination of softwareLicenseId and licensePoolId.
This includes the actual licenseKey (if required).
Finally the license usage documents the use of a license by assigning the license option to a client.
This is the legal and implemented licensing of a software defined by the combination of softwareLicenseId, licensePoolId, the unique client name hostId and (if required) the licenseKey.

Registering the license contract



After selecting the license pool for the new license option, the next step is to register the license contract the license is based on.
The section "Select or enter license contract" (from tab "New license") defaults to a standard contract with ID default.
The default setting can be used if the license contract is implied by purchasing the software or the contract is documented some other way.
Otherwise the contract can be selected from the table or a new contract can be registered from the context menu.
The license contract dataset comes with data fields for partner, conclusion date, notification date and expiration date.
The entry field notes can hold some additional notes like the location where the contract document is kept.
The unique contract ID (licenseContractId) is for identifiying the license contract in the license management database.
When entering a new license contract, a new unique ID is constructed based on the current date and time stamp.
This ID can be changed before saving the new data set.
When saving the data, the opsi service checks whether the ID is unique.
In case it is not, a new ID is generated and cannot be changed any more.

Configuring the license model



The third part of the Tab "New license" is named "Configure license" and is for registering the license model and license data.
Several types of license models are available:
	
Standard license

	
Volume license

	
OEM license

	
Concurrent license



Each Option is represented by a button.
Clicking a button, the form is filled with data for that type of license model.
The license model Standard license means, that this license is valid for a single installation on an arbitrary client.
So the license key (if any) is valid for a single installation only.
A Volume license is valid for a certain number n of installations.
In this case the optional license key is used for that number of installations.
Setting n = 0 means, that the number of installations is unlimited within the same network (campus license).
In case of an OEM license, the license is valid for a dedicated client only.
Clients that come with a vendor pre installed operating system often have this type of license for the pre installed OS and software packets.
The Concurrent license means that a certain number of licenses is available for a variable set of clients.
Within opsi this situation is handled like an unlimited Volume license.
The number of actual installations in use has to be managed by some external license server.
After clicking a button, the automatic generated data include a generated unique ID (derived from date and time stamp). This ID can be changed as desired.
It depends on the type of license model, which of the other fields can or cannot be changed.
The field "Expiration date" defines the expiration date of the license in a technical sense.
(This column of the license is for future use).

Saving the data



The "Send" button sends the data to the opsi service to save them permanently to the opsi data base (if they are consistent and no errors occur).
While proceeding this, data records will be generated for the new software license based on the selected software contract and the new license option assigned to that.
The list of available license options at the bottom of the window will be refreshed with the new license option selected. If necessary, the license key can be changed then.


Editing licenses



For ninety percent of the use cases editing the license data with the tabs "License pools" and "New license" will do.
But there might be some special cases affording to edit license data more specific and explicit.
Therefore the tab "Edit licenses" presents the license data in three tables, representing the internal data structure and allowing to adapt the data for some special cases.
Figure 107. License management: tab "Edit licenses" from the license management window
[image: License management: tab 'Lizenzierungen bearbeiten']


Based on this direct data access, the following chapter shows how to configure a special license, like the Microsoft Vista or Windows 7 professional downgrade option for installing Windows XP.
Example downgrade option



Downgrade option means, that instead of the software purchased, also the preceding version can be installed.
For instance installing Windows XP based on a Windows Vista license.
In this case, the license key also can be used for an installation, which it wasn’t meant for in the first place.
In the opsi license model this case can be configured like this:
From the tab "New license" the Vista license is to be registered as usual, resulting in a new license option, which is displayed in the list of license options at the bottom of the window.
This new license option is based on a new software license identified by softwareLicenseId.
Figure 108. License management: copying the license-ID to the license options from the context menu
[image: License management: copying the licene ID]


This softwareLicenseId  is needed for the further configuration steps. You can keep it in mind or copy it with drag&drop.
You can as well look for the ID in the "Available license options" list of the "Edit licenses" tab.
The context menu supports copying the ID.
The important step now is to connect this softwareLicenseId to an additional license pool.
Therefore a new record has to be registered from the "Available license options" table of the "Edit licenses" tab.
The fields of the new record have to be filled with the softwareLicenseId and the ID of the additional license pool (in this case the pool for Windows XP licenses).
For installing Windows XP based on this license, an applicable Windows XP license key already in use by another client has to be added.
After saving the new record, there are two different license options based on the same software license!
The opsi service counts the use of either of them as an installation deducting from the maximum installation count.
So in case of a downgrade license (with maxInstallations = 1), the opsi service delivers a license key for a Vista installation or for a XP installation, but not for both of them.


Assignment and release of licenses



Using a license option by installing the software on a client results in the actual licensing (which is the use of the license option).
In the opsi context installations are done script based and automatically, which is the client running the Winst script invokes some calls to the central opsi service.
The following chapters introduce some of these service calls, which are relevant for the license management.
For further information about Winst and opsi commands see the documentation on Winst and opsi.
opsi service calls for requesting and releasing a license



The opsi service call for requesting a license option and retrieving the license key for doing the installation (as transmitted by a Winst script) is
getAndAssignSoftwareLicenseKey.
The parameters to be passed are the client hostID (hostID of the client where the software is to be installed)
and the ID of the license pool the license is requested from.
Instead of the licensePoolId also an opsi-product ID or a Windows Software ID can be passed, if they are connected to a license pool within the opsi license management.
The use of a license option can be released by calling deleteSoftwareLicenseUsage.
Again the parameters to be passed are the hostID and alternatively the licensePoolId, productID or Windows Software ID.
Calling this method releases the license option and returns it to the pool of available license options.
For the complete documentation of opsi service calls see below.

opsi-winst script calls for requesting and releasing of licenses



The opsi-winst provides the client related calls as opsi-winst commands.
A opsi-winst script can make a call to the function  DemandLicenseKey
to get a license key for installing. The parameters to be passed are:
DemandLicenseKey (poolId [, productId [, windowsSoftwareId]])
The return value is the license key (can be empty) as a string:
set $mykey$ = DemandLicenseKey ("pool_office2007")
The returned license key can be used by other script command for installing the software.
For releasing a license option and license key (as to be used in a opsi-winst
deinstallation script) the command FreeLicense is available with the following syntax:
FreeLicense (poolId [, productId [, windowsSoftwareId]])
The boolean function opsiLicenseManagementEnabled can be used to check
whether the opsi license management is enabled and can be used for scripting:
if opsiLicenseManagementEnabled
        set $mykey$ = DemandLicenseKey ("pool_office2007")
else
        set $mykey$ = IniVar("productkey")
The service calls can be invoked from the command line tool opsi-admin.
Parameters marked with * are optional.

License contracts



method createLicenseContract(*licenseContractId, *partner, *conclusionDate, *notificationDate, *expirationDate, *notes)
This method registers a new license contract record with the ID licenseContractId.
If no licenseContractId is passed, it will be generated automatically.
Using the licenseContractId of an existing contract, this contract can be edited.
The parameters partner (co-contractor) and notes are strings and can be filled with any information desired.
The parameters conclusionDate (date of conclusion of the contract), notificationDate (date for a reminder) and expirationDate (expiration date of the contract) are passed in the format YYYY-MM-DD (e.g. 2009-05-18).
The method returns the licenseContractId of the contract.
        set $mykey$ = DemandLicenseKey ("pool_office2007")
else
        set $mykey$ = IniVar("productkey")
With the string returning functions getLastServiceErrorClass and
getLastServiceErrorMessage error states can be detected and handled,
e.g. if there is no license available:
if getLastServiceErrorClass = "None"
        comment "no error"
endif
The error class LicenseMissingError is returned if a license has been
demanded but there is no license available.
The error class LicenseConfigurationError is returned if the current
configuration does not allow assignment of a license pool to
a software.
This could be the case if either no assignment exists or no distinct
assignment is possible.

Manual administration of license use



Within the opsi config editor, the licenses registered by the opsi service are listed on the tab "Licenses usage":
Figure 109. License management: tab "Licenses usage" from the license management window
[image: License management: tab Licenses usage]


From this tab, licenses also can be managed manually.
This can be useful, if a licensed software is not integrated into the opsi deployment, but installed manually on just a few clients.
These are the functions for manual license management in detail:
	
"Delete row" (available from the context menu) releases a license option.

	
"Reserve license for client" at the bottom of the window is to create a license reservation for a dedicated client.

	
By editing the field "licenseKey" from the "Usage of licenses" table, the license key can be changed.




Preservation and deletion of license usages



If a software packet is reinstalled, the call to the opsi-winst function DemandLicenseKey will return the same license option and license key as had been used before.
In case this is not favoured, the former license option has to be released by calling the opsi-winst command FreeLicense,
or by calling the opsi service call deleteSoftwareLicenseUsage or deleting the license use manually.
So, if not explicitly deleted, the license usages are preserved when reinstalling a client.
For releasing the licenses, they can be deleted from the tab "Licenses usage" or
can be deleted by the service call deleteAllSoftwareLicenseUsages passing
the client host name to delete the license uses from.


Reconciliation with the software inventory



The tab "Reconciliation" lists for each client and for each license pool
whether a use of this license pool is registered by opsi ("used_by_opsi") and
if the software inventory (swaudit) on that client reported a software, that requires a license option from that pool (Swinventory_used).
To evaluate the results from swaudit, the relevant Software IDs (as found in the client registry) have to be associated with the appropriate license pool (tab "License pools").
When data matching with the software inventory, the license management counts not more than one license per client and license pool.
So if the license pool office2010 is connected with ten different patterns from software inventory, indicating that office2010 is installed on this client,
this is (regarding the licenses usage count) counted as a single installation, although all of the detection patterns might to be found on the client.
Figure 110. License management: tab "Reconciliation" (data matching) with the inventory
[image: "License management: tab "Reconciliation" (data matching) with the inventory]


As usual, this table can be copied as Drag & Drop and for instance pasted to a spreadsheet program.
If the opsi-configed process has got the required access rights (running standalone and not from the applet), the table also can be printed from the context menu.
By virtue of the config  configed.license_inventory_extradisplayfields which can be edited in the host parameter page of the server you may add extra data fields for each client to the table.

Licenses usage overview



The tab "Statistics" displays a summary of the different license pools,
showing the total number of license options (license_options) and how many of them are in use (used_by_opsi) or still available (remaining opsi).
Figure 111. License management: tab "Statistics" from the license management window
[image: License management: tab Statistics from the license management window]


In addition to the number of license uses registered by opsi (used by opsi)
and the currently available licenses (remaining…) the ovierview also shows the total number of detected installations, that require a license (SWinventory_used).
The data from the column SWinventory_used are based on the registry scans from the opsi-product  swaudit
and the assignment of the Windows software IDs (as they are found in the registry) to the license pools (as registered with the opsi license management
(tab "License pools", see the section called “license pools”).
From the context menu the table can be printed (because of restricted access rights not available from the applet),
with drag&drop data can be copied to e.g. a spreadsheet.
In case of downgrade option



If a downgrade option has been configured (see the section called “Example downgrade option”),
this appears in the overview and statistics like this:
A single downgrade license results in a license option for at least two different license pools,
but only one of them can be requested for an installation.
So using a downgrade license option decreases the number of available license options (remaining_opsi) in each of the license pools concerned by that downgrade option by 1.
So this looks like a single installation reduces the number of available license options by 2, which, in this case, actually is the fact.


Service methods for license management



The service methods for license management can be called from the command line tool opsi-admin.
So they are accessible for scripting, e.g. to read license keys from a file.
Examples can be found in the products license-test-….opsi
from http://download.uib.de/opsi4.0/products/license-management/.
After installing the packets with opsi-package-manager -i *.opsi, in the directory /var/lib/opsi/depot/<product name> the corresponding scripts: create_license-*.sh can be found.
As an example here the script create_license-mixed.sh
(the current version comes with the download packet).
#!/bin/bash
# This is a test and example script
# (c) uib gmbh licensed under GPL

PRODUCT_ID=license-test-mixed
# read the license key from a file
# myretailkeys.txt has one licensekey per line
MYRETAILKEYS=`cat myretailkeys.txt`
# myoemkeys.txt has one pair: <licensekey> <hostid.domain.tld> per line
MYOEMKEYS=`cat myoemkeys.txt`
# some output
echo "$PRODUCT_ID"

# this is the function to create the oem licenses
#############
createlic ()
{
while [ -n "$1" ]
do
        #echo $1
        AKTKEY=$1
        shift
        #echo $1
        AKTHOST=$1
        shift
        echo "createSoftwareLicense with oem key: ${PRODUCT_ID}-oem-${AKTKEY} for host ${AKTHOST}"
        MYLIC=`opsi-admin -dS method createSoftwareLicense "" "c_$PRODUCT_ID" "OEM" "1" "${AKTHOST}" ""`
        opsi-admin -d method addSoftwareLicenseToLicensePool "$MYLIC" "p_$PRODUCT_ID" "${PRODUCT_ID}-oem-${AKTKEY}"
done
}
#############

# here the script starts

# delete the existing license pool and all connected licenses
# ATTENTION: never (!) do this on a productive system
echo "deleteLicensePool p_$PRODUCT_ID"
opsi-admin -d method deleteLicensePool "p_$PRODUCT_ID" true

# delete the existing license contract
echo "deleteLicenseContract c_$PRODUCT_ID"
opsi-admin -d method deleteLicenseContract "c_$PRODUCT_ID"

# create the new license pool
# the used method has the following syntax:
# createLicensePool(*licensePoolId, *description, *productIds, *windowsSoftwareIds)
echo "createLicensePool p_$PRODUCT_ID"
opsi-admin -d method createLicensePool "p_$PRODUCT_ID" "opsi license test" \'['"'$PRODUCT_ID'"']\' \'['"'$PRODUCT_ID'"']\'

# create the new license contract
# the used method has the following syntax:
# createLicenseContract(*licenseContractId, *partner, *conclusionDate, *notificationDate, *expirationDate, *notes)
echo "createLicenseContract c_$PRODUCT_ID"
opsi-admin -d method createLicenseContract "c_$PRODUCT_ID" "uib gmbh" "" "" "" "test contract"

# create the new license and add the key(s)
# the used methods have the following syntax:
# createSoftwareLicense(*softwareLicenseId, *licenseContractId, *licenseType, *maxInstallations, *boundToHost, *expirationDate)
# addSoftwareLicenseToLicensePool(softwareLicenseId, licensePoolId, *licenseKey)

# create the retail licenses:
for AKTKEY in $MYRETAILKEYS
do
        echo "createSoftwareLicense with retail key: ${PRODUCT_ID}-retail-${AKTKEY}"
        MYLIC=`opsi-admin -dS method createSoftwareLicense "" "c_$PRODUCT_ID" "RETAIL" "1" "" ""`
        opsi-admin -d method addSoftwareLicenseToLicensePool "$MYLIC" "p_$PRODUCT_ID" "${PRODUCT_ID}-retail-${AKTKEY}"
done

# create the oem licenses
createlic $MYOEMKEYS

# create the volume licenses
echo "createSoftwareLicense with volume key: ${PRODUCT_ID}-vol-key"
MYLIC=`opsi-admin -dS method createSoftwareLicense "" "c_$PRODUCT_ID" "VOLUME" "10" "" ""`
opsi-admin -d method addSoftwareLicenseToLicensePool "$MYLIC" "p_$PRODUCT_ID" "${PRODUCT_ID}-vol-key"#

Example products and templates



In the uib download section at
http://download.uib.de/opsi4.0/products/license-management/
there are four example products available.
One for each type of license model, as there are Retail, OEM and Volume license type, as well as a product combining all of them.
These example products use as an example some licenses and release them again.
So using them leaves some marks in the software inventory, that might be of influence to reconciliation and statistics.
All of these products contain a shell script to automatically generate license pools, license contracts and license options.
The standard template for opsi-winst scripts opsi-template also contains some examples for using the opsi license management.


9.10. opsi WAN/VPN extension



The WAN/VPN extension module allows to integrate clients, that are connected via low speed connections.
This chapter is about configuring and maintaining the opsi WAN/VPN extension.
Preconditions for using the WAN/VPN extension



This opsi extension is currently in the cofunding process and not free.
For more details see Section 9.1, “Activation of non free modules”.
There are some preconditions to use the WAN/VPN extension module.
The feature product groups is required, which is available with opsi 4.0 and above.
Also the packets
opsi-client-agent and opsi-configed are required, which come with version 4.0.1.
At the moment, the simultaneous use of both "WAN extension" and "installation on shutdown extension" is not supportet. On the same opsi server with different clients, these opsi extensions can be used.
Table 18. Required packets
	opsi-Packet	version
	opsi-client-agent
	>=4.0.1-1

	opsi-winst
	>=4.10.8.12

	python-opsi
	>=4.0.1-7

	opsi-configed
	>=4.0.1.6-1





General overview of the WAN/VPN extension



opsi software deployment is mainly doing the following steps:
	
The opsi-login-blocker at client system startup prevents the users from logging on.

	
The opsiclientd service running on the client connects the opsi-config-server.

	
If any product actions are set for the client, it mounts a share from the opsi-depot.

	
The opsi-winst is starting and also connects to the opsi-config-server.

	
The opsi-winst executes the product actions, using the share from the opsi-depot.

	
If a reboot is required, it executes and the process starts all over.

	
When all the product actions are completed, the log files are transferred to the opsi-config-server
and the user logon is unblocked.



Now we will look at the special circumstances of a client, which is located in a remote branch, connected via WAN to the LAN,
where the opsi-config-server and opsi-depot-server are:
	
During communication with the opsi-config-server small amounts of data are transferred, so there is no noticeable slowdown of the software deployment in a WAN.

	
But processing the product actions might consume a very long time, depending on the packet sizes, bandwidth and latency of the WAN connection. There also might occur timeouts during file access.

	
Therefore, during the installation is processing, the user has to wait for an unreasonably long time before logon is granted.



As an alternative to providing a dedicated opsi-depot-server in the remote branch network, the remote clients can be connected via WAN/VPN extension module.
Using the WAN/VPN extension module, the opsi-client-agent can be configured this way:
	
At system startup, if there are no opsi-products cached and ready for installation, the user can logon immediately.

	
When there are product actions set for the client, the opsiclientd, which is running on the client, starts downloading the required installation files from the opsi-depot to the local file system.
This is done in the background while the user is working. The maximum download bandwidth can be configured and also can be dynamically adapted to the current network traffic status.

	
When the synchronization of the opsi-products is completed, a reboot request is triggered.

	
The logged on user can accept the reboot request, or the client will be rebooted at some time later on.

	
At the next system startup, the cache is found to be filled with the opsi-products to be installed and the installation starts.
In this case, the installation will use the downloaded files from the local file system, which increases the speed of installation even compared to a standard LAN installation.



Now we examine the situation of a notebook, which at system startup often cannot connect the opsi-config-server:
	
Trying to connect the opsi-config-server at system startup will result in a timeout.

	
Connecting the opsi-config-server might be possible when a user logs on and a VPN connection to the corporate network is established.

	
Without connection the opsi-config-server no software deployment is available.



This situation also can be solved by using the WAN/VPN extension module.
The opsi-client-agent can be configured the following way:
	
At system startup, if there are no opsi-products cached and ready for installation, the user can logon immediately.

	
Triggered by network activation or a by timer event, the opsiclientd running on the client tries to connect the opsi-config-server.

	
If the opsi-config-server is reachable, the opsiclientd starts to:

	
synchronize the configurations

	
download the required files from the opsi-depot to the local file system.
    In combination with the opsi extension module Dynamic Depot Selection, the download is done from the best fitting opsi-depot.




	
When the synchronization of the opsi-products is completed, a reboot request is triggered.

	
The logged on user can accept the reboot request or the client will be rebooted at some time later on.

	
At the next system startup, the cache is found to be filled with the opsi-products to be installed and the installation starts.
In this case, the installation will use the downloaded files from the local file system, which increases the speed of installation even compared to a standard LAN installation.
So the opsiclientd takes over the function of both the opsi-config-server and the opsi-depot-server.

	
At the next connect to the opsi-config-server the results of the installation process (configuration change, log files …) will be synchronized.



The download mechanism of product synchronization is multiple interruptible and will continue at the point of interruption.
So files that are already downloaded will not have to be downloaded again.
The WAN/VPN extension module allows to connect clients, that are outside of the secure corporate network. Therefore additional security mechanisms are required regarding the communication between client and server.
So the opsiclientd now offers the ability to verify the identity of an opsi-server.
Therefore the key pair of the SSL certificate of the opsiconfd is used.
By this mechansim the opsi-config-server as well as the opsi-depot-server can be verified,
assumed the communication is performed via opsiconfd and SSL.
In case of an opsi-depot the file access must be done by the opsiconfd using HTTPS/WEBDAVS.
Access done via CIFS/SMB will not be checked.

Caching of opsi-products



Caching of opsi-products is done by the ProductCacheService, which is part of the opsiclientd.
The ProductCacheService synchronizes the local copy of an opsi-product with the current version of the corresponding opsi-products on the opsi-depot.
The location of the local product cache can be configured and defaults to %SystemDrive%\opsi.org\cache\depot.
Communication Protocol for accessing an opsi-depot



For transferring the product files, two different protocols are used:
	
CIFS/SMB

	
HTTP(S)/WEBDAV(S)



In case of using CIFS/SMB, a connection to the depotRemoteUrl will be established as configured with the properties of the opsi-depot.
In case of using HTTP(S)/WEBDAV(S), the depotWebdavUrl is connected, which as well is to be configured with the properties of the opsi-depot.
Which protocol is to be used, can be configured client specific by the host parameter clientconfig.depot.protocol.
Available values to be set as clientconfig.depot.protocol are cifs and webdav.
Note
Also the opsi-linux-bootimage is evaluating this setting and uses the specified protocol.


Using the .files file for Synchronization



The synchronization process is based on the file <product-id>.files, which is located in the base directory of each opsi-product on the opsi-depot.
This file contains information about the files, directories ans symbolic links used by an opsi-product.
Each line of that file contains such information. Different types of information are separated by a blank.
The first character of a line defines the type of the following entry. Available values are:
	
d for a directory

	
f for a file

	
l for a symbolic link



Separated by a blank follows the relative path, which is single quoted.
The next entry gives the sizes of the file (which is 0 for directories and symbolic links).
The final entry in case of a file is the MD5-sum of the file, in case of a symbolic link it is the target referred to by the symbolic link.
Example excerpt of a .files file:
d 'utils' 0
f 'utils/patch_config_file.py' 2506 d3007628addf6d9f688eb4c2e219dc18
l 'utils/link_to_patch_config_file.py' 0 '/utils/patch_config_file.py'
The .files file is generated automatically when installing opsi-product-packages (after running the postinst-Script).
Warning
When using the WAN/VPN extension, the files of opsi-products on the opsi-depot should not be changed manually, otherwise the information contained in the .files file would be outdated, causing errors during the synchronization process.


Internal processing of opsi-product caching



The synchronization of a local copy of an opsi-product processes as follows:
	
The .files file of the opsi-product is transferred to the local client.

	
Then it is checked, whether there is enough local disk space available to cache the opsi-products.
If there isn’t enough disc space available, some old opsi-products will be deleted, which haven’t been used (synchronized) for a long time.

	
The local caching directory will be created if it doesn’t exist.

	
Referring to the .files file, any old files and directories, which aren’t in use anymore, will be deleted from the local opsi-product cache.

	
Then the .files file will be processed in the following order.

	
missing directories are created.

	
missing files are transferred.

	
existing files will be checked by size and MD5-sum and be synchronized again if necessary.






The synchronization results in an exact local copy of the opsi-product from the opsi-depot.
Note
On windows systems, no symbolic links will be created. Instead of links there will be copies of the link target.

When the opsi-product  has completed successfully,
	
the status of  products_cached will turn to true (and stays true in case of a system restart, see: the section called “Configuration of different events”).

	
a sync completed event will be triggered.




Configuring the opsi-product caching



The opsi-product caching is configured in the section [cache_service] of the opsiclientd.conf.
	
product_cache_max_size (integer): The maximum size of the opsi-product cache in byte.
This is important to limit the disk space to be used by opsi-product caching.

	
storage_dir (string): the path to the directory, in which the base directory depot for the opsi-product caching is to be created.



Further configurations can be done event specific.
Within an event configuration section [event_<event-config-id>] the following options are available:
	
cache_products (boolean): if the value of this option is true, in case of the event the ProductCacheService will start to cache
opsi-products, for which a product action is set.
If additionally the value of the option use_cached_products is set to true, the further processing of this section will be suspended until the caching of opsi-products is completed.

	
cache_max_bandwidth (integer): the maximum bandwidth in byte/s to be used for caching.
If this value is set to 0 or less, the bandwidth is unlimited.

	
cache_dynamic_bandwidth (boolean): if the value of this option is set to true, the bandwidth will be adapted dynamically.
Therefore the network traffic at the network interface to the opsi-depot will be monitored.
If any traffic is detected, which is not caused by the opsi-product caching, the bandwidth for the caching will be sharply reduced, to allow other processes to work at (almost) full speed.
If the caching works at reduced bandwidth and no more other network activity but the opsi-product caching is detected,
the caching process will continue with unlimited bandwidth.
The value of cache_max_bandwidth will be used to limit the maximum dynamic bandwidth.

	
use_cached_products (boolean): if the value of this option is set to true, the local opsi-product cache will be used for processing product actions.
If caching of the opsi-products is not completed, the processing of this event will stop and return an error code.





Caching of configurations



The caching of configurations is done by the ConfigCacheService, which is part of the opsiclientd.
The ConfigCacheService synchronizes a local client-cache-backend with the config backend of the opsi-config-server.
The opsiclientd provides per WebService an access point to the backend and thereby provides quite the same functionality as the opsiconfd.
The local client-cache-backend



The local client-cache-backend is based on SQLite and mainly consists of a local working copy,
a snapshot an a modification tracker, which records all changes of the local working copy.
The base directory of the config cache can be configured and defaults to %SystemDrive%\opsi.org\cache\config.
The snapshot reflects the configuration status on the opsi-config-server  at the time of the last synchronization.
At the start of the processing, the local working copy is a copy of the snapshot, but will be modified during processing.

Internal processing of configuration synchronizing



The synchronization of the local changes of the client-cache-backend with the config backend of the opsi-config-server is processed as follows:
	
The changes of the local working copy registered by the modification-tracker are transferred to the opsi-config-server.
Any changes of the configuration on the opsi-config-server since the last synchronization will be detected by comparing to the snapshot.
If there are any conflicts deteced, the following rules apply:

	
In case of inventory data, the local client data have priority.

	
In case of action requests,  the value from the opsi-config-server has priority.

	
In case of installation status and action result, the client data have priority.

	
If the opsi licenense management modul is switched on (config: license-management.use=true), the config server tries to find a license pool for the product by the assignment pool to productId. I free license of this pool will be reserved and this license will be replicated. Any unused licences, which have been reserved during replication, will be released again.

	
The opsi-config-server has priority for the status of host parameter and product properties.




	
The modification tracker will be cleared.

	
The logfiles will be transferred.



The config backend replication of the opsi-config-server to the client-cache-backend is processed as follows:
	
The replication only takes place, if any action requests are set on the opsi-config-server. The product action always does not count in this respect.
The replication process will start only if the status of action requests is changed since the last replication.

	
The modification tracker and the local working copy are cleared.

	
The configurations required for local processing will be replicated.

	
If action requests are set for opsi-products which are marked as to require a license,
the required software license will be reserved from a license pool, which is assigned to that opsi-product.

	
Additionally required data, as there are the auditHardwareConfig and the modules, will be transferred.

	
The snapshot and the local working copy will be updated, so they have the same content.



A successful replication from server to client results in:
	
The status of config_cached is set to true (and stays true in case of a system restart, see: the section called “Configuration of different events”).

	
An event of type sync completed will be triggered.




Configuration of config caching



The configuration of the config caching is mainly done event specific:
Within an event configuration section [event_<event-config-id>], the following options are available:
	
sync_config_to_server (boolean): if the value of this option is set to true, the ConfigCacheService in case of that event starts to transfer the changes registered by the modification tracker to the opsi-config-server.
The process will wait for that task to complete.

	
sync_config_from_server (boolean): if this value is set to true, the ConfigCacheService starts with the replication.
If additionally the value of the option use_cached_config is set to true, the processing of this event is suspended until the replication is completed.

	
use_cached_config  (boolean): if the value of this option is set to true, the client-cache-backend will be used for processing the product actions.
If the synchronization is not completed, the processing of this event will be stopped and return an error code.

	
post_sync_config_to_server (boolean): has the same functionality as  sync_config_to_server, but will be evaluated after the product actions have been completed.

	
post_sync_config_from_server (boolean): has the same functionality as sync_config_from_server, but will be evaluated after the product actions have been completed.





Recommended configuration when using the WAN/VPN extension module



The opsi-client-agent-package comes with a opsiclientd.conf prepared for the WAN/VPN extension.
For activating the WAN/VPN extension, just enabling of some events and disabling of some others is required.
The configuration of the opsi-client-agent also can be done from the web service (see: the section called “Configuration via web service (Host Parameter)”),
so it is recommended to create the following host parameter:
	
opsiclientd.event_gui_startup.active (boolean, default: true)

	
opsiclientd.event_gui_startup{user_logged_in}.active (boolean, default: true)

	
opsiclientd.event_net_connection.active (boolean, default: false)

	
opsiclientd.event_timer.active (boolean, default: false)



By these host parameter, events can be enabled or disabled client specific.
The host parameter can be created using the opsi-configed or opsi-admin.
For creating the host parameter by opsi-admin, the following commands have to be executed on the opsi-config-server:
opsi-admin -d method config_createBool opsiclientd.event_gui_startup.active "gui_startup active" true
opsi-admin -d method config_createBool opsiclientd.event_gui_startup{user_logged_in}.active "gui_startup{user_logged_in} active" true
opsi-admin -d method config_createBool opsiclientd.event_net_connection.active "event_net_connection active" false
opsi-admin -d method config_createBool opsiclientd.event_timer.active "event_timer active" false
The default values are as they come with the special opsiclientd.conf.
Caution
If you do not set the defaults like described above and skip directly to the commands below you set all your clients into WAN mode !

For a WAN/VPN client, which shall do caching of configurations and opsi-products, the host parameter have to be configured as follows:
	
opsiclientd.event_gui_startup.active: false

	
opsiclientd.event_gui_startup{user_logged_in}.active: false

	
opsiclientd.event_net_connection.active: true

	
opsiclientd.event_timer.active: true



The client specific host parameter can be set by opsi-configed or opsi-admin.
To set the host parameter by opsi-admin, the following commands have to be executed on the opsi-config-server:
(in this example the client has the opsi-host-Id vpnclient.domain.de):
opsi-admin -d method configState_create opsiclientd.event_gui_startup.active vpnclient.domain.de false
opsi-admin -d method configState_create opsiclientd.event_gui_startup{user_logged_in}.active vpnclient.domain.de false
opsi-admin -d method configState_create opsiclientd.event_net_connection.active vpnclient.domain.de true
opsi-admin -d method configState_create opsiclientd.event_timer.active vpnclient.domain.de true
This configuration will process as follows:
	
At system start of the client there will be no connection established to the opsi-config-server.

	
When the activation of a network interface is detected, a connection to the opsi-config-server will be established (if possible) and the synchronization starts as background task.

	
A timer-Event will be established, which tries at regular intervals to trigger the synchonization process.



Setting the protocol for caching of opsi-products



The caching of opsi-products can be done via the protocols HTTPS/WEBDAVS or CIFS/SMB.
When using webdav, access to the opsi-depot is performed by the opsiconfd.
	
advantages:

	
easy firewall configuration,  for it requires just port 4447.

	
verify of the SSL-certificate of the opsi-depot available.




	
disadvantage:

	
the opsiconfd generates more traffic on the opsi-depot.






By using cifs, access to the opsi-depot is done via SAMBA.
	
advantage:

	
the SAMBA-server shows a good performance, is resource-conserving and well scaleable.




	
disadvantages:

	
the firewall configuration is more complicated, access to the SAMBA ports is required.

	
no verify of the SSL-certificate of the opsi-depot is available.






An instruction for configuring the protocols is to be found in the chapter the section called “Communication Protocol for accessing an opsi-depot”.
Figure 112. processing of an installation with WAN extension as displayed in the opsiclientd infopage
[image: ospclientd-infopage-wan-cached]



Verifying the server certificates



To activate the verifying of SSL certificates, in the opsiclientd.conf within the section [global], the option verify_server_cert is to be set to true.
This, during connection to an opsiconfd, results in verifying the opsi-server by using the SSL certificate.
The server certificates will be stored in the directory %SystemDrive%\opsi.org\opsiclientd\server-certs.
The name of the certificate is combined from the server address (IP or name) and the extension .pem.
If at connection time no stored certificate is to be found, no checking will be done.
Tip
To publish a changed certificate, the old certificate stored on the clients has to be deleted.
This can be done by the RPC-method deleteServerCerts, which is available from the control interface of the opsiclientd.




9.11. opsi-Nagios-Connector



Introduction



Beside client management is monitoring one the central functions in a modern IT service management. With opsi you got a client management tool. For monitoring tasks there are other well known open source solutions. So we build for the monitoring tasks in opsi not an own monitoring tool but an interface to existing solutions. With this opsi extension we provide a connector to Nagios.
In the following chapters the design and configuration of the opsi-Nagios-Connector is explained.
The opsi-Nagios-Connector isn’t strictly bound to Nagios. It is developed for the use with Nagios and Icinga. It should also work with other Nagios derivatives but this is whether tested nor supported.
The scope of this manual is the design and configuration of the opsi-Nagios-Connector. It is not a Nagios manual. You will need a running Nagios installation and the knowledge how to run Nagios.

Preconditions



Preconditions at the opsi server and client



This extension is at the moment a cofunding project which means that until the complete development costs are payed by co-funders, they are only allowed to use by the co-funders or for evaluation purposes. If we have earned the development cost we will give these modules for everybody for free.
see also
opsi cofunding projects
opsi cofunding contribution
So as precondition to use this extension you need as first an activation file.
For evaluation purpose you will get a temporary activation file if you ask for it in a mail at info@uib.de.
For more details see Section 9.1, “Activation of non free modules”.
Technical preconditions are opsi 4.0.2 with the following package and product versions:
Table 19. Needed product and package versions
	opsi package	Version
	opsi-client-agent
	>=4.0.2-1

	opsiconfd
	>=4.0.2.1-1

	python-opsi
	>=4.0.2.1-1





Preconditions at the Nagios server



As precondition you need a Nagios installation in the version 3.x or a Icinga Installation in the version 1.6 or higher.
For graphical output of performance data a pnp4nagios installation is required.
Further information can be found at:
	
nagios.org

	
icinga.org

	
pnp4nagios.org





Concept



The opsi-Nagios-Connector contains of two core components. At first we will discuss these core components.
opsi web service extension



The heart of the opsi-Nagios-Connector are extended features of the opsi web service. These web service extension make it possible to run checks via web service on the opsi server. So the Nagios server calls checks via web service which are executed on the opsi-server and the results come back to the Nagios server via opsi web service. The advantage of this solution is that there is nearly nothing to do on the monitored opsi server.
The focus of the opsi web service extension lies on opsi specific checks like e.g. rollout monitoring. For the normal server monitoring you should use still standard check methods.

opsi-client-agent extension



An other part of the opsi-Nagios-Connector is an extension of the opsi-client-agent.
In a opsi environment on every managed client runs a opsi-client-agent. With this extension you may use the opsi-client-agent as Nagios agent as well. But in fact not all features of a standard Nagios agent like NSClient++ are implemented at the opsi-client-agent. You may use the opsi-client-agent to run command line programs and send back the output.
If you not use all functions like NSCA but rather some standard checks per plugin on the client or a set of own plugins on the clients you can use the opsi-client-agent.
If you need more features for the client monitoring you should rollout a standard agent like NSClient++ via opsi.
The advantage of using the opsi-client-agent as Nagios agent is, that you don’t need an additional agent on the client and that you don’t need any access data for the clients at the monitoring server. These data is not needed because all check run via the opsi server. This makes the configuration a lot more easier.


opsi-checks



The following chapter explains the goals and configurations of the opsi-checks.
Some background information about where to run the checks



Monitoring administrators know the difference between active and passive checks.
With the opsi-Nagios-Connector we get a new difference: direct and indirect.
	
direct:
The check which collects information about a client runs on that client, get the information direct from the client and sends the information back.

	
indirect:
The check which collects information about a client runs on the opsi server and get the information from the opsi configuration data which is stored in the opsi backend. So - this information may be different from the actual situation of the client.



A good example for an indirect check is the check-opsi-client-status. This check gives you for a given client information about pending action request and reported failures of the opsi software deployment.. So this are information about the client from the opsi servers point of view. Therefore this check runs on the opsi server and is an indirect check. A check which runs on the client is a direct check.
For a correct distribution and configuration of the checks you have to analyze your opsi installation.
According to the flexibility of opsi many various opsi configurations are possible. So here we can only explain some typical situations. Of course we will get help for special situations by our comercial support.
only one opsi server:
The opsi stand alone installation is the situation that you will find at the most opsi environments. At this installation the opsi config server functionality is at the same server like the (one and only) opsi depot server functionality.
This means to you, that you may ignore if a check has to be run on the config server or the depot server.
Figure 113. Scheme of a standalone opsi server
[image: opsi config server]


opsi with multiple depotservers:
If you have a central management of a multi location opsi environment (one config server, multiple depot servers) the situation is more complicated. So you have to understand the situation:
Figure 114. Scheme opsi multi depot environment
[image: opsi multi depot environment]


As the figure points out there is only one server which have data storage for the configuration data - the data backend. This is the opsi config server. The opsi depot server has no own data storage but a redirected backend. This means that if you ask a depot server for any configuration data, this question will be redirected to the config server. And this leads to the consequence that every check which runs against the opsi data backend will at least run on the config server. So you should address checks that run against the backend always to the config server. Even in the situation if you are collecting information about clients which are assigned to a depot which is different from the config server and the check is logically part of the check of this depot server.
If you running direct checks you normally also address the config server. You may address the depot server if the clients can’t be reached by the opsi config server via port 4441. In this case it is a good idea to address the depot server.
Figure 115. Distributed checks
[image: opsi distributed checks]



opsi-check-plugin



At the nagios server there is only one opsi-check-plugin which provides a wide range of different checks. According to the number of features there is also a big number of command line options. So - just list all these options won’t help you much. Instead the option will be explained in the context of documentation of the possible checks.
How ever to get a listing of all options you may call check_opsi with the parameters --help or -h.
The following general options are needed for every check:
Table 20. General Options
	Option
	Description
	Example

	-H,--host
	opsi server which should run the check
	configserver.domain.local

	-P,--port
	opsi webservice port
	4447 (Default)

	-u,--username
	opsi monitoring user
	monitoring

	-p,--password
	opsi monitoring password
	monitoring123

	-t,--task
	opsi check method (case sensitive)
	




The following chapter describes how to call the opsi-check-plugin is called on the command line. How you have to configure these calls at your Nagios server is described at the chapter configuration.
In order to install the opsi-check-plugin on your Nagios server you should add the opsi repository to your server and install the package opsi-nagios-plugins.
For example at Debian or Ubuntu with the following commands:
apt-get install opsi-nagios-plugins
On RedHat/Centos Servers please use the follwing command:
yum install opsi-nagios-plugins
And last but not least for openSUSE/SLES Installations:
zypper install opsi-nagios-plugins
The plugin it self is written in python and should ran at any distribution.
The package bases on the package nagios-plugins-basic respectivly nagios-plugins and installs the plugin to /usr/lib/nagios/plugins.
According to the flexibility of the check_plugin there is no automatic configuration.

Check: opsi web service



This check monitors the opsi web service process (opsiconfd). This check returns also performance data. You should run this check on every opsi server because every opsi server have a opsiconfd process.
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiWebservice
This check return normally OK.
You will get other return values in the following situations:
	
Critical:

	
If the opsiconfd is in trouble and can’t reply correctly.

	
If the opsiconfd consumes more than 80% of the cpu.

	
If you have a rate of RPC errors of more than 20%.




	
Warning:

	
If the opsiconfd consumes more than 60% (but less than 80%) of the cpu.

	
If you have a rate of RPC errors of more than 10% but less than 20%




	
Unknown:
The opsi web service could not be reached.



NOTICE:
The percentage value of the cpu consumption belongs always to one cpu because the opsiconfd only may use one cpu. (This may change with the opsi multi processing extension)

Check: opsi web service pnp4nagios template



For the display of performance data there is a template for pnp4nagios which displays the data in a combined way.
Here is not described how to install pnp4nagios. We assume that pnp4nagios is installed and configured correctly. The way you have to use to configure our template may differ from the below described way according to your pnp4nagios installation (which may use different path).
Standard templates display for every performance data an own diagram. To create a combined display you have to go the following steps:
Step 1:
create at /etc/pnp4nagios/check_commands a file named  check_opsiwebservice.cfg and insert the following content:
CUSTOM_TEMPLATE = 0
DATATYPE = ABSOLUTE,ABSOLUTE,ABSOLUTE,ABSOLUTE,DERIVE,GAUGE,GAUGE,GAUGE
Setp 2:
change to the directory /usr/share/pnp4nagios/html/templates and place there a file check_opsiwebservice.php which you check out from svn.opsi.org:
cd /usr/share/pnp4nagios/html/templates
svn co https://svn.opsi.org/opsi-pnp4nagios-template/trunk/check_opsiwebservice.php
Please check that your php file is named exactly like the command_name which is defined at the /etc/nagios3/conf.d/opsi/opsicommands.cfg. If the names don’t match, a standard template will be used instead our combined template.
After installing this template you should delete the RRD data bases which belong to this check (if there any existing). You will find these data bases at /var/pnp4nagios/perfdata/<host>/ where you should (only) delete the opsi-webservice.rrd and opsi-webservice.xml files.
If you have configured everything correctly you should now able to see diagrams like the following screenshot.
[image: uib template for pnp4nagios]


Check: opsi-check-diskusage



This check monitors the usage of the resources (directories) which are used by opsi. The following table shows the resource names and the corresponding directories:
Table 21. opsi resources
	Resource name
	Path

	/
	/usr/share/opsiconfd/static

	configed
	/usr/lib/configed

	depot
	/var/lib/opsi/depot

	repository
	/var/lib/opsi/repository




Please note that this check monitors only opsi relevant data and do replace a general disk usage check for the server.
The following command retrieves all resources at one time:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDiskUsage
In addition to this standard variant you may restrict the check to the ressource repository:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDiskUsage --resource repository
The default result value of this check is OK and the free space of the resources. The free space is given in Gigabyte. The default values for the Warning and Critical results are:
	
WARNING: If at least one resource have 5GB or less free space.

	
CRITICAL: If at least one resource have 1GB or less free space.



This are the default thresholds. They may changed by giving other values for Warning with the -W or --warning options and for Critical wit the -C or --critical option. With these options you can give the thresholds as Gigabyte (G) and as percent (%) as well. The produced output uses the same unit which is used to define the thresholds.
Finally an example:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDiskUsage --resource repository --warning 10% --critical 5%

Check: opsi-client-status



One of the targets of the opsi Nagios connector is the software roll out monitoring by viewing to single clients. This is one of the checks which is designed for this job. More exactly: the software roll out and last seen situation of a certain client is checked.
The result of the following checks is determined by two different states:
	
The roll out state of one or more software products:
The software roll out state results to:

	
OK if the software is installed at the in the same product and package version which is available at the server and no action request is set.

	
Warning if the software is installed in version that is different to the servers version or if any action request is set.

	
Critical if there is a failed reported by the last action.




	
The time since last seen:
The time since last seen results to:

	
OK if the client has bee seen less or equal then 30 days before.

	
Warning if the client has bee seen more then 30 days before.






This check may used in different variants, here is the simplest one, which includes all software packages:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkClientStatus -c opsiclient.domain.local
As variant it is possible to exclude products from the check. For example:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkClientStatus -c opsiclient.domain.local -x firefox
In the example above the product firefox was excluded from the check. So this check would not switch to critical because the last action on firefox reported a failure.

Check: opsi-check-ProductStatus



An other target of the opsi Nagios connector is the software roll out monitoring by viewing to single product or a group of products.
The result of the following checks is determined by the following states:
The software roll out state results to:
* OK if the software is installed at the in the same product and package version which is available at the server and no action request is set.
* Warning if the software is installed in version that is different to the servers version or if any action request is set.
* Critical if there is a failed reported by the last action.
This checks has many variants and is so very flexible. The bast way to explain these variants are examples.
The simplest variant check one product on all clients. Here you have to give the product as the opsi productId.
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -e firefox
In a simple one server opsi environment, this check is all you need to check the state of the product firefox on every client.
You will get the information how many clients are in Warning and in Critical states.
To get the information which clients exactly have the problems, you should call the check in the verbose mode:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -e firefox -v
An other variant is, that you may exclude a client from the check.
//// produkt muss angegebn werden ?! ////
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -e firefox -x client.domain.local
In a opsi environment with multiple depot servers you have to use additional options to check also the clients that are not assigned to the config servers depot. If you have multiple depots, you may give the depots name as parameter:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -e firefox -d depotserver.domain.local
The reason is that the version of the software packages may differ between your depots. So every client has to be checked against the versions at the depot where they are assigned to. An advantage is that can place the display of the results to the depot server.
You may give instead of the depot servers name the keyword all which means all known depot servers. But this normally make only sense if you have only one or two depots. You may also give a comma separated list of depot servers.
An other way to define the checks is to give the name of a opsi groups. So you may check the software roll out state of all products in a given opsi product group. If you have for example a product group accounting you may use the following call:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -g accounting
Now you will check all products that are Members of the opsi product group accounting by this single check. Important is to see, that the resolution of the opsi group is done while the check at the opsi server. So you may change the opsi group at the opsi Management interface and so you will change the products that will checked without any changes at the Nagios server.
Note
Sub groups (groups in groups) will not be resolved.

In the same way it is possible to define the clients that should be checked by giving the name of a opsi client group.
An example for a client group productiveclients:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -g accounting -G productiveclients
This would check all products of the product group accounting at all clients of the client group productiveclients.
Note
Sub groups (groups in groups) will not be resolved.

Note
You may also give a comma separated list of opsi groups.

Finally opsi-Clients can be excluded:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkProductStatus -g buchhaltung -G produktivclients -x client.domain.local

Check: opsi-check-depotsync



If you are using multiple opsi depots the monitoring of synchronicity is important. Even if your depots are for good reasons not completely synchronize they should be synchrony as much as possible to avoid problems by moving a client from one depot to another.
This check monitors if your depots are synchronize according to product ids, product versions and package versions.
This check returns:
	
OK
If all is in sync.

	
Warning
If there is any difference



You should run this check always on the config server because all the data come from the backend of the config server.
Here are some examples.
The base variant:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus
This base variant is equivalent to the following call:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus -d all
So if you don’t give the depots which are have to be checked, all known depots will be checked. If you have a lot of depots the interpretation of the result is complicated, so it is a good idea to define a lot of single checks where the depots are given as comma separated list:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus -d configserver.domain.local,depotserver.domain.local
With this check you compare all products, that are installed on both depots. Any product which is installed only on one of the depot is ignored and will not effect the result.
If you want to include products which are not installed on all checked depots, you have to use the strictmode switch:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus -d configserver.domain.local,depotserver.domain.local --strictmode
Now also differences about missing products will be seen.
If you like to exclude a product from the check (perhaps because this product should be in different versions on different depots) you may do this by using the -x option. Here you may also use a comma separated list:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus -d configserver.domain.local,depotserver.domain.local --strictmode -x firefox,thunderbird
This check will not warn if the products firefox or thunderbird or not in sync.
Instead of excluding products you may give an explicit list of products that has to been checked:
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSyncStatus -d configserver.domain.local,depotserver.domain.local --strictmode -e firefox,thunderbird
In this case only firefox and thunderbird will be checked. We recommend to use this check variant with strictmode to see if one of the products is missing.
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkOpsiDepotSync

Check: nagios client plugin check via opsiclientd



This check gives you an easy possibility to integrate checks that collects the data direct on the client with a minimum of configuration work.
So this check tells the opsiclientd which is running at the opsi client to run a command, fetch the output and send it back.
This extension is not intended to be a complete replacement of a full featured Windows Nagios agent. It is only a light weight alternative.
The plugins which the opsiclientd may call must be compatible to the Nagios plug-in development guidelines. (More details at: http://nagiosplug.sourceforge.net/developer-guidelines.html ).
In order to run such a plugin on the client, it has to be installed at the client. This problem you will solve by deploying it as an opsi package. The path where the plugin is installed at client doesn’t matter because you have to give the complete path at check definition. We recommend to install all plugins in one directory to ease the maintenance of the plugins at the client.
For security reasons you should make sure that non privileged users have no write access to the plugins, because they will be executed from the opsiclientd with system privileges.
There are lot of ready to use plugins at the internet. One important address to look is:
http://exchange.nagios.org/
In the following we assume that your plugins are installed at C:\opsi.org\nagiosplugins\ and we will find ther the plugin check_win_disk.exe out of the package nagioscol from
http://sourceforge.net/projects/nagiosplugincol/
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkPluginOnClient --plugin "C:\\opsi.org\\nagiosplugincol\\check_win_disk.exe C:" -c client.domain.local
This call checks the client client.domain.local. At the client the plugin check_win_disk.exe is called with the parameter C:. This means, that the hard drive with the letter C should be checked. The output and the result value of the plugin will be fetched by the opsiclientd and will be given back to the Nagios server (via the opsi server) in a for Nagios correct format.
Another special feature is to hold the last check results, even if the client is not reachable.
This feature was implemented according to the fact that desktop clients not always are running like servers, but the most time in their life are usually switched off. Normally Nagios will show for switched off clients the result Unknown. In fact the most problems on the monitored clients will not disappear by just switching them off and on again. So the information that a client had a problem before it was switched off may be an essential information for the system administrator. (You may try to solve this problem by using Timeperiods at the Nagios configuration, but we think that this is not flexible enough and leads to a permanent configuration work). So this opsi extension give you the possibility to give back the last real check results if the client is not reachable right now.
In order to use this feature, you have to use the Nagios macros $SERVICESTATEID$ and $SERVICEOUTPUT$. $SERVICESTATEID$ gives the last result value and should be passed to the -s Option. $SERVICEOUTPUT$ gives the last output line and should be passed to the -o Option. So check can give these last values instead of Unknown if the client is not reachable.
check_opsi -H configserver.domain.local -P 4447 -u monitoring -p monitoring123 -t checkPluginOnClient --plugin "C:\\opsi.org\\nagiosplugincol\\check_win_disk.exe C:" -c client.domain.local -s $SERVICESTATEID$ -o  $SERVICEOUTPUT$


opsi monitoring configuration



This chapter focuses on the configuration that have to been made for a working interface between the opsi and the Nagios server. Just see this as a recommendation, there will be  a lot of other ways to do the job.
This description uses a Nagios server as monitoring server. On a Icinga server it should work very similar but you have to change some path entries. It should also work on other Nagios derivatives but this is not tested.
Tip
The configurationfiles from these Chapter are in opsi-nagios-connector-utils svn-Repository. To get these example configurationfiles you can connect over a browser to following url:
https://svn.opsi.org/listing.php?repname=opsi-nagios-connector-utils
or you can make a direct checkout from repository with following command:
svn co https://svn.opsi.org/opsi-nagios-connector-utils

opsi monitoring user



In monitoring environments you will often find that the access is just restricted by IP numbers. Because of the lack of security of this solution we decided to work with a real user / password security in this opsi extension.
Using the opsi standard group opsiadmin would give the Nagios more rights than needed. So you have to create an own opsi user for the opsi-Nagios-Connector.
In the following example a user named monitoring with the password monitoring123 is created for opsi:
opsi-admin -d method user_setCredentials monitoring monitoring123
The created user monitoring will be stored with its encrypted password at the /etc/opsi/passwd and is not a user which may be used to login at a shell. In fact it is no real Unix user.
You have to create this user only on your config server, even if you have multiple depots.
At your Nagios server you should mask the user and password by making an entry at the /etc/nagios3/resource.cfg. This should look for example like this:
$USER2$=monitoring
$USER3$=monitoring123
The number behind $USER may vary. If this configuration was not used before, there should be only $USER1$ be used. According to what you are using here, you might have to change the other examples in this manual.

opsi-Nagios-Connector configuration directory



To make the maintenance of the Nagios configuration easier, we recommend to put all opsi nagios connector related configuration files in one separated place.
So just create below /etc/nagios3/conf.d a new directory named opsi for these configurations.
The configuration files we will place in this directory are:
	
Nagios Template: opsitemplates.cfg

	
Hostgroups: opsihostgroups.cfg

	
Server Hosts: <full name of the server>.cfg

	
Commands: opsicommands.cfg

	
Contacts: opsicontacts.cfg

	
Services: opsiservices.cfg



All the client configuration files we recommend to put in sub directory of this place. Therefore you create below /etc/nagios3/conf.d/opsi another directory named clients.

Nagios template:  opsitemplates.cfg



Using templates is a standard functionality of Nagios which will not explained here. The main advantage is that it makes the single configuration files smaller and easier to read (and write).
Inside of the templates we use some Nagios custom variables for often used values. According to the fact, that the most checks have to run on the opsi config server, we will define the name and port of the config server as such a custom variable:
_configserver           configserver.domain.local
_configserverurl        4447
You will find this below in the template definitions.
These custom variables may later on be referenced by the Nagios macros: $_HOSTCONFIGSERVER$ and $_HOSTCONFIGSERVERPORT$. (These macros have leading HOST in their name, because they are defined inside of a host definition).
For more details on variable and macro take look at your Nagios documentation.
Now the first file we create in /etc/nagios3/conf.d/opsi is the template definition file opsitemplates.cfg.
This file may hold different templates. Every template is created according to the following patter (which contains comments for better understanding):
define host{
        name                    opsihost-tmp    ; The name of this host template
        notifications_enabled           1       ; Host notifications are enabled
        event_handler_enabled           1       ; Host event handler is enabled
        flap_detection_enabled          1       ; Flap detection is enabled
        failure_prediction_enabled      1       ; Failure prediction is enabled
        process_perf_data               0       ; Process performance data
        retain_status_information       1       ; Retain status information across program restarts
        retain_nonstatus_information    1       ; Retain non-status information across program restarts
                max_check_attempts              10
                notification_interval           0
                notification_period             24x7
                notification_options            d,u,r
                contact_groups                  admins
        register                        0       ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE!
        icon_image                      opsi/opsi-client.png
        }
NOTE:
* The optional option icon_image may put it to an image with relative path below: /usr/share/nagios3/htdocs/images/logos/.
* Optional you may give an own contact_group, which have to be defined as contact object, for example in the file opsicontacts.cfg.
Now we recommend to create templates for the following objects
	
opsi server

	
opsi client

	
opsi service

	
and 2 templates for pnp4nagios (host-pnp / srv-pnp)



Let’s start with the example of the opsi server template:
define host{
        name                            opsi-server-tmpl
        notifications_enabled           1
        event_handler_enabled           1
        flap_detection_enabled          1
        failure_prediction_enabled      1
        process_perf_data               1
        retain_status_information       1
        retain_nonstatus_information    1
                check_command                   check-host-alive
                max_check_attempts              10
                notification_interval           0
                notification_period             24x7
                notification_options            d,u,r
                contact_groups                  admins,opsiadmins
        _configserver                   configserver.domain.local
        _configserverport               4447
        register                        0
        icon_image                      opsi/opsi-client.png
        }
You just have to change configserver.domain.local to your config server name. Also you may change the contact_groups to your needs.
The next part of the file opsitemplates.cfg is the template for the clients:
define host{
        name                            opsi-client-tmpl
        notifications_enabled           1
        event_handler_enabled           1
        flap_detection_enabled          1
        failure_prediction_enabled      1
        process_perf_data               1
        retain_status_information       1
        retain_nonstatus_information    1
                max_check_attempts              10
                notification_interval           0
                notification_period             24x7
                notification_options            d,u,r
                contact_groups                  admins,opsiadmins
        _configserver                   configserver.domain.local
        _configserverport               4447
        register                        0
        icon_image                      opsi/opsi-client.png
        }
The Option "check command check-host-alive" should be not set here because the clients are not always running. In effect the clients will be displayed as pending instead of offline.
You just have to change configserver.domain.local to your config server name. Also you may change the contact_groups to your needs.
The next part of the file opsitemplates.cfg is the template for the opsi-services:
define service{
        name                            opsi-service-tmpl
        active_checks_enabled           1
        passive_checks_enabled          1
        parallelize_check               1
        obsess_over_service             1
        check_freshness                 0
        notifications_enabled           1
        event_handler_enabled           1
        flap_detection_enabled          1
        failure_prediction_enabled      1
        process_perf_data               1
        retain_status_information       1
        retain_nonstatus_information    1
                notification_interval           0
                is_volatile                     0
                check_period                    24x7
                normal_check_interval           5
                retry_check_interval            1
                max_check_attempts              4
                notification_period             24x7
                notification_options            w,u,c,r
                contact_groups                  admins,opsiadmins
        register                        0
        }
If you are using pnp4nagios for the graphic display of performance data you will need two other templates in the file opsitemplates.cfg:
define host {
   name       host-pnp
   action_url /pnp4nagios/index.php/graph?host=$HOSTNAME$&srv=_HOST_
   register   0
}

define service {
   name       srv-pnp
   action_url /pnp4nagios/index.php/graph?host=$HOSTNAME$&srv=$SERVICEDESC$
   register   0
}

opsi hostgroup:  opsihostgroups.cfg



The nest step is to define the hostgroups. This helps to structure the display of the results as well as the service definitions.
So create a file named opsihostgroups.cfg wit the following content:
define hostgroup {
        hostgroup_name  opsi-clients
        alias           OPSI-Clients
}

define hostgroup {
        hostgroup_name  opsi-server
        alias           OPSI-Server
        members         configserver.domain.local, depotserver.domain.local
}
Do not forget to edit the member line.

opsi server:  <full name of the server>.cfg



The next step is to create for every opsi server you are running an own configuration file. This file should be named based on the pattern <full name of the server>.cfg. For example configserver.domain.local.cfg.
(You may also create one file (e.g. opsihost.cfg with all server definitions).
The content should look like this:
define host{
        use                             opsi-server-tmpl
        host_name               configserver.domain.local
        hostgroups              opsi-server
        alias                           opsi Configserver
        address                 configserver.domain.local
        }

define host{
        use                             opsi-server-tmpl
        host_name               depotserver.domain.local
        hostgroups              opsi-server
        alias                           opsi Depotserver
        address                 depotserver.domain.local
        }
Explanation of the entries:
* use references to the used template.
* hostgroups tells us to which hostgroup this server belongs.

opsi Clients:  clients/<full name of the client>.cfg



The opsi client configurations should be placed in an own sub directory. They should be defined like this:
define host{
        use                             opsi-client-tmpl
        host_name               client.domain.local
        hostgroups              opsi-clients
        alias                           opsi client
        address                 client.domain.local
        _depotid                        depotserver.domain.local
        }
This client configuration uses again a custom variable: _depotid. This custom variable may be referenced by the macro $_HOSTDEPOTID$.
The usage is optional. If a client may be not connected by the opsi configuration server directly, you will here write down from which depot server the client can be contacted.
To make it easier to create the configuration files for your large number of opsi clients, you may run the following script on your opsi configuration server:
#!/usr/bin/env python

from OPSI.Backend.BackendManager import *

template = '''
define host {
        use             opsi-client-tmpl
        host_name       %hostId%
        hostgroups      opsi-clients
        alias           %hostId%
        address         %hostId%
        }
'''

backend = BackendManager(
             dispatchConfigFile = u'/etc/opsi/backendManager/dispatch.conf',
             backendConfigDir   = u'/etc/opsi/backends',
             extensionConfigDir = u'/etc/opsi/backendManager/extend.d',
                        )


hosts = backend.host_getObjects(type="OpsiClient")

for host in hosts:
        filename = "%s.cfg" % host.id
        entry = template.replace("%hostId%",host.id)
        f = open(filename, 'w')
        f.write(entry)
        f.close()

opsi command configuration:  opsicommands.cfg



Now we have to define which of the check commands, which are described before, we want to use. You should do this in a file named opsicommands.cfg.
This is just an example which you may change to your needs:
First let us explain the structure of the entries:
define command{
        command_name    check_opsi_clientstatus
        command_line            $USER1$/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkClientStatus -c $HOSTADDRESS$
        }
The command_name will be used by other configuration files. The option command_line defines the command and all used arguments.
Based on this pattern we create now the file opsicommands.cfg:
define command {
        command_name    check_opsiwebservice
        command_line    /usr/lib/nagios/plugins/check_opsi -H $HOSTADDRESS$ -P 4447 -u $USER2$ -p $USER3$ -t checkOpsiWebservice
}
define command {
        command_name    check_opsidiskusage
        command_line    /usr/lib/nagios/plugins/check_opsi -H $HOSTADDRESS$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkOpsiDiskUsage
}
define command {
        command_name    check_opsiclientstatus
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkClientStatus -c $HOSTADDRESS$
}
define command {
        command_name    check_opsiproductstatus
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkProductStatus -e $ARG1$ -d $HOSTADDRESS$ -v
}
define command {
        command_name    check_opsiproductStatus_withGroups
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkProductStatus -g $ARG1$ -G $ARG2$ -d "all"
}
define command {
        command_name    check_opsiproductStatus_withGroups_long
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkProductStatus -g $ARG1$ -G $ARG2$ -v -d "all"
}
define command {
        command_name    check_opsidepotsync
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkDepotSyncStatus -d $ARG1$
}
define command {
        command_name    check_opsidepotsync_long
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkDepotSyncStatus -d $ARG1$ -v
}
define command {
        command_name    check_opsidepotsync_strict
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkDepotSyncStatus -d $ARG1$ --strict
}
define command {
        command_name    check_opsidepotsync_strict_long
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkDepotSyncStatus -d $ARG1$ --strict -v
}
define command {
        command_name    check_opsipluginon_client
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkPluginOnClient -c $HOSTADDRESS$ --plugin $ARG1$
}
define command {
        command_name    check_opsipluginon_client_with_states
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTCONFIGSERVER$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkPluginOnClient -c $HOSTADDRESS$ --plugin $ARG1$ -s $SERVICESTATEID$ -o "$SERVICEOUTPUT$"
}
define command {
        command_name    check_opsipluginon_client_from_depot
        command_line    /usr/lib/nagios/plugins/check_opsi -H $_HOSTDEPOTID$ -P $_HOSTCONFIGSERVERPORT$ -u $USER2$ -p $USER3$ -t checkPluginOnClient -c $HOSTADDRESS$ --plugin $ARG1$
}

Contacts:  opsicontacts.cfg



This define the contacts which will get notifications.
define contact{
        contact_name                    adminuser
        alias                           Opsi
        service_notification_period     24x7
        host_notification_period        24x7
        service_notification_options    w,u,c,r
        host_notification_options       d,r
        service_notification_commands   notify-service-by-email
        host_notification_commands      notify-host-by-email
        email                           root@localhost
        }
define contactgroup{
        contactgroup_name       opsiadmins
        alias                   Opsi Administrators
        members                 adminuser
        }
You should replace adminuser by one or more real users.

Services:  opsiservices.cfg



Finally we define with the services what the Nagios server have to monitor and to display. This definition are using the definition of the other configuration file above like templates, commands and hostgroups or hosts.
As first part we define the services which give us information’s about the servers. One of these is the check if the depots are in sync, which is here down against all known depots.
#OPSI-Services
define service{
        use                             opsi-service-tmpl,srv-pnp
        hostgroup_name                  opsi-server
        service_description             opsi-webservice
        check_command                   check_opsiwebservice
        check_interval                  1
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-diskusage
        check_command                   check_opsidiskusage
        check_interval                  1
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-depotsyncstatus-longoutput
        check_command                   check_opsidepotsync_long!all
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-depotsyncstatus-strict-longoutput
        check_command                   check_opsidepotsync_strict_long!all
        check_interval                  10
        }
The next part is the monitoring of the software roll out. In one check a concrete opsi product opsi-client-agent is mentioned. In two other check are referenced on a opsi product group opsiessentials and opsi client group productiveclients.
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-clients
        service_description             opsi-clientstatus
        check_command                   check_opsiclientstatus
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-productstatus-opsiclientagent
        check_command                   check_opsiproductstatus!opsi-client-agent
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-productstatus-opsiessentials-group
        check_command                   check_opsiproductStatus_withGroups!opsiessentials!productiveclients
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        hostgroup_name                  opsi-server
        service_description             opsi-productstatus-opsiessentials-group-longoutput
        check_command                   check_opsiproductStatus_withGroups_long!opsiessentials!productiveclients
        check_interval                  10
        }
In the third and last part of the file, the checks which are should run directly on the clients (direct checks) are defined.
These checks are (for example) not assigned to hostgroups but to single hosts or lists of hosts (client.domain.local,depotclient.domain.local).
Some description:
	
opsi-direct-checkpluginonclient
runs a normal direct check on the client and results to unknown if the client is offline.
At this check the config server try’s to reach the client directly.

	
opsi-direct-checkpluginonclient-with-servicestate
is equal to opsi-direct-checkpluginonclient, but returns the last valid result if the client is offline (instead of unknown)

	
opsi-direct-checkpluginonclient-from-depot
is equal to opsi-direct-checkpluginonclient, but the client will be connected by the server which is given in the host configuration as _depotid.



define service{
        use                             opsi-service-tmpl
        host_name                       client.domain.local,depotclient.domain.local
        service_description             opsi-direct-checkpluginonclient
        check_command                   check_opsipluginon_client!"C:\\opsi.org\\nagiosplugins\\check_memory.exe"
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        host_name                       client.domain.local
        service_description             opsi-direct-checkpluginonclient-with-servicestate
        check_command                   check_opsipluginon_client_with_states!"C:\\opsi.org\\nagiosplugins\\check_memory.exe"
        check_interval                  10
        }
define service{
        use                             opsi-service-tmpl
        host_name                       depotclient.domain.local
        service_description             opsi-direct-checkpluginonclient-from-depot
        check_command                   check_opsipluginon_client_from_depot!"C:\\opsi.org\\nagiosplugins\\check_memory.exe"
        check_interval                  10
        }



9.12. opsi-clonezilla (free)



Preconditions for the opsi Extensions opsi-clonezilla



Technical preconditions are opsi 4.0.3 with the following package and product versions:
Table 22. Needed product and package versions
	opsi-Package	Version
	opsi-linux-bootimage
	>= 20130207-1




or opsi 4.0.5 with the following package and product versions:
Table 23. Needed product and package versions
	opsi packet	version
	opsi-linux-bootimage
	>= 20140805-1

	opsi-clonezilla
	>= 4.0.5-1




Caution
For the product opsi-clonezilla the share opsi_images must have write permission for pcpatch. Check your Samba configuration.
For use with UEFI you need at least opsi 4.0.7
Set for the property imageshare a share as value. This share should have the format //server/share. Please note the use of slashes instead of back slashes. This share should be mountable by the opsi user pcpatch with the password as known by the opsi-server. This is normally the share opsi_images from the opsi-server.


Introduction



Besides of the package based (unattended) installation, opsi had in the past just a rudimentary support for image based installations. With the integration technique of the Open Source product clonezilla (http://clonezilla.org/) into opsi, now a comprehensive and flexible solution for handling partition and disc images is available.

Concept



We have combined the clonezilla scripts with the opsi-linux-bootimage to generate the following benefits:
	
integration into the opsi process control

	
automated mount of the shares for the image repository

	
availability of automated processing




Interactive Proceedings



Starting the opsi-clonezilla per default starts in the interactive mode. This interactive mode allows to choose the desired operations and parameters easily. Knowing the commands and their parameters from this makes it easy to create non-interactive run commands from this.
	
Set for the property imageshare a share as value. This share should have the format //server/share. Please note the use of slashes instead of back slashes. This share should be mountable by the opsi user pcpatch with the password as known by the opsi-server. This is normally the share opsi_images from the opsi-server.

	
Switch the property runcommand to ocs-live . This is the interactive mode of clonezilla.

	
Start the netboot product.

	
In the first dialog you will be asked, whether anything should be mounted to /home/partimg. Choose Skip because the mount has already been done by the opsi bootimage.



Figure 116. Skip: The share given by the property imageshare will be mounted by the bootimage to /home/partimg.
[image: clonezilla_skip.png]


The mounted partition will be displayed:
Figure 117. Mounted partitions.
[image: clonezilla_existing_setting.png]


By choosing Expert or Beginner you decide if you want to use all default parameters or have the possibility to modify them.
Since opsi 4.0.5 you may also choose the Beginner mode.
Figure 118. Expert or Beginner ?
[image: clonezilla_expert.png]


Now you have to choose which basic operation you like to run. In this manual we discuss only the following operations:
	
save disk

	
save partition

	
restore disk

	
restore partition



Figure 119. Choose operation.
[image: clonezilla_select_mode.png]


Interactive save disk in the expert mode



Here will be shown (as an example for similar operations) the additional dialogs you will get in the save disk expert mode.
Figure 120. Choose the tools (default value recommended)
[image: clonezilla_tool-priority.png]


Figure 121. miscellaneous: unset -c here to suppress interactive questions for automation.
[image: clonezilla_parameters1.png]


Figure 122. compression method before opsi 4.0.5, which is bootimages ⇐ 20130207 (opsi-clonezilla_2.01-3), select here -z1. With opsi 4.0.5 and above is not required anymore.
[image: clonezilla_compression.png]


Figure 123. Check filesystem (den default skip nutzen)
[image: clonezilla_parameter4.png]


Figure 124. Check the saved image (den default yes nutzen)
[image: clonezilla_parameter5.png]


Figure 125. Action after cloning (use the default -p true, the reboot is triggered by the opsi bootimage).
[image: clonezilla_parameters6.png]



Interactive save disk



Figure 126. Name for the image to be saved on disc.
[image: clonezilla_imagename.png]


Figure 127. Select the disc to create the image from
[image: clonezilla_choose_disk.png]


Figure 128. The resulting command. This can be set as product property runcommand
[image: clonezilla_savedisk_command.png]


Figure 129. Progress bar
[image: clonezilla_savedisk_progress.png]



Interactive save part



Figure 130. Name for the partition image to be saved as.
[image: clonezilla_imagename.png]


Figure 131. Select the partition to create the image from
[image: clonezilla_choosepart.png]


Figure 132. The resulting command. This can be set as product property runcommand
[image: clonezilla_saveparts_command.png]


Figure 133. Progress bar
[image: clonezilla_savepart_progress.png]



Interactive restore disk



Figure 134. Selct the disc image to be restored
[image: clonezilla_choose_diskimage2restore.png]


Figure 135. Select the disc where the image is to be restored
[image: clonezilla_choose_restore_targetdisk.png]


Figure 136. The resulting command. This can be set as product property runcommand
[image: clonezilla_restoredisk_command.png]


Figure 137. Query before starting to overwrite the disc. Can be suppressed by omitting the option -c from the command.
[image: clonezilla_restoredisk_askbeforeinst.png]


Figure 138. Progress bar
[image: clonezilla_restoredisk_progress.png]



Interactive restore part



Figure 139. Select the part image to be restored
[image: clonezilla_choose_partimage2restore.png]


Figure 140. Select the partition where the image is to be restored.
[image: clonezilla_choose_restore_targetpart.png]


Figure 141. Query before starting to overwrite the disc. Can be suppressed by omitting the option -c from the command.
[image: clonezilla_restorepart_askbeforeinst.png]


Figure 142. Progress bar
[image: clonezilla_restorepart_progress.png]




Not interactive processes



By setting the desired command as the product property runcommand opsi-clonezilla is switched to the non interactive mode.
	
Set the property imageshare to a share, that can be mounted by the user pcpatch with the password as known by the opsi-server. The format for the share is //server/share (attention: use forward slashes, not backward slashes).

	
Set the property runcommand to the non interactive command. Recommended Parameters:

	
Always: --batch

	
At restore: --skip-check-restorable-r

	
Always remove: -c






Here are some non interactive versions of the examples from above (without -c and with --batch). Since opsi 4.0.5 the parameter -z1 can be omitted. This accelerates the compression with multi processor kernels:
	
/opt/drbl/sbin/ocs-sr --batch -q2 -j2 -rm-win-swap-hib -z1 -i 2000 -p true  save disk 2014-06-11-12-img sda

	
/opt/drbl/sbin/ocs-sr --batch -q2 -j2 -rm-win-swap-hib -z1 -i 2000 -p true  save parts partimg sda1

	
/opt/drbl/sbin/ocs-sr --batch -g auto -e1 auto -e2 -r -j2 -p true restore disk 2014-06-11-12-img sda

	
/opt/drbl/sbin/ocs-sr --batch -g auto -e1 auto -e2 -r -j2 -k -p true restore parts partimg sda1



Furthermore in these examples the image names 2014-06-11-12-img or partimg can be replaced by the string imagefile. In this case the string imagefile will be substituted by the value of the property imagefile.
If you would take the device names sda or rather sda1 for example, and replace them with, the string diskdevice or partdevice, then the string disk_number or part_number will be also respectively replaced.
Examples for disk_number=1 and part_number=1:
sda / sda1
cciss/c0d0 / cciss/c0d0p1
As a result you can look at the following examples:
	
ocs-sr -g auto -e1 auto -e2 --skip-check-restorable-r --batch -r -j2 -p true restoredisk imagefile diskdevice

	
ocs-sr -q2 --batch -j2 -rm-win-swap-hib -i 2000 -p true savedisk imagefile diskdevice

	
ocs-sr -q2 -c -j2 -z1 -i 2000 -sc -p true saveparts imagefile partdevice




opsi-clonezilla properties



	
askbeforeinst

	
description: Should there be a confirmation dialog before start installing ? / Faut-il y avoir une confirmation avant de démarrer l’installation ?

	
default: False




	
mount_image_share

	
description: Should there be a confirmation dialog before start installing ? / Faut-il y avoir une confirmation avant de démarrer l’installation ?

	
default: True




	
imageshare

	
editable: True

	
description:  normally auto or empty: Defaults to the opsi_images share of the depot server; if not auto or empty: smb/cifs share in the format //server/share

	
values: ["", "//opsiserver/opsi_images", "auto"]

	
default: ["auto"]




	
runcommand

	
editable: True

	
description: Clonezilla command to be executed

	
values: ["", "ocs-live", "ocs-sr -g auto -e1 auto -e2 --skip-check-restorable-r --batch -r -j2 -p true restoredisk imagefile diskdevice", "ocs-sr -q2 --skip-check-restorable-s --batch -j2 -rm-win-swap-hib -i 2000 -p true savedisk imagefile diskdevice", "ocs-sr -q2 -c -j2 -z1 -i 2000 -sc -p true saveparts imagefile partdevice"]

	
default: ["ocs-live"]




	
disk_number

	
editable: True

	
description: Number (first=1) of the disk ; if string diskdevice in the runcommand it will be replaced by valid device path (eg sda)

	
values: ["1", "2"]

	
default: ["1"]




	
part_number

	
editable: True

	
description: Number (first=1) of the partition of disk_number ; if string partdevice in the runcommand it will be replaced by valid device path (eg sda1)

	
values: ["1", "2", "3", "4", "5"]

	
default: ["1"]




	
imagefile

	
editable: True

	
description: name of the imagefile ; will replace the string imagefile in the runcommand

	
values: ["myimagefile"]

	
default: ["myimagefile"]




	
drbl_ocs_conf

	
editable: True

	
description: Directory for post run scripts (Entries in /etc/drbl/drbl-ocs.conf)

	
values: ["", "OCS_POSTRUN_DIR=\"/home/partimag/postrun\"", "OCS_PRERUN_DIR=\"/home/partimag/prerun\""]




	
rebootflag

	
editable: False

	
description: Should the Client reboot after running the script

	
values: ["keepalive", "reboot", "shutdown"]

	
default: ["reboot"]




	
setup_after_install

	
multivalue: True

	
editable: True

	
description: Which opsi product(s) should we switch to setup after clonezilla work is finished ?

	
values: [""]

	
default: [""]




	
architecture

	
editable: False

	
description: Selection of architecture, influcences the selection of the installation and the installation architecture.

	
values: ["32bit", "64bit"]

	
default: ["32bit"]







opsi-clonezilla known bugs



None

Clonezilla command reference



Save and restore of images



http://clonezilla.org/clonezilla-live-doc.php
Clonezilla ocs-sr options
/usr/sbin/ocs-sr:
Usage:
To save or restore image
ocs-sr [OPTION] {savedisk|saveparts|restoredisk|restoreparts} IMAGE_NAME DEVICE
Options for saving:
	
-enc, --enc-ocs-img 

	
To encrypt the image with passphrase.

	
-fsck-src-part, --fsck-src-part 

	
Run fsck interactively on the source file system before saving it.

	
-fsck-src-part-y, --fsck-src-part-y 

	
Run fsck automatically on the source file system before saving it. This option will always attempt to fix any detected filesystem corruption automatically. //NOTE// Use this option in caution.

	
-gm, --gen-md5sum 

	
Generate the MD5 checksum for the image. Later you can use -cm|--check-md5sum option to check the image when restoring the image. Note! It might take a lot of time to generate if the image size is large.

	
-gs, --gen-sha1sum 

	
Generate the SHA1 checksum for the image. Later you can use -cs|--check-sha1sum option to check the image when restoring the image. Note! It might take a lot of time to generate if the image size is large.

	
-gmf, --gen-chksum-for-files-in-dev 

	
Generate the checksum for files in the source device. Later you can use -cmf|--chk-chksum-for-files-in-dev to check the files in the destination device after they are restored. Note! It might take a lot of time to inspect the checksum if there are many files in the destination device.

	
-i, --image-size SIZE 

	
Set the size in MB to split the partition image file into multiple volumes files. For the FAT32 image repository, the SIZE should not be larger than 4096.

	
-j2, --clone-hidden-data 

	
Use dd to clone the image of the data between MBR (1st sector, i.e. 512 bytes) and 1st partition, which might be useful for some recovery tool.

	
-ntfs-ok, --ntfs-ok  

	
Assume the NTFS integrity is OK, do NOT check again (for ntfsclone only)

	
-rm-win-swap-hib, --rm-win-swap-hib

	
Try to remove the MS windows swap file in the source partition.

	
-q, --use-ntfsclone  

	
If the partition to be saved is NTFS, use program ntfsclone instead of partimage (i.e. Priority: ntfsclone > partimage > dd)

	
-q1, --force-to-use-dd 

	
Force to use dd to save partition(s) (inefficient method, very slow, but works for all the file system).

	
-q2, --use-partclone 

	
Use partclone to save partition(s) (i.e. partclone > partimage > dd).

	
-rescue, --rescue 

	
Turn on rescue mode, i.e. try to skip bad sectors.

	
-sc, -scs, --skip-check-restorable, --skip-check-restorable-s 

	
By default Clonezilla will check the image if restorable after it is created. This option allows you to skip that.

	
-z0, --no-compress   

	
Don’t compress when saving: very fast but very big image file (NOT compatible with multicast restoring!!!)

	
-z1, --gzip-compress 

	
Compress using gzip when saving: fast and small image file (default)

	
-z1p, --smp-gzip-compress

	
Compress using parallel gzip program (pigz) when saving: fast and small image file, good for multi-core or multi-CPU machine

	
-z2, --bz2-compress  

	
Compress using bzip2 when saving: slow but smallest image file

	
-z2p, --smp-bzip2-compress 

	
Compress using parallel bzip2 program (lbzip2) when saving: faster and smallest image file, good for multi-core or multi-CPU machine

	
-z3, --lzo-compress  

	
Compress using lzop when saving: similar to the size by gzip, but faster than gzip.

	
-z4, --lzma-compress  

	
Compress using lzma when saving: slow but smallest image file, faster decompression than bzip2.

	
-z5, --xz-compress  

	
Compress using xz when saving: slow but smallest image file, faster decompression than bzip2.

	
-z5p, --smp-xz-compress 

	
Compress using parallel xz when saving: slow but smallest image file, faster decompression than bzip2.

	
-z6, --lzip-compress  

	
Compress using lzip when saving: slow but smallest image file, faster decompression than bzip2.

	
-z6p, --smp-lzip-compress 

	
Compress using parallel lzip when saving: slow but smallest image file, faster decompression than bzip2.

	
-z7, --lrzip-compress 

	
Compress using lrzip when saving.

	
-i, --image-size SIZE 

	
Set the split image file volume size SIZE (MB). When ocs-sr is run with -x, the default SIZE is set as 4096, if without -x, we will not split it.
Some words are reserved for IMAGE_NAME, "ask_user" is used to let user to input a name when saving an image. "autoname" is used to automatically generate the image name based on network card MAC address and time. "autohostname" is used to automatically generate the image name based on hostname. "autoproductname" is used to automatically generate the image name based on hardware product model gotten from dmidecode.
A word is reserved for DEVICE, "ask_user" could be used to let user to select the source device when saving an image.



Options for restoring:
	
-f, --from-part-in-img PARTITION  

	
Restore the partition from image. This is especially for "restoreparts" to restore the image of partition (only works for one) to different partition, e.g. sda1 of image to sdb6.

	
-g, --grub-install GRUB_PARTITION 

	
Install grub in the MBR of the disk containing partition GRUB_PARTITION with root grub directory in the same GRUB_PARTITION when restoration finishs, GRUB_PARTITION can be one of "/dev/hda1", "/dev/hda2"… or "auto" ("auto" will let clonezilla detect the grub root partition automatically). If "auto" is assigned, it will work if grub partition and root partition are not in the same partition.

	
-r, --resize-partition 

	
Resize the partition when restoration finishes, this will resize the file system size to fit the partition size. It is normally used when when a small partition image is restored to a larger partition.

	
-k, --no-fdisk, --no-create-partition 

	
Do NOT create partition in target harddisk. If this option is set, you must make sure there is an existing partition table in the current restored harddisk. Default is to create the partition table.

	
-icrc, --icrc 

	
Skip Partclone CRC checking.

	
-irhr, --irhr 

	
Skip removing the Linux udev hardware records on the restored GNU/Linux.

	
-irvd, --irvd 

	
Skip removing the NTFS volume dirty flag after the file system is restored.

	
-ius, --ius   

	
Skip updating syslinux-related files on the restored GNU/Linux.

	
-icds, --ignore-chk-dsk-size-pt 

	
Skip checking destination disk size before creating the partition table on it. By default it will be checked and if the size is smaller than the source disk, quit.

	
iefi, --ignore-update-efi-nvram 

	
Skip updating boot entries in EFI NVRAM after restoring.

	
-k1, 

	
Create partition table in the target disk proportionally.

	
-k2, 

	
Enter command line prompt to create partition table manually before restoring image.

	
-scr, --skip-check-restorable-r 

	
By default Clonezilla will check the image if restorable before restoring. This option allows you to skip that.

	
-t, --no-restore-mbr 

	
Do NOT restore the MBR (Mater Boot Record) when restoring image. If this option is set, you must make sure there is an existing MBR in the current restored harddisk. Default is Yes

	
-u, --select-img-in-client 

	
Input the image name in clients

	
-e, --load-geometry 

	
Force to use the saved CHS (cylinders, heads, sectors) when using sfdisk

	
-e1, --change-geometry NTFS-BOOT-PARTITION 

	
Force to change the CHS (cylinders, heads, sectors) value of NTFS boot partitoin after image is restored. NTFS-BOOT-PARTITION can be one of "/dev/hda1", "/dev/hda2"… or "auto" ("auto" will let clonezilla detect the NTFS boot partition automatically)

	
-e2, --load-geometry-from-edd 

	
Force to use the CHS (cylinders, heads, sectors) from EDD (Enhanced Disk Device) when creating partition table by sfdisk

	
-y, -y0, --always-restore, --always-restore-default-local 

	
Let Clonezilla server as restore server, i.e. client will always has restore mode to choose (However default mode in PXE menu is local boot)

	
-y1, --always-restore-default-clone 

	
Let Clonezilla server as restore server, i.e. client will always has restore mode to choose (The default mode in PXE menu is clone, so if client boots, it will enter clone always, i.e. clone forever)

	
-j, --create-part-by-sfdisk 

	
Use sfdisk to create partition table instead of using dd to dump the partition table from saved image (This is default)

	
-j0, --create-part-by-dd 

	
Use dd to dump the partition table from saved image instead of sfdisk. ///Note/// This does NOT work when logical drives exist.

	
-j1, --dump-mbr-in-the-end 

	
Use dd to dump the MBR (total 512 bytes, i.e. 446 bytes (executable code area) + 64 bytes (table of primary partitions) + 2 bytes (MBR signature; # 0xAA55) = 512 bytes) after disk image was restored. This is an insurance for some hard drive has different numbers of cylinder, head and sector between image was saved and restored.

	
-j2, --clone-hidden-data 

	
Use dd to clone the image of the data between MBR (1st sector, i.e. 512 bytes) and 1st partition, which might be useful for some recovery tool.

	
-hn0 PREFIX 

	
Change the hostname of M$ Windows based on the combination of hostname prefix and IP address, i.e. PREFIX-IP

	
-hn1 PREFIX 

	
Change the hostname of M$ Windows based on the combination of hostname prefix and NIC MAC address, i.e. PREFIX-MAC

	
--max-time-to-wait TIME 

	
When not enough clients have connected (but at least one), start anyways when TIME seconds since first client connection have pased. This option is used with --clients-to-wait

	
-cm, --check-md5sum 

	
Check the MD5 checksum for the image. To use this option, you must enable -gm|--gen-md5sum option when the image is saved. Note! It might take a lot of time to check if the image size is large.

	
-cs, --check-sha1sum 

	
Check the SHA1 checksum for the image. To use this option, you must enable -gs|--gen-sha1sum option when the image is saved. Note! It might take a lot of time to check if the image size is large.

	
-cmf, --chk-chksum-for-files-in-dev 

	
Check the checksum for the files in the device. To use this option, you must enable -gmf|--gen-chksum-for-files-in-dev when the image is saved. Note! (1) The file system must be supported by Linux kernel so that it can be mounted as read-only to check the files. (2) It might take a lot of time to check if there are many files in the source device.

	
-srel, --save-restore-error-log 

	
Save the error log file in the image dir. By default the log file won’t be saved when error occurs.

	
--mcast-port   NO 

	
Assign the udp port number for multicast restore. This is used by clonezilla server. Normally it’s not necessary to manually assign this option.
Some words are reserved for IMAGE_NAME, "ask_user" is used to let user to input a name when saving an image. "autoproductname" is used to automatically get the image name based on hardware product model from dmidecode.
A word is reserved for DEVICE, "ask_user" could be used to let user to select the source device when saving an image.



General options:
	
l, --language INDEX 

	
Set the language to be shown by index number:
      [0|en_US.UTF-8]: English,
      [1|zh_TW.BIG5]: Traditional Chinese (Big5) - Taiwan,
      [2|zh_TW.UTF-8]: Traditional Chinese (UTF-8, Unicode) - Taiwan
      [a|ask]: Prompt to ask the language index

	
-b, -batch, --batch 

	
(DANGEROUS!) Run program in batch mode, i.e. without any prompt or wait for pressing enter key.  //NOTE// You have to use -batch instead of -b when you want to use it in the boot parameters. Otherwise the program init on system will honor -b, too.

	
-c, --confirm 

	
Wait for confirmation before saving or restoring

	
-d, --debug-mode  

	
Enter command mode to debug before saving/restoring

	
--debug=LEVEL 

	
Output the partimage debug log in directory /var/log/ with debug LEVEL (0,1,2… default=0)

	
-m, --module  MODULE  

	
Force to load kernel module MODULE, this is useful when some SCSI device is not detected. NOTE! Use only one module, more than one may cause parsing problem.

	
-o0, --run-prerun-dir 

	
Run the script in the direcoty /usr/share/drbl/postrun/ocs/ before clone is started. The command will be run before MBR is created or saved.

	
-o1, -o, --run-postrun-dir 

	
Run the script in the direcoty /usr/share/drbl/postrun/ocs/ when clone is finished. The command will be run before that assigned in -p or --postaction.

	
-w, --wait-time TIME 

	
Wait for TIME secs before saving/restoring

	
-nogui, --nogui 

	
Do not show GUI (TUI) of Partclone or Partimage, use text only

	
-a, --no-force-dma-on 

	
Do not force to turn on HD DMA

	
-mp, --mount-point MOUNT_POINT 

	
Use NFS to mount MOUNT_POINT as directory ocsroot (ocsroot is assigned in drbl.conf)

	
-or, --ocsroot DIR 

	
Specify DIR (absolute path) as directory ocsroot (i.e. overwrite the ocsroot assigned in drbl.conf)

	
-p, --postaction [choose|poweroff|reboot|command|CMD] 

	
When save/restoration finishs, choose action in the client, poweroff, reboot (default), in command prompt or run CMD

	
-ns, --ntfs-progress-in-image-dir 

	
Save the ntfsclone progress tmp file in the image dir so that if cloning is in DRBL client, the progress can be check in the server (Default in to be put in local /tmp/, which is local tmpfs).

	
-um, --user-mode [beginner|expert] 

	
Specify the mode to use. If not specified, default mode is for a beginner.

	
-v, --verbose 

	
Prints verbose information

	
-d0, --dialog 

	
Use dialog

	
-d1, --Xdialog 

	
Use Xdialog

	
-d2, --whiptail 

	
Use whiptail

	
-d3, --gdialog 

	
Use gdialog

	
-d4, --kdialog 

	
Use kdialog

	
-x, --interactive 

	
Interactive mode to save or restore.



Example:
	
To save or restore image in client (Only that DRBL client will join, and its local partitions is NOT mounted). NOTE!!! You should run the command in DRBL client or you have to make sure the target device is NOT busy!.
To save all the data in local first IDE harddrive hda as image IMAGE1, use ntfsclone instead of partimage, and lzop compression (NOTE!!! You should run the command in DRBL client or make sure hda is NOT busy/mounted!):
ocs-sr --use-ntfsclone -z3 savedisk IMAGE1 hda

	
To save the data in first and second partitions in local first IDE harddrive hda as image IMAGE2, use ntfsclone instead of partimage, and lzop compression (NOTE!!! You should run the command in DRBL client, or make sure hda is NOT busy/mounted!):
ocs-sr --use-ntfsclone -z3 saveparts IMAGE2 "hda1 hda2"

	
To restore image IMAGE1 to local hda. grub-install will be run after cloning (image IMAGE1 is already in DRBL server. NOTE!!!  You should run the command in DRBL client or make sure hda is NOT busy/mounted!):
ocs-sr -g auto restoredisk IMAGE1 hda

	
To restore image first and second partitions from IMAGE2 to local hda1 and hda2. grub-install will be run after cloning (image IMAGE2 is already in DRBL server. NOTE!!!  You should run the command in DRBL client or make sure hda is NOT busy/mounted!):
ocs-sr -g auto restoreparts IMAGE2 "hda1 hda2"

	
To save disk(s)/partitition(s) as an image or restore an image to disk(s)/partitition(s) interactively, use:
ocs-sr -x




disk-to-disk Operation



http://drbl.org/management/techrpt.php?c=ocs-onthefly&t=Clone%20disk%20or%20partition%20on-the-fly
Clone disk or partition on-the-fly
The "ocs-onthefly" is used to do disk to disk or partition to partition copy on-the-fly. This command is different from drbl-ocs (or clonezilla). Clonezilla is used to do massively clone, so it will save the template machine as an image in clonezilla server. On the other hand, ocs-onthefly is used to 1 to 1 copy, so no image will be saved in the server. Just clone disk or partition directly.
There are 2 ways to run ocs-onthefly:
	
Clone locally: Boot the machine as DRBL client, then clone one disk to another disk. This is specially for when you just want to clone disk, and you only have one machine.

	
Clone via network: Boot the source and target machine as DRBL clients, then clone disk from one machine to another machine. This is specially for you have 2 machines, and you want to clone them without dismantling machine.



Usage:
ocs-onthefly [OPTION]
Option:
	
-e, --resize-partition 

	
resize the target disk in target machine (To solve the small partition image restored to larger partition problem.)

	
-f, --source DEV 

	
specify the source device as DEV (hda, hda1…)

	
-g, --grub-install GRUB_PARTITION 

	
install grub in hda with root grub directory in GRUB_PARTITION when restoration finishs, GRUB_PARTITION can be one of "/dev/hda1", "/dev/hda2"… or "auto" ("auto" will clonezilla detects the grub root partition automatically)

	
-i, --filter PROGRAM 

	
use the PROGRAM (gzip/lzop/bzip2/cat) before sending partition data to netcat (only in network clone mode). The default action is gzip. Use "cat" if you do not want to compress (Good for fast internode network).

	
-n, --no-sfdisk 

	
skip partition table creation

	
-m, --no-mbr-clone 

	
do NOT clone MBR

	
-o, --load-geometry 

	
force to use the saved CHS (cylinders, heads, sectors) when using sfdisk in restoring.

	
-p, --port PORT 

	
specify the netcat port (Only in network clone mode)

	
-r, --server 

	
specify the running machine is in network clone server.

	
-s, --source-IP 

	
IP specify the source IP address (used in target client machine).

	
-t, --target DEV 

	
specify the target device as DEV (hda, hda1…)

	
-v, --verbose 

	
prints verbose information



ocs-onthefly [OPTION]
Examples:
	
Clone locally: To clone the 1st harddisk (hda) to 2nd harddisk (hdb), you can boot this machine as DRBL client, then run:
ocs-onthefly -f hda -t hdb

	
Clone via network: To clone the 1st harddisk (hda) in machine A to the 1st harddisk (hda) in machine B. Then without dismantling machines, you can do it by:
Boot machine A as DRBL client, and it’s IP address is, say, 192.168.100.1, then run:
ocs-onthefly -r -f hda



Then it will prompt you the command to run in machine B, such as:
ocs-thefly --source-IP 192.168.100.1 -t [TARGET_DEV] (TARGET_DEV is like hda, hdb, hda1, hdb1…)
The "TARGET_DEV" is the target harddisk in machine B, in this case, it hda.
Then, boot machine B as DRBL client, and run:
ocs-onthefly --source-IP 192.168.100.1 -t hda



9.13. opsi-server with multiple depots (free)



Concept



Supporting multiple depot shares in opsi aims at the following targets:
	
central configuration data storage and configuration management

	
providing the software depots on local servers

	
automated deployment of software packages from the central server to the local depots



Accordingly, it is implemented:
	
All configuration data is stored on the central opsi-config-server.

	
All clients connect to this opsi-config-server in order to request their configuration data. The configuration data comprise the information on method and target of the opsi-depot-server connection.

	
All installable software is stored on opsi-depot-servers.

	
The opsi-depot-servers have as well an opsipxeconfd running by which they provide boot-images to clients via PXE/tftp.

	
opsi-package-manager
A program to (de-)install opsi packages on one ore more opsi-depot-servers.

	
The opsi packages are copied via webdav protocol to the opsi-depot-servers and are installed from the opsiconfd via a web service call.

	
opsi-configed supports the management of multiple depots.

	
Clients connected to different depots can be managed in one bundle if the involved depots are synchronized (have all product packages in identical versions).



The following schema gives a more detailed view on the communication between the components of a opsi multi depot share environment.
Figure 143. Scheme: opsi config server without attached depot server (single location)
[image: Scheme: opsi-config server without attached depot server]


Figure 144. Scheme: opsi config server with attached depot server (multi location)
[image: Scheme: opsi-config server with attached depot server]



Creating an depot server



In order to create an opsi-depot-server you have to install a standard opsi-server. This opsi-server can be configured to act as opsi-depot-server by calling the script opsi-setup --register-depot as user root on the server which should become the opsi-depot-server. Because this script does not only reconfigure the local server, but also registers this server as opsi-depot-server with the central opsi-config-server, username and password of a member of the opsiadmin group have to be supplied here.
On Univention Corporate Server the registration of a opsi-depot-server happens automatically.
The first server with an opsi installation is used as opsi-config-server and all following in a UCS domain installed systems will register
there as an opsi-depot-server.
Example:
svmdepotde.svm.local will be reconfigured as opsi-depot-server and registered at the opsi-config-server sepiella.svm.local:
root@svmdepotde.svm.local:~# opsi-setup --register-depot
Now you will be prompted for the opsi-config-server you want to connect to . The registration needs to be authorised by
supplying the username and password of a member of the group opsiadmin at the opsi-config-server.
Figure 145. opsi-setup --register-depot : Enter opsiadmin account for the opsi-config-server
[image: opsi-setup-registerdepot-1]


Now the opsi-depot-server settings are being displayed. In most cases no changes have to be made.
Note that the new opsi-depot-server will register as a "Master-Depot", so that you’ll be able to assign opsi-clients to it.
Figure 146. opsi-setup --register-depot : depot settings
[image: opsi-setup-registerdepot-2]


After the data input is completed the configuration process will start:
[5] [Apr 06 12:32:19] Getting current system config (opsi-setup|70)
[5] [Apr 06 12:32:19] System information: (opsi-setup|117)
[5] [Apr 06 12:32:19]    distributor  : Debian (opsi-setup|118)
[5] [Apr 06 12:32:19]    distribution : Debian GNU/Linux 5.0.8 (lenny) (opsi-setup|119)
[5] [Apr 06 12:32:19]    ip address   : 172.16.166.33 (opsi-setup|120)
[5] [Apr 06 12:32:19]    netmask      : 255.255.255.0 (opsi-setup|121)
[5] [Apr 06 12:32:19]    subnet       : 172.16.166.0 (opsi-setup|122)
[5] [Apr 06 12:32:19]    broadcast    : 172.16.166.255 (opsi-setup|123)
[5] [Apr 06 12:32:19]    fqdn         : svmdepotde.svm.local (opsi-setup|124)
[5] [Apr 06 12:32:19]    hostname     : svmdepotde (opsi-setup|125)
[5] [Apr 06 12:32:19]    domain       : svm.local (opsi-setup|126)
[5] [Apr 06 12:32:19]    win domain   : OPSI (opsi-setup|127)
[5] [Apr 06 12:46:03] Creating depot 'svmdepotde.svm.local' (opsi-setup|2342)
[5] [Apr 06 12:46:03] Getting depot 'svmdepotde.svm.local' (opsi-setup|2345)
[5] [Apr 06 12:46:03] Testing connection to config server as user 'svmdepotde.svm.local' (opsi-setup|2354)
[5] [Apr 06 12:46:04] Successfully connected to config server as user 'svmdepotde.svm.local' (opsi-setup|2359)
[5] [Apr 06 12:46:04] Updating backend config '/etc/opsi/backends/jsonrpc.conf' (opsi-setup|2361)
[5] [Apr 06 12:46:04] Backend config '/etc/opsi/backends/jsonrpc.conf' updated (opsi-setup|2373)
[5] [Apr 06 12:46:04] Updating dispatch config '/etc/opsi/backendManager/dispatch.conf' (opsi-setup|2375)
[5] [Apr 06 12:46:04] Dispatch config '/etc/opsi/backendManager/dispatch.conf' updated (opsi-setup|2388)
[5] [Apr 06 12:46:04] Setting rights (opsi-setup|410)
[5] [Apr 06 12:46:06] Setting rights on directory '/tftpboot/linux' (opsi-setup|482)
[5] [Apr 06 12:46:06] Setting rights on directory '/home/opsiproducts' (opsi-setup|482)
[5] [Apr 06 12:46:06] Setting rights on directory '/var/log/opsi' (opsi-setup|482)
[5] [Apr 06 12:46:06] Setting rights on directory '/etc/opsi' (opsi-setup|482)
[5] [Apr 06 12:46:06] Setting rights on directory '/var/lib/opsi' (opsi-setup|482)
[5] [Apr 06 12:46:06] Setting rights on directory '/var/lib/opsi/depot' (opsi-setup|482)
[5] [Apr 06 12:46:27] Restarting services (opsi-setup|2392)
[5] [Apr 06 12:46:35] Configuring client user pcpatch (opsi-setup|347)
[5] [Apr 06 12:46:35]    Creating RSA private key for user pcpatch in '/var/lib/opsi/.ssh/id_rsa' (opsi-setup|361)
[5] [Apr 06 12:46:35] Setting rights (opsi-setup|410)
[5] [Apr 06 12:46:38] Setting rights on directory '/var/lib/opsi/.ssh' (opsi-setup|482)
Per default it will be necessary to edit the /etc/opsi/opsi-product-updater.conf config - file on the new depot.
If the new depot should only update its packages from the main server, something like this should remain the only active repo-section:
[repository_master]
active = true
opsiDepotId = bonifax.uib.local
autoInstall = true
autoUpdate = true
autoSetup = false
; Inherit ProductProperty defaults from master repository
inheritProductProperties = false
Non-interactive registration of a opsi-depot-server



Since opsi-depotserver 4.0.7.2 it is possible to register a depot without interaction.
To do this the data for the connection to the opsi-config-server has to be passed as JSON object alongside the parameter --unattended.
opsi-setup --register-depot --unattended '{"address": "config.server.address:4447/rpc", "username": "adminuserinopsi", "password": "pwoftheuser"}'
The opsi-depot-server will be created with defaults.
It is possible to set custom attributes for the opsi-depot-server.
For this the JSON object needs to get the key depot and as a value another
JSON object with the custom values.
The following example illustrates how to set a custom description:
opsi-setup --register-depot --unattended '{"address": "config.server.address:4447/rpc", "username": "adminuserinopsi", "password": "pwoftheuser", "depot": {"description": "Added with unattended registration."}}'


package management with multiple depots



see also:
the section called “Tool: opsi-package-manager: (de-)installs opsi-packages”
the section called “Tool: opsi-product-updater”
In or to manage opsi-packages with different opsi-depot-server the opsi-package-manager got the option -d ( or --depot). With this option you can give the target opsi-depot-server for the installation. Using the keyword ALL the opsi package will be copied to /var/lib/opsi/repository on all known opsi-depot-servers and then installed via a web service call.
If you don’t give the option -d, the opsi package will be only installed on the local server (without upload to /var/lib/opsi/repository).
Example:
Install the package softprod_1.0-5.opsi on all known opsi-depot-servers:
opsi-package-manager -d ALL -i softprod_1.0-5.opsi
In order to get information’s about what are the differences between depots you may call opsi-package-manager with the option -D (or --differences).
Example:
Show the differences between all known depots regarding the product mshotfix
opsi-package-manager -D -d ALL mshotfix
mshotfix
    vmix12.uib.local :  200804-1
    vmix13.uib.local :  200804-1
    bonifax.uib.local:  200805-2


9.14. Dynamic Depot Assignment (free)



Introduction



With the standard opsi multi depot support, the clients are assigned to a designated depot. This is now extended with the option, that for download speed-up, each client can dynamically detect a suitable depot to download software packages from.
For most cases an assignment according to the IP address might be the easiest and suitable solution. For other network topologies, e.g. a star topology VPN network, this might not be sufficient.
Therefore a mechanism is required for the client to detect dynamically, which depot to connect for download of software packages. The specific assignment algorithm and implementation depends on the network topology and other special customer requirements. So it is best to have this adaptable and configurable.
To offer the option, that the client can detect the suitable depot according to the current network conditions, it must be ensured, that the alternative depots are synchronized, which means they offer the same software packages. In practice the depots will not be synchronized at all times. So the list of alternative depots offered to a client is limited to those depots, which are synchronized with the clients master depot. The master depot of a client is the depot, which the client is assigned to. So the master depot defines, which software version is to be installed on the client.
The opsi concept for this is as follows:
The opsi config-server provides a client script, which can be requested and executed by the client. This script determines, which depot is to be used according to the current conditions. The interfaces to the client script are specified as:
the interface to get the list of available servers and the current client configuration (IP address, netmask, gateway) and to return the result of the selection procedure. Furthermore there are interfaces for logging and user information about the processing progress.
So the actual implementation within the script can easily be adapted to the requirements of the particular opsi environment.
Regarding to this concept the single steps of a client connect are as follows:
	
The client connects to the opsi opsi-configserver via web service.

	
The opsi-configserver passes to the client the list of software packages to be installed.

	
The opsi-configserver transmits to the client the script for detecting the best depot and the list of available depots.

	
The client executes the script and determines the best depot.

	
The client connects the chosen depot to get the required software packages.

	
The client installation status is reported to the opsi-configserver.




Requirements



This option requires opsi version >= 4.0.
This opsi extension is free now.
It finished the cofunding process in March 2013.
For more details see Section 9.1, “Activation of non free modules”.
The following package versions are required:
Table 24. required packages
	opsi package	version
	opsi-client-agent
	>=4.0-11

	opsi-configed
	>=4.0.1.5-1

	python-opsi
	>=4.0.0.18-1




Note
The depot selection is made through the opsi-client-agent. This means that the functionality is not present for netboot products.


Configuration



The script for the dynamic depot assignment is expected on the server as:
/etc/opsi/backendManager/extend.d/70_dynamic_depot.conf
To activate the dynamic depot assignment for a client, the following host parameter has to be set:
clientconfig.depot.dynamic = true
This can be done with the opsi-configed  from the tab host parameter.
Alternatively this can be done at the command line with the opsi-admin  (in this case <client-id> is the FQDN, e.g. client1.uib.local):
opsi-admin -d method configState_create \
clientconfig.depot.dynamic <client-id> [True]
The result can be checked by calling:
opsi-admin -d method configState_getObjects \
[] '{"configId":"clientconfig.depot.dynamic","objectId":"<client-id>"}'

Editing the depot properties



The properties of a depot are partly queried while registering an opsi-server as a depot by executing the command: opsi-setup --register-depot (see the section called “Creating an depot server”).
The properties of a depot can be edited. This can be done from the management interface as well as from the command line.
Figure 147. Showing the properties of a depot (2nd button from the left)
[image: Showing the properties of a depot]


The depot properties can be called by the button Properties of depots from the management interface (the buttons are in the upper right corner).
Figure 148. Depot properties from the opsi-configed
[image: Depot properties from the opsi-configed]


From the command line the depot properties can be shown by the method host_getObjects. Here e.g. for the depot dep1.uib.local.
opsi-admin -d method host_getObjects [] '{"id":"dep1.uib.local"}'
This call results in the following output:
[
          {
          "masterDepotId" : "masterdepot.uib.local",
          "ident" : "dep1.uib.local",
          "networkAddress" : "192.168.101.0/255.255.255.0",
          "description" : "Depot 1 Master Depot",
          "inventoryNumber" : "",
          "ipAddress" : "192.168.105.1",
          "repositoryRemoteUrl" : "webdavs://dep1.uib.local:4447/repository",
          "depotLocalUrl" : "file:///var/lib/opsi/depot",
          "isMasterDepot" : true,
          "notes" : "",
          "hardwareAddress" : "52:54:00:37:c6:8b",
          "maxBandwidth" : 0,
          "repositoryLocalUrl" : "file:///var/lib/opsi/repository",
          "opsiHostKey" : "6a13da751fe76b9298f4ede127280809",
          "type" : "OpsiDepotserver",
          "id" : "dep1.uib.local",
          "depotWebdavUrl" : "webdavs://dep1.uib.local:4447/depot",
          "depotRemoteUrl" : "smb://dep1/opsi_depot"
          }
]
To edit the depot properties  on the command line, the output can be redirected to a file:
opsi-admin -d method host_getObjects [] '{"id":"dep1.uib.local"}' \
> /tmp/depot_config.json
The resulting file (/tmp/depot_config.json) can now be edited and then written back with the following command:
opsi-admin -d method host_createObjects < /tmp/depot_config.json
The depot properties, which are relevant for the dynamic depot assignment, are as follows:
	
isMasterDepot
Must be true for assigning a client to that depot.
If this is set to false no clients can be assigned but the depot may still be used for dynamic depot selection.

	
networkAddress
Network address for that depot. The network address can be specified in two different notations:

	
network/netmask, example:  192.168.101.0/255.255.255.0

	
network/maskbits, example: 192.168.101.0/24






Whether the networkAddress is actually evaluated for the depot assignment depends on the script algorithm.
The default algorithm, as provided by uib, uses that parameter.

Synchronizing the depots



The opsi tools for synchronizing the depots are:
	
opsi-package-manager

	
opsi-productupdater



The opsi-package-manager, when installing an opsi package, can be configured by the parameter -d ALL to install the package not only on the current server, but also on all known depots. Example:
opsi-package-manager -i opsi-template_1.0-20.opsi -d ALL
By using the parameter -D the opsi-package-manager can be instructed to list the differences between depots. In this case the option -d must specify a list of depots or refer to all known depots by -d ALL. Example:
opsi-package-manager -D -d ALL
The opsi-package-manager also is the tool for a push synchronization.
Whereas the tool opsi-product-updater is meant for pull synchronization.
The opsi-product-updater on the depot servers can be configured as a cronjob.
Therefore in the configuration file of the opsi-product-updater (/etc/opsi/opsi-product-updater.conf) set in the section [repository_uib] active = false, and in the section [repository_master] active = true.
Also, in the same section, set  opsiDepotId to the depot ID (FQDN) to synchronize with.
The opsi-product-updater then synchronizes with the specified depot all the packages in the directory /var/lib/opsi/repository.
Caution
When a package is installed on an opsi server with the command opsi-package-manager -i, the package is not installed to the repository directory.
To get the package to the repository directory, the name of the depot can be specified by the -d option. Alternatively the upload of the package to the repository directory can be done by opsi-package-manager -u <package name>.

Please refer to the documentation of the tools opsi-package-manager and opsi-product-updater in the opsi manual.

Processing



If the dynamic depot assignment is activated for a client by the host parameter clientconfig.depot.dynamic, the client retrieves the script via web service and executes it.
The script to be used for dynamic assignment is:
/etc/opsi/backendManager/extend.d/70_dynamic_depot.conf
Following parameters are passed to the function selectDepot, which is defined in the script:
	
clientConfig
Information about the current client configuration (hash).
The clientConfig hash keys are currently:

	
"clientId": opsi host ID of the client (FQDN)

	
"ipAddress": IP address of the network interface to the opsi-config-server

	
"netmask" : netmask of the network interface

	
"defaultGateway": default gateway




	
masterDepot
Information regarding the master depot (opsi-depot-server-object). The master depot is the depot which the client is assigned to from the management interface.
The attributes of the passed opsi-depot-server-object match the attributes as given by host_getObjects (see the section called “Editing the depot properties”).

	
alternativeDepots
Information about the alternative depots (list of opsi-depot-server-objects).
The list of alternative depots lists the depots, which are, regarding the required software packages, identical to the master depot.



Based on this information, the assignment algorithm can pick a depot from the provided depot list and return the opsi-depot-server-object of the chosen depot as the result of the function.
If the assignment algorithm does not find a suitable depot from the list (or if the provided list is empty), the return result should be the master depot object.

Template of the assignment script



The template script checks the network addresses of the given depots and picks the depot which is in the same network as the client.
The template script offers example functions for depot detection.
The function depotSelectionAlgorithmByNetworkAddress checks the network addresses of the depots and selects the depot which is in the same network as the client.
The function depotSelectionAlgorithmByLatency sends ICMP „echo-request“-packages (ping) to the depots and selects the depot with the lowest latency.
The function depotSelectionAlgorithmByMasterDepotAndLatency aims for the use in environments with more than one master depots that can have zero-to-many slave depots themselves. It will determine the depot with the lowest latency based on the same check as depotSelectionAlgorithmByLatency from a list containing the master depot of the current client and its slave depots.
The function getDepotSelectionAlgorithm is called by the client and returns the algorithm for depot selection.
The template script uses as default the function depotSelectionAlgorithmByNetworkAddress.
# -*- coding: utf-8 -*-

global depotSelectionAlgorithmByNetworkAddress
depotSelectionAlgorithmByNetworkAddress = \
'''
def selectDepot(clientConfig, masterDepot, alternativeDepots=[]):
        selectedDepot = masterDepot
        logger.info(u"Choosing depot from list of depots:")
        logger.info(u"   Master depot: %s" % masterDepot)
        for alternativeDepot in alternativeDepots:
                logger.info(u"   Alternative depot: %s" % alternativeDepot)
        if alternativeDepots:
                import socket, struct
                # Calculate bitmask of host's ipaddress
                n = clientConfig['ipAddress'].split('.')
                for i in range(4):
                        n[i] = forceInt(n[i])
                ip = (n[0] << 24) + (n[1] << 16) + (n[2] << 8) + n[3]

                depots = [ masterDepot ]
                depots.extend(alternativeDepots)
                for depot in depots:
                        if not depot.networkAddress:
                                logger.warning(u"Network address of depot '%s' not known" % depot)
                                continue
                        (network, netmask) = depot.networkAddress.split(u'/')
                        while (network.count('.') < 3):
                                network = network + u'.0'
                        if (netmask.find('.') == -1):
                                netmask = forceUnicode(socket.inet_ntoa(struct.pack('>I',0xffffffff ^ (1 << 32 - forceInt(netmask)) - 1)))
                        while (netmask.count('.') < 3):
                                netmask = netmask + u'.0'

                        logger.debug(u"Testing if ip %s is part of network %s/%s" % (clientConfig['ipAddress'], network, netmask))

                        n = network.split('.')
                        for i in range(4):
                                n[i] = int(n[i])
                        network = (n[0] << 24) + (n[1] << 16) + (n[2] << 8) + n[3]
                        n = netmask.split('.')
                        for i in range(4):
                                n[i] = int(n[i])
                        netmask = (n[0] << 24) + (n[1] << 16) + (n[2] << 8) + n[3]

                        wildcard = netmask ^ 0xFFFFFFFFL
                        if (wildcard | ip == wildcard | network):
                                logger.notice(u"Choosing depot with networkAddress %s for ip %s" % (depot.networkAddress, clientConfig['ipAddress']))
                                selectedDepot = depot
                                break
                        else:
                                logger.info(u"IP %s does not match networkAddress %s of depot %s" % (clientConfig['ipAddress'], depot.networkAddress, depot))
        return selectedDepot
'''

global depotSelectionAlgorithmByLatency
depotSelectionAlgorithmByLatency = \
'''
def selectDepot(clientConfig, masterDepot, alternativeDepots=[]):
        selectedDepot = masterDepot
        logger.info(u"Choosing depot from list of depots:")
        logger.info(u"   Master depot: %s" % masterDepot)
        for alternativeDepot in alternativeDepots:
                logger.info(u"   Alternative depot: %s" % alternativeDepot)
        if alternativeDepots:
                from OPSI.Util.Ping import ping
                from OPSI.Util.HTTP import urlsplit
                depots = [ masterDepot ]
                depots.extend(alternativeDepots)
                latency = {}
                for depot in depots:
                        if not depot.repositoryRemoteUrl:
                                continue
                        try:
                                (scheme, host, port, baseurl, username, password) = urlsplit(depot.repositoryRemoteUrl)
                                latency[depot] = ping(host)
                                logger.info(u"Latency of depot %s: %0.3f ms" % (depot, latency[depot]*1000))
                        except Exception, e:
                                logger.warning(e)
                if latency:
                        minValue = 1000
                        for (depot, value) in latency.items():
                                if (value < minValue):
                                        minValue = value
                                        selectedDepot = depot
                        logger.notice(u"Choosing depot %s with minimum latency %0.3f ms" % (selectedDepot, minValue*1000))
        return selectedDepot
'''

global depotSelectionAlgorithmByMasterDepotAndLatency
depotSelectionAlgorithmByMasterDepotAndLatency = \
'''
def selectDepot(clientConfig, masterDepot, alternativeDepots=[]):
        def getLatencyInformation(depots):
                from OPSI.Util.Ping import ping
                from OPSI.Util.HTTP import urlsplit

                latency = {}
                for depot in depots:
                        if not depot.repositoryRemoteUrl:
                                continue

                        try:
                                (scheme, host, port, baseurl, username, password) = urlsplit(depot.repositoryRemoteUrl)
                                latency[depot] = ping(host)

                                if latency[depot]:
                                        logger.info(u"Latency of depot %s: %0.3f ms" % (depot, latency[depot]*1000))
                                else:
                                        logger.info(u"Latency of depot %s: N/A" % depot)
                        except Exception, e:
                                logger.warning(e)
                return latency

        def getDepotWithLowestLatency(latency):
                selectedDepot = None
                if latency:
                        minValue = 1000
                        for (depot, value) in latency.items():
                                if not value:
                                        continue
                                if (value < minValue):
                                        minValue = value
                                        selectedDepot = depot
                        logger.notice(u"Choosing depot %s with minimum latency %0.3f ms" % (selectedDepot, minValue*1000))

                return selectedDepot

        logger.info(u"Choosing depot from list of depots:")
        logger.info(u"   Master depot: %s" % masterDepot)
        for alternativeDepot in alternativeDepots:
                logger.info(u"   Alternative depot: %s" % alternativeDepot)

        if alternativeDepots:
                from collections import defaultdict

                # Mapping of depots to its master.
                # key: Master depot
                # value: All slave depots + master
                depotsByMaster = defaultdict(list)

                allDepots = [masterDepot] + alternativeDepots

                for depot in allDepots:
                        if depot.masterDepotId:
                                depotsByMaster[depot.masterDepotId].append(depot)
                        else:
                                depotsByMaster[depot.id].append(depot)

                depotsWithLatency = getLatencyInformation(depotsByMaster[masterDepot.id])
                depotWithLowestLatency = getDepotWithLowestLatency(depotsWithLatency)

                logger.info('Depot with lowest latency: {0}'.format(depotWithLowestLatency))
                if not depotWithLowestLatency:
                        logger.info('No depot with lowest latency. Falling back to master depot.')
                        depotWithLowestLatency = masterDepot

                return depotWithLowestLatency

        return masterDepot
'''

def getDepotSelectionAlgorithm(self):
        #return depotSelectionAlgorithmByMasterDepotAndLatency
        #return depotSelectionAlgorithmByLatency
        return depotSelectionAlgorithmByNetworkAddress

Logging



If the dynamic depot assignment is activated, there are some logs from the depot assignment in opsiclientd.log.
In this shortened example log, the server bonifax.uib.local is config server and master depot for the client pctrydetlef.uib.local. As a master server  the server has the network address 192.168.1.0/255.255.255.0. As an alternative depot  the server stb-40-srv-001.uib.local is available with the network address 192.168.2.0/255.255.255.0.
The client pctry4detlef.uib.local has the IP address 192.168.2.109, which is in the network of the alternative depot.
(...)
[6] [Dec 02 18:25:27] [ opsiclientd                   ] Connection established to: 192.168.1.14   (HTTP.pyo|421)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ]    [ 1] product opsi-client-agent:   setup   (EventProcessing.pyo|446)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Start processing action requests   (EventProcessing.pyo|453)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Selecting depot for products [u'opsi-client-agent']   (Config.pyo|314)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Selecting depot for products [u'opsi-client-agent']   (__init__.pyo|36)
(...)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] Dynamic depot selection enabled   (__init__.pyo|78)
(...)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] Master depot for products [u'opsi-client-agent'] is bonifax.uib.local   (__init__.pyo|106)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] Got alternative depots for products: [u'opsi-client-agent']   (__init__.pyo|110)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] 1. alternative depot is stb-40-srv-001.uib.local   (__init__.pyo|112)
(...)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] Verifying modules file signature   (__init__.pyo|129)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Modules file signature verified (customer: uib GmbH)   (__init__.pyo|143)
(...)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ] Choosing depot from list of depots:   (<string>|4)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ]    Master depot: <OpsiConfigserver id 'bonifax.uib.local'>   (<string>|5)
[6] [Dec 02 18:25:28] [ event processing gui_startup  ]    Alternative depot: <OpsiDepotserver id 'stb-40-srv-001.uib.local'>   (<string>|7)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Choosing depot with networkAddress 192.168.2.0/255.255.255.0 for ip 192.168.2.109   (<string>|40)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Selected depot is: <OpsiDepotserver id 'stb-40-srv-001.uib.local'>   (__init__.pyo|171)
(...)
[5] [Dec 02 18:25:28] [ event processing gui_startup  ] Mounting depot share smb://stb-40-srv-001/opsi_depot   (EventProcessing.pyo|415)
(...)


9.15. opsi Software On Demand (Kiosk-Mode) (free)



Introduction



With the module "Software-on-Demand" opsi administrators may give their users access to install a range of software-products.
These software products may be selected and installed user-driven without the administrator needing to do anything.
This documentation shows how the module "Software-on-Demand" works, describes it’s functions and how to configure it.

Prerequisites



There are some preconditions for using the extension.
The product-groups are needed, available with opsi 4.0.
Furthermore the opsi-client-agent and the opsi-configed at version 4.0.1 are needed.
Table 25. Required Packages
	opsi-Package	Version
	opsi-client-agent
	>=4.0.1-3

	opsi-winst
	>=4.10.8.12

	python-opsi
	>=4.0.1-7

	opsi-depotserver
	>=4.0.1-2

	opsi-configed
	>=4.0.1.6-1




The Software-on-Demand module is tested and declared as stable for the following browsers:
	
Internet Explorer 8

	
Mozilla Firefox 3.6.15




configuration



The configuration of this extension is based on product-groups and config-variables.
The used config-variables are:
	
software-on-demand.active

	
software-on-demand.product-group-ids

	
software-on-demand.show-details



These config-variables are created with installing the opsi-depotserver-package.
Managing product-groups



The most comfortable way to create and manage product-groups is using the opsi-configed.
There you have to change to the tab product configuration.
Tip
Since version 4.0.1.6 of the opsi-configed you can change to product configuration without choosing a client.

The product-group menu is above the product list.
Figure 149. product-group menue
[image: configed_productgroup_en.png]


With the drop down menu you can choose a product-group to edit it.
If you have chosen a group, the corresponding products will be highlighted.

With a second icon, filter can be activated or deactivated.
When a filter was activated, only the products of the activated product-group are seen.

Product-groups can be edited after activating the icon with the yellow packets (show editor / hide editor) next to the icon with the filter.
In this view, a new group and it’s description can be added. Save the editing by activating the red check icon.

If some more products should be added to a group, select them and press the red check icon. (Press the <ctrl> button and select the products).

configure the module Software-On-Demand



The module can be configured, as mentioned above, with the config-variables described in the following table:
Table 26. overview of the config-variables of the module Software-on-Demand
	Configuration	Description	Values
	software-on-demand.active
	activates or deactivates the modul.
	true/false

	software-on-demand.product-group-ids
	Product-groups with software-products, that can be used for Software-on-Demand.
	List of produkt-groups

	software-on-demand.show-details
	Show further information to the user.
	true/false




There are two ways to use these configuration objects.
For the whole system or for each client.
The following 2 chapters will explain both ways.

Configuration for the whole system



The configuration here is the default system wide for every client.
The configuration can be edited in the opsi-configed. Push the Button Server Configuration and change to the tab Host Parameter
Figure 150. part of the module server configuration in the opsi configuration editor
[image: configed_serverconfiguration_en.png]


Another possibility is to change the server-configuration with the following command:
opsi-setup --edit-config-defaults
Figure 151. edit-config-defaults with opsi-setup
[image: editconfigdefaults.png]


Tip
Administration is also possible with the opsi-python-API or with opsi-admin


Configuration for a single client



The configuration for a single client - or client specific configuration - is useful if, for example, only some of the clients should have access to the Software-on-Demand extension. Or if you want to make several product groups available to some clients.
The configuration of the client specific host parameters can be edited in different ways:
The most comfortable way to edit the configuration is via opsi-configed.
Choose one or several clients (even all clients of a client group if you want to)
and then navigate to the tab "Host parameters".
Figure 152. edit hostparameter in the configuration editor
[image: opsi-configed-hostparameters.png]


This editing overrides the system wide defaults.

opsiclientd event-configuration



There are two ways for the users to start the software-installation:
	
with the next system start

	
immediately



If the user chooses "with the next system start", the product state will be set to "setup."
If the choice is "immediately", the opsiclientd creates an event software on demand. This event can be configured in the file opsiclientd.conf as any other event.


New opsiclientkiosk application



With opsi 4.0.7 is the prior Web-based solution of the client kiosk is replaced by an application.
Background for this change is:
	
Elimination of the problem that means to have a self-signed certificate.

	
Greater functionality of the new client.



Caution
The old (Web based) Kiosk client no longer works with the new opsi-client-agent/opsiclientd.

Client Kiosk: Installation



If the opsi-client-agent during the installation notes that, the configuration (Host Parameter): software-on-demand.active is set to true, it will automatically create a Start menu item during the installation on the Client, on which the Kiosk application can be run directly. It can be found under: Start → Programs → opsi.org → software-on-demand.
The installation may be controlled by the following opsi-client-agent product properties:
	
kiosk_startmenue_entry
The Start Menu entry for the Client Kiosk (software on demand).
Default=software on demand; editable

	
kiosk_desktop_icon
Create a desktop icon for client kiosk ?
Default=false



The used icon for the start menu / Desktop may be modified by storing a kiosk.ico file at
/var/lib/opsi/depot/opsi-client-agent/files/opsi/custom/opsiclientkioskskin/.

Clientkiosk: Usage



After starting the application, the following main window will be shown:
Figure 153. opsi-client-kiosk: Main window with tiles (Default Modus)
[image: opsi-client-kiosk: Main window with tiles (Default Modus)]


Elements:
	
Header panel (Customizable to the specification of the customer)

	
Button to start the requested installations

	
Button to end the program

	
Checkbox to activate the expert mode (per Default not active)

	
Search mask (Filter input field)

	
Tiles for the opsi packages



In this view, the main window displays the released products as tiles and with as few operating elements as possible.
In the central area the products are displayed (6). As soon as a product is clicked, detailed information about this one is displayed below.
By clicking on the radio buttons in the Action request field, requirements can be set or deleted.
Using the Install now button (2) the set requirements are sent to the server and then the corresponding installation is started directly.
With the search field (5) you can search specific products. The search will be performed in all the fields of the product. By clicking X in the search field, the search can be deleted and all products will be displayed again.
Using the checkbox Expert mode (4) additional control elements can be displayed.
Figure 154. opsi-client-kiosk: Main window with tiles (Expert Mode)
[image: opsi-client-kiosk: Main window with tiles (Expert Mode)]


Elements:
	
Header panel (Customizable to the specification of the customer)

	
Radiobutton field to switch between tile view (Default) and list view

	
Button to display the set actions

	
Button to save and view the set actions

	
Button to end the program

	
Info button: version and the loaded language

	
Checkbox to activate the expert mode (not active per default)

	
Filter to check possible product upgrades

	
Delete the previously set filter and display all data

	
Reload the data (e.g., after actions have been)

	
Search mask (filter input field)

	
Tiles for the opsi packages



In this view, the main window displays the released products as tiles and with all the additional control elements (expert mode).
The products are displayed in the central area (6). When a product is clicked, detailed information about this product is displayed below.
By clicking the radio buttons in the Action request field, requirements can be set or cleared.
Using the Show Actions button (3), the actions known so far for the application are shown, it’s important to mention that these actions have not been saved yet. Only the Save actions (4) button sends the set actions to the server. This action also checks whether further products have to be set to setup via product dependencies.
Finally, the complete list of the upcoming actions is displayed in a separate window.
Search for specific products using the search field (11). The search will be performed in all the fields of the product. By clicking the X in the search field, the search field will be deleted and all products will be displayed again.
By using the checkbox Expert mode (7) additional control elements are displayed here.
Figure 155. opsi-client-kiosk: Main window with lists (Expert Mode)
[image: opsi-client-kiosk: Main window with lists (Expert Mode)]


Elements:
	
Header panel (Customizable to the specification of the customer)

	
Radiobutton field to switch between tile view (Default) and the list view

	
Button to display the set actions

	
Button to save and display the set actions

	
Button to end the program

	
Info Button: version and loaded language

	
Checkbox to activate the expert mode (per default not active)

	
Filter to check possible product upgrades

	
Delete the set filter and display all data

	
Reload the data (e.g., after actions have been performed)

	
Search mask (filter input field)

	
Product display

	
Column to set the action requirements

	
Tab: Product detail info: Description / Reference / Version

	
Tab: Product detail info: Dependencies / Priorities



The main window displays the shared products as a list in this view.
The products are displayed in the central part (12). As soon as a product is clicked, detailed information about this particular product is displayed below (14/15). An action request can be set on the column ActionRequest (13).
Using the Show Actions button (3), the actions known so far for the application are shown, it’s important to mention that these actions have not been saved yet. Only the Save actions (4) button sends the set actions to the server. This action also checks whether further products have to be set to setup via product dependencies.
Finally, the complete list of the upcoming actions is displayed in a separate window.
Search for specific products using the search field (11). The search will be performed in all the fields of the product. By clicking the X in the search field, the search field will be deleted and all products will be displayed again.
By using the checkbox Expert mode (7) additional control elements are displayed here.
Figure 156. opsi-client-kiosk: Confirm action
[image: opsi-client-kiosk: Confirm action]


This window appears only in the expert mode after using the Store Actions button.
In this window and by using the upper button Install now an immediate installation can be triggered. In that case, it is advisable to close all applications (or at least save your data) since the installation can interfere with the running applications.
The button below Install at next standard event will end the program at this point. All the stored actions will be executed at a later point.
The config Software-on-demand.show details have in the kiosk application no influence prior to 4.0.7 and can be at this point deleted.
Logs of the opsi-client-kiosk program:
The program logs to %Appdata%\opsi.org\log. That is the opsi.org\log directory in the Appdata directory of the loggedin user.
For Example:
C:\Users\<username>\AppData\Roaming\opsi.org\log\


Characteristics



The following apply to the software-on-demand module:
	
Dependencies are resolved automatically

	
Software that depends on software from the Demand group, will automatically be set to setup (install), without interaction from the user..




	
Software that is already set to setup

	
In this case, the Checkbox: install, will be already activated.






Client kiosk: Customizable to Corporate Identity



This Chapter you will find as a part of the Chapter Corporate Identity of the opsi-client-agent: the section called “Elements to be configured: opsiclientd”



9.16. User Profile Management (free)



Preconditions for the extension



This extension was a cofunding project but is released as free since 29 Apr 2015.
see also Section 9.1, “Activation of non free modules”
and
opsi cofunding projects
opsi cofunding contribution
Technical preconditions are opsi 4.0.1 with the following package and product versions:
Table 27. Needed product and package versions
	opsi product	Version
	opsi-client-agent
	>=4.0.1-23

	opsi-winst
	>=4.11.2.1

	python-opsi
	>=4.0.1.31-1




Table 28. Needed product and package versions to run it without activation file
	opsi product	Version
	opsi-client-agent
	>=4.0.5.4-2

	opsi-winst
	>=4.11.4.17-1




Caution
This extension does not work together with the WAN extension. On WAN clients we recommend to not use the login event.


Introduction



The opsi-winst has some special commands to manipulate profiles. These commands act at the local stored profiles. If you are using Roaming Profiles this feature of the opsi-winst does not help you because all modifications at the profiles will be overwritten by the server stored profile while login.
The opsi extension for User Profile Management gives you the possibility to do the needed profile manipulation after the login of the user, at the correct profile. This is done by starting the opsi-winst after the user login again and run some special userLoginScripts.

Concept



If you can’t do the profile manipulation while installing the software on the machine, you have to separate the machine part of the software installation from the profile part. This can be done inside of a script and also by putting the profile part into a separate script. Many admins still use the second idea by integrating profile parts into a domain login script.
According to the method you use the profile part of your opsi products are part of the opsi installation scripts for installation and deinstallation or they are separated for example as part of the domain login scripts.
The goal of this opsi extension is to provide the possibility to integrate both variants of scripts easily.
The core concepts of this opsi extension are:
	
Executing special userLoginScripts scripts at the user login
At the user login the opsiclientd uses the event_user_login to startup the opsi-winst in a special login script mode. In this special mode the opsi-winst executes only the userLoginScripts which are assigned to the opsi products.

	
Executing these scripts with administrative privileges inside the context of the logged in user
Domain login scripts may be used to execute profile parts. But they run only with user privileges. opsi userLoginScripts run with administrative privileges. They run with these high privileges in the user context, so that is easy to manipulate file and registry parts of the profile using the same commands you may use in a domain login script.

	
Executing these scripts inside of the opsi service context
The opsi userLoginScripts run inside the opsi service context, so that they know all details about at which opsi product name, version and package version they are just working. They have the complete access to product properties and other information that can be requested by opsi service calls.



Restrictions:
	
The opsi userLoginScripts will be always executed online and not from a local cache. Even if your client runs with the opsi WAN extension.




New and extended opsi-winst functions



	
Command line parameter /allloginscripts
If you are calling opsi-winst in the opsi service context with the additional parameter /allloginscripts this will lead to the following actions:

	
All products which have a userLoginScript will be detected. Only for these products will be the userLoginScripts executed.

	
The logged in user will be identified. All global constants to user specific directories like %CurrentAppdataDir% will be directed to the directories of the logged-in user. Also the registry operations  (Registry sections and GetRegistryString) which going to HKCU will be executed in a way that they read or write to the current_user hive of the logged-in user.




	
Command line parameter /silent
The command line parameter /silent switches off the opsi-winst standard window in order to not disturb the user.

	
Function GetScriptMode
In order to detect if a script runs as userLoginScript or for example as installation script, the function GetScriptMode gives you two possible values:

	
Machine
The script is  not executed as userLoginScript (but e.g. as setup or uninstall script).

	
Login
The script is executed as userLoginScript.




	
New primary section ProfileActions
This section may be used to the place for calling user profile manipulations. Here a syntax may be used, which make it possible to use this section as a part of a installation script and as a userLoginScript as well. Therefore this primary section will be interpreted in different ways according to the fact if it is called at Machine mode or at Login mode (as userLoginScript):

	
Login
If a script is running as userLoginScript and there is a section  ProfileActions in the script, the script interpretation will start at the ProfleActions section (and not at the Actions section, which will be ignored).

	
Machine
If a script is running as normal istallation script, you may call the section ProfileActions as a sub section. But in difference to a normal sub section it has some special rules: For every called Registry section the modifier /AllNtUserDats is implicit set. gesetzt. For every called Files section the modifier /AllNtUserProfiles is implicit set.
Since Version 4.11.3.2 : For every called Patches section the modifier /AllNtUserProfiles is implicit set.




	
Registry sections

	
Registry sections which should work on the HKCU or HKEY_CURRENT_USER hive in the openkey command, will be executed in login script mode (Login) in a way, that all changes will be made in the registry hive of the logged-in user. The same applies to the functions GetRegistryStringValue*.

	
Registry sections which are called at the normal mode (Machine) with the modifier /AllNtUserDats, may now contain HKCU resp.. HKEY_CURRENT_USER at the openkey command. This gives you the possibility to use the same registry sections in both modes.




	
Winbatch sections with /RunAsLoggedOnUser
Even if the opsi-winst is started by the Login event, it is running in the SYSTEM context and not in the context of the user that just made the login. In order to start a process in the context of the user you should use a winbatch section with the option /RunAsLoggedOnUser.

	
Avoid unnecessary script execution:
With the new script command saveVersionToProfile you save product name, version and package version to the logged-in users profile. These information can be retrieved by the new string function readVersionFromProfile, so that you may see if this script was executed at this profile before. To make the handling easier there is also a new Boolean function scriptWasExecutedBefore. This function checks if there is a version stamp in the profile (like you may do with the readVersionFromProfile command) and set a new stamp to the profile (like you may do with the saveVersionToProfile command). So you may just use this single command in a if statement.
The new string list function getProductMap gives you a hash with all information about the installation states and report to the actual product. So you may see if this product is installed or was uninstalled.

	
Logging
The logs of the userLoginScripts are written to
c:\opsi.org\log\<login user name>_login.log
This log file will be transmitted to the server. At the server they will be stored at /var/log/opsi/userlogin/<clientid>.log.
This log file is handled in append mode. This means new logs will appended to a existing log file of this client. To avoid to large log files, the size of the log files are limited by the server to a maximal size of 5 MB.
You may display these log files at the opsi management interface (opsi-configed) at the tab Log files in the sub tab userlogin.




Examples of userLoginScripts



We are starting with examples that are build in a way that they also may used in a domain login script.
A very simple generic example:
[Actions]
requiredWinstVersion >= "4.11.3.2"
Message "Example Profile Patch ...."

Files_profile_copy
Registry_currentuser_set
Patches_profile_ini "%userprofiledir%\opsi-script-test.ini"

[Files_profile_copy]
copy "%Scriptpath%\profiles\*.*" "%CurrentAppdataDir%\ACME"

[Registry_currentuser_set]
openkey [HKCU\Software\ACME]
set "show_greeting_window" = "no"

[Patches_profile_ini]
add [secdummy] dummy1=add1
A example for firefox configuration:
[Actions]
Message "Firefox Profile Patch ...."

DefVar $akt_profile_ini$
DefVar $rel_prefs_path$

comment "check for existing profile ..."
Set $akt_profile_ini$ = "%CurrentAppdataDir%\Mozilla\Firefox\profiles.ini"
if FileExists($akt_profile_ini$)
        Set $rel_prefs_path$ = GetValueFromInifile($akt_profile_ini$,"Profile0","Path","")
        if FileExists("%CurrentAppdataDir%\Mozilla\Firefox\\"+$rel_prefs_path$)
                comment "We found the profile and will now patch it ....."
        endif
else
        comment "no firefox profile found for user"
endif
At the next example (which simply extends the first example) we show how you may delete things from the profile in the case that this product has been uninstalled. According to what we get from the function getProductMap different parts of the script will be executed.
[Actions]
requiredWinstVersion >= "4.11.3.2"
Message "Example Profile Patch ...."

if getValue("installationstate", getProductMap) = "installed"
        comment "Product is installed"
        Files_profile_copy
        Registry_currentuser_set
        Patches_profile_ini "%userprofiledir%\opsi-script-test.ini"
endif

if getValue("lastactionrequest", getProductMap) = "uninstall"
        comment "Product was uninstalled"
        Files_profile_del
        Registry_currentuser_del
endif

[Files_profile_copy]
copy "%Scriptpath%\profiles\*.*" "%CurrentAppdataDir%\ACME"

[Registry_currentuser_set]
openkey [HKCU\Software\ACME]
set "show_greeting_window" = "no"

[Files_profile_del]
del -s -f "%CurrentAppdataDir%\ACME"
del "%userprofiledir%\opsi-script-test.ini"

[Patches_profile_ini]
add [secdummy] dummy1=add1

[Registry_currentuser_del]
deletekey [HKCU\Software\ACME]
Now a example which shows how standard installation scripts (setup32.ins and delsub32.ins) may used also as userLoginScripts to avoid unneeded code doubling.
setup32.ins:
[Actions]
requiredWinstVersion >= "4.11.3.2"

DefVar $MsiId$
DefVar $UninstallProgram$
DefVar $ProductId$
DefVar $InstallDir$

; ----------------------------------------------------------------
; - Please edit the following values                             -
; ----------------------------------------------------------------
Set $ProductId$       = "ACME"
Set $InstallDir$      = "%ProgramFiles32Dir%\ACME"
; ----------------------------------------------------------------
if GetScriptMode = "Machine"
        comment "Show product picture"
        ShowBitmap "%ScriptPath%\\" + $ProductId$ + ".png" $ProductId$

        if FileExists("%ScriptPath%\delsub32.ins")
                comment "Start uninstall sub section"
                Sub "%ScriptPath%\delsub32.ins"
        endif

        Message "Installing " + $ProductId$ + " ..."

        comment "Start setup program"
        Winbatch_install

        comment "Patch the local Profiles ..."
        Registry_currentuser_set /AllNtUserDats
        Files_profile_copy /AllNtUserProfiles
        Patches_profile_ini "%userprofiledir%\opsi-script-test.ini" /AllNtUserProfiles
endif

if GetScriptMode = "Login"
        comment "login part"
        Files_profile_copy
        Registry_currentuser_set
        Patches_profile_ini "%userprofiledir%\opsi-script-test.ini"
endif


[Winbatch_install]
"%ScriptPath%\setup.exe" /sp- /silent /norestart

[Files_profile_copy]
copy "%Scriptpath%\profiles\*.*" "%CurrentProfileDir%\Appdata\ACME"

[Registry_currentuser_set]
openkey [HKCU\Software\ACME]
set "show_greeting_window" = "no"

[Patches_profile_ini]
add [secdummy] dummy1=add1
delsub32.ins:
Message "Uninstalling " + $ProductId$ + " ..."

if GetScriptMode = "Machine"
        comment "The machine part ..."
        Set $UninstallProgram$ = $InstallDir$ + "\uninstall.exe"
        if FileExists($UninstallProgram$)
                comment "Uninstall program found, starting uninstall"
                Winbatch_uninstall
        endif
        ; does also work since 4.11.2.1
        Registry_currentuser_del /AllNtUserDats
        Files_profile_del /AllNtUserProfiles
endif

if GetScriptMode = "Login"
        comment "The profile part ..."
        Files_profile_del
        Registry_currentuser_del
endif

[Winbatch_uninstall]
"$UninstallProgram$" /silent /norestart

[Files_profile_del]
del -s -f "%CurrentAppdataDir%\ACME"
del "%userprofiledir%\opsi-script-test.ini"

[Registry_currentuser_del]
deletekey [HKCU\Software\ACME]
Now a variant which is variant of the example before. It makes use of the new primary section ProfileAction. This makes the script shorter and it may be still used as installation script and as userLoginScript as well.
[Actions]
requiredWinstVersion >= "4.11.3.2"

DefVar $ProductId$
DefVar $InstallDir$

Set $ProductId$       = "ACME"
Set $InstallDir$      = "%ProgramFiles32Dir%\ACME"

comment "Show product picture"
ShowBitmap "%ScriptPath%\\" + $ProductId$ + ".png" $ProductId$

Message "Installing " + $ProductId$ + " ..."

comment "Start setup program"
Winbatch_install

comment "Patch the local Profiles ..."
ProfileActions

[ProfileActions]
comment "login part"
Files_profile_copy
Registry_currentuser_set
Patches_profile_ini "%userprofiledir%\opsi-script-test.ini"

[Winbatch_install]
"%ScriptPath%\setup.exe" /sp- /silent /norestart

[Files_profile_copy]
copy "%Scriptpath%\profiles\*.*" "%CurrentProfileDir%\Appdata\ACME"

[Registry_currentuser_set]
openkey [HKCU\Software\ACME]
set "show_greeting_window" = "no"

[Patches_profile_ini]
add [secdummy] dummy1=add1
Most of the time, we want to run opsi login-scripts once. Thus, we need to store information on product, version and package version per User. We achieve this by using the following code, which will save opsi product and its versions to a file in the Appdata\opsi.org folder.
[Actions]
requiredWinstVersion >= "4.11.3.2"
Message "Example Profile Patch ...."

comment "Did we run this script before ? - and set version stamp in profile"
if not (scriptWasExecutedBefore)
        comment "loginscript was not run yet "
        Files_profile_copy
        Registry_currentuser_set
        Patches_profile_ini "%userprofiledir%\opsi-script-test.ini"
endif

[Files_profile_copy]
copy "%Scriptpath%\profiles\*.*" "%CurrentAppdataDir%\ACME"

[Registry_currentuser_set]
openkey [HKCU\Software\ACME]
set "show_greeting_window" = "no"

[Patches_profile_ini]
add [secdummy] dummy1=add1

Configuration



In order to use the opsi User Profile Management extension, you have to activate the event_user_login at the opsiclientd configuration.
If the opsi-client-agent at the client is up to date, the (opsi-winst) should be started with the additional parameter /allloginscripts or /loginscripts.
	
/allloginscripts means that at the login event all loginscripts that are known by the opsi-server will be executed - no matter if the according product is well known to the client (installed or formally installed) or not.
This is the default.

	
/loginscripts means that at the login event only those loginscripts will be executed, where the product is well known by the client, which means it is or was installed. (Technically: there exists a productOnClient object for this product and client). Loginscript from products that were never installed on this client will not be executed.



You may activate the event_user_login at the command line with the following command (we set the server-side value to false, so that we can test on single clients first. Activate via Client - Hostparameter - opsiclientd.event_user_login.active > true . Later you might want to activate this feature server-wide):
opsi-admin -d method config_createBool opsiclientd.event_user_login.active "user_login active" false
As additional action_processor (opsi-winst) parameter you may use /silent, which suppress the display of the opsi-winst window.
opsi-admin -d method config_createUnicode opsiclientd.event_user_login.action_processor_command "user_login action_processor" "%action_processor.command% /sessionid %service_session% /loginscripts /silent" "%action_processor.command% /sessionid %service_session% /loginscripts /silent"
These configurations you will also see (and modify) at the opsi management interface (opsi-configed) at the tab Host parameters at the client or server configuration-

Notification



If you have activated the event_user_login (as described above), you will see after every login the user_login_notifier:
Figure 157. User Login Notifier
[image: User Login Notifier]




9.17. opsi Installation on Shutdown (free)



Introduction



Usually the client installation of opsi software packages starts when the client boots. So the user has to wait for the installation to finish, before the user login is granted. So it might be useful to do most of the software installation when the client is going to shut down.
The opsi module for installation on shutdown provides this feature. Selected clients can be configured to perform the installation on shutdown.

Preconditions for Installation on Shutdown



The opsi module Installation on Shutdown can be used for clients with Windows XP or above. The required components are part of the opsi package opsi-client-agent.
The package opsi-client-agent must be version 4.0.2.3-2 or above with an opsiclientd version 4.0.75 or above.
The cofunding of this project has been finished, and thus with opsi version 4.0.5.4-2 it has been added to the core of the free opsi system and doesn’t require a modules file anymore. Older versions of opsi-client-agent still do require a modules file. For further details on cofunding projects see Section 9.1, “Activation of non free modules” and the weblink
opsi cofunding projects.
Some technical restrictions and constraints are the following cases:
	
WAN extension: the Installation on Shutdown module currently is not available for clients that run also the WAN extension. Running the WAN extension on a client under some conditions requires to use the local configuration files, which interferes with the state handling of the installation on shutdown mechanism.

	
Group Policies: part of the mechanism for Installation on Shutdown is based on shutdown scripts per Local Group Policy. Other Group Policies might override these local configurations. In this case, the required configuration for running this shutdown scripts should be included in your Group Policies mechanism. See the section called “Installing by shutdown script” for the required configurations.

	
If the install on shutdown has been triggered by a shutdown or a reboot, the Windows API doesn’t allow to convert a shutdown into a reboot (or vice versa). In case of a shutdown, the installation of any product, that require a reboot, will continue at the next startup of the client.

	
Windows Home Edition: Windows Home does not provide the required Local Group Policy shutdown script mechanism. Therefore Installation on Shutdown cannot be used for Windows Home Edition.

	
Windows 2000: For Windows 2000 clients the maximum timeout for shutdown scripts is 10 minutes. After 10 minutes the installation is aborted by the system. Therefore Installation on Shutdown cannot be used for Windows 2000 clients.




Activating Installation on Shutdown



The required components for Installation on Shutdown are part of the current opsi-client-agent package. Since opsi version 4.0.5.4-2 the modules file is not required for the install on shutdown.
The Installation on Shutdown can be configured for suitable clients (see the section called “Preconditions for Installation on Shutdown”) simply by setting the opsi-client-agent product property on_shutdown_install=on and setting the action request for the opsi-client-agent to update or setup.
That is everything. The rest of the configurations are done by the opsi-client-agent package during update / setup.
Just in case client group policies are already applied, there might be a conflict with the local opsi client group policy setting. In case of such a conflict, the opsi shutdown script group policy entries of the opsi-client-agent package should be disabled (on_shutdown_install_set_policy = off) and instead be added to your local group policy administration, see
the section called “Installing by shutdown script”.
The Installation on Shutdown is done in addition to the Installation at Startup. Usually this is the best way to ensure that the clients always have the current security updates installed, even if the client was off for a long time (when the user was on holiday for instance).
If required, the standard Installation on Startup can be disabled, see the section called “Special Configuration of Installation on Shutdown”. Installations in progress are continued anyway, triggered by the precondition installation_pending.
The Windows system during system shutdown does not distinguish shutdown from reboot. The Installation on Shutdown is started in both cases and it is not possible, to distinguish them during the installation process. Also the Windows API does not allow to transform a system shutdown into a reboot (or vice versa). So in case of a system shutdown, further installations are continued at the next system startup.

Technical Concept



The following explanations are conceived to bring understanding on the technical design and the interactions of the components in case of special configurations or error states. Usually all of the required configurations are done by the opsi-client-agent package.
Overview



The Installation on Shutdown module is based on several system components. A major part of it, is the Windows shutdown script mechanism per Local Group Policy. Shutdown scripts allow to run tasks at shutdown when the user is logged off already, but all the system services are still available.
The shutdown script performs an opsi task, which triggers the opsi system service opsiclientd to start the installation process and waits for the task to end. So the system waits for the installation process to finish and then shuts down. During the shutdown handling, the Windows system does not distinguish shutdown from reboot, so the installation is triggered in either case.
The opsi client service opsiclientd is configured to process the action on_shutdown, which starts the installation process. In case of required reboots, the precondition installation_pending allows the process control. If during an installation a reboot is required before continuing the installation, the precondition installation_pending continues the installation at the next system startup (even if installation at gui_startup is disabled). During the state of installation_pending, no further Installations on Shutdown are triggered, otherwise there would be no reboot between Installation on Startup and Installation on Shutdown. So until the current installation is completed, the Installation on Shutdown is suppressed by the setting event_on_shutdown{installation_pending}.
The following chapter gives some further details on the Installation on Shutdown.

Installing by shutdown script



By special registry entries, the Local Group Policy is configured to perform an opsi shutdown script, which triggers the installation process. The registry entries used by opsi-client-agent are the same as the ones done by the Group Policy-Editor gpedit.msc.
This is how to configure the shutdown script by using the Group Policy-Editor gpedit.msc:
	
Local Computer Policy

	
Computer Configuration

	
Windows Settings

	
Scripts (Startup/Shutdown)

	
Shutdown

	
Scripts - Add - Browse

	
C:\Programs Files\opsi.org\opsi-client-agent\on_shutdown\doinstall32.cmd (or doinstall64.cmd for 64Bit systems)



To configure the system to wait for the completion of the installation process, the maximum waittime is set to infinite (0 seconds):
	
Administrative Templates

	
System - Scripts

	
Maximum Waittime for Group Policy scripts

	
Setting - Enabled - Seconds: 0



The opsi shutdown script doinstall32.cmd / doinstall64.cmd changes the working directory and triggers the on_shutdown event:
echo Start opsi product installation ...
cd "%ProgramFiles%\opsi.org\opsi-client-agent\on_shutdown"
opsiclientd_event_starter.exe --event=on_shutdown
For 64Bit systems:
echo Start opsi product installation ...
cd "%ProgramFiles(x86)%\opsi.org\opsi-client-agent\on_shutdown"
opsiclientd_event_starter.exe --event=on_shutdown
The opsiclientd_event_starter triggers the installation and waits for completion, so the system shutdown is delayed while the opsiclientd_event_starter task is running.

Registry Entries for executing the shutdown script



These registry entries are set by the opsi-client-agent package and start the execution of the shutdown script doinstall32.cmd on WinXP / 32Bit clients. For 64Bit-systems the script name is doinstall64.cmd (instead of doinstall32.cmd).
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\Machine\Scripts\Shutdown\0]
"GPO-ID"="LocalGPO"
"SOM-ID"="Local"
"FileSysPath"="C:\\WINDOWS\\System32\\GroupPolicy\\Machine"
"DisplayName"="opsi shutdown install policy"
"GPOName"="opsi shutdown install policy"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\Machine\Scripts\Shutdown\0\0]
"Script"="C:\\Programme\\opsi.org\\opsi-client-agent\\on_shutdown\\doinstall32.cmd"
"Parameters"=""
"ExecTime"=hex(b):00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Shutdown\0]
"GPO-ID"="LocalGPO"
"SOM-ID"="Local"
"FileSysPath"="C:\\WINDOWS\\System32\\GroupPolicy\\Machine"
"DisplayName"="opsi shutdown install policy"
"GPOName"="opsi shutdown install policy"

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Shutdown\0\0]
"Script"="C:\\Programme\\opsi.org\\opsi-client-agent\\on_shutdown\\doinstall32.cmd"
"Parameters"=""
"ExecTime"=hex:00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system]
"MaxGPOScriptWait"=dword:00000000
These are the registry entries for Win6 64Bit (Vista / Win7 / Win8):
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\Machine\Scripts\Shutdown\0]
"GPO-ID"="LocalGPO"
"SOM-ID"="Local"
"FileSysPath"="C:\\WINDOWS\\System32\\GroupPolicy\\Machine"
"DisplayName"="opsi shutdown install policy"
"GPOName"="opsi shutdown install policy"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\Machine\Scripts\Shutdown\0\0]
"Script"="C:\\Programme\\opsi.org\\opsi-client-agent\\on_shutdown\\doinstall32.cmd"
"Parameters"=""
"ExecTime"=hex(b):00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Shutdown\0]
"GPO-ID"="LocalGPO"
"SOM-ID"="Local"
"FileSysPath"="C:\\Windows\\System32\\GroupPolicy\\Machine"
"DisplayName"="opsi shutdown install policy"
"GPOName"="opsi shutdown install policy"
"PSScriptOrder"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Shutdown\0\0]
"Script"="C:\\Program Files (x86)\\opsi.org\\opsi-client-agent\\on_shutdown\\doinstall64.cmd"
"Parameters"=""
"IsPowershell"=dword:00000000
"ExecTime"=hex:00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system]
"MaxGPOScriptWait"=dword:00000000

Configuration of the opsiclientd



To manage the Installation on Shutdown, the opsi client service opsiclientd has got entries for the special Event on_shutdown in the configuration file opsiclientd.conf. These are the relevant entries:
[event_gui_startup]
active = True

[event_gui_startup{installation_pending}]
active = True

[event_on_shutdown]
active = False

[event_on_shutdown{installation_pending}]
active = False

[precondition_installation_pending]
installation_pending = true
The precondition installation_pending is set to true by the opsiclientd while an installation is in progress and set to false when the installation is finished. So an unfinished installation, which needs to proceed the installation after a reboot, can be detected by the precondition installation_pending still being true at the end of the script processing.
When the event_on_shutdown section is set to False (which is the default), the Installation on Shutdown is disabled.
This is the configuration for a client with activated Installation on Shutdown:
[event_gui_startup]
active = True

[event_gui_startup{installation_pending}]
active = True

[event_on_shutdown]
active = True

[event_on_shutdown{installation_pending}]
active = False

[precondition_installation_pending]
installation_pending = true
So the only difference is the event_on_shutdown section being True:
[event_on_shutdown]
active = True.
The setting of the event_on_shutdown section is managed by the product switch on_shutdown_install of the opsi-client-agent package.
The precondition precondition_installation_pending = true indicates, that the current installation process has not completed yet. This precondition stays true, even after several Reboots, until the current installation has completed. In case of a required Reboot during the installation process, the configuration [event_gui_startup{installation_pending}] active = True triggers the installation to continue at the next system startup. This configuration may not be changed, because the current installation has to be completed, before the user is allowed to login.
Also the configuration [event_on_shutdown{installation_pending}] active = False must keep its value False at all times, because the installation has to continue AFTER the next reboot. Otherwise there wouldn’t be a reboot between Installation at Startup and Installation on Shutdown.
As soon as the installation process has completed, the precondition is set to installation_pending = false, so the Installation on Shutdown is active again.

Special Configuration of Installation on Shutdown



To activate the Installation on Shutdown, just a current opsi-client-agent package is required, as described in the section called “Activating Installation on Shutdown”. The Shutdown on Install can be activated by setting the product switch on_shutdown_install of the clients opsi-client-agent package.
As default, the Installation at startup is also active. So it is ensured, that the client always has the current software. Even if it had been offline for a while (when the user returns from holiday, for instance).
The Installation at startup can be turned off, if desired. The configuration of the opsi-client-agents can be done by the web service (see: the section called “Configuration via web service (Host Parameter)”),
therefore an host parameter should be created:
	
opsiclientd.event_gui_startup.active (boolean, default: true)



By this host parameter the gui_startup event can be configured for a client. The host parameter can be created by opsi-configed or opsi-admin.
For creating the host parameter with opsi-admin, execute the following command on the opsi-config-server:
opsi-admin -d method config_createBool opsiclientd.event_gui_startup.active "gui_startup active" true
The default value true is the default value as it comes with the default opsiclientd.conf.
To disable the Installation at Startup for a client, the host parameter can be configured like this:
	
opsiclientd.event_gui_startup.active: false



Be careful with disabling the Installation on startup, for there is a high risk of outdated software. Never change the settings of the sections with the precondition installation_pending. The default settings are required to manage the installation process.
To set the host parameter with opsi-admin, execute the following command on the opsi-config-server (in this example for a client with the opsi-host-Id myclient.domain.de):
opsi-admin -d method configState_create opsiclientd.event_gui_startup.active myclient.domain.de false
With the configuration event_gui_startup=false there is no connect to the opsi-config-server and no software installation at startup. With the exception of installations in progress, which continue at system startup. This is managed by the configuration event_on_shutdown{installation_pending}. So do not change the settings for sections with the precondition installation_pending, for they are important for products, that require a reboot during installation.

Local Logfile



During Install on Shutdown two logfiles are written:
	
C:\opsi.org\log\doinstall.log

	
C:\opsi.org\log\opsiclientd_event_starter.log



with, in case of success, has the following content:
doinstall.log:
doinstall32.cmd started
Aktuelles Datum: 29.01.2013
opsiclientd_event_starter.log:
[1] [Okt 06 18:49:44:435] opsiclientd_shutdown_starter: version: 4.0.7.0
[5] [Okt 06 18:49:44:435] clientid=pctry4detlef.uib.local
[5] [Okt 06 18:49:44:435] service_url=https://localhost:4441/opsiclientd
[5] [Okt 06 18:49:44:435] service_user=pctry4detlef.uib.local
[5] [Okt 06 18:49:44:450] host_key=***(confidential)***
[5] [Okt 06 18:49:44:450] myevent=on_shutdown
[6] [Okt 06 18:49:44:450] Working with ssl protocol: sslvSSLv23 - auto negotation
[6] [Okt 06 18:49:45:107] JSON Bench for backend_info "params":[],"id":1} Start: 18:49:44:450 Time: 00:00:00:657
[6] [Okt 06 18:49:45:232] opsidata connected
[5] [Okt 06 18:49:45:232] init Connection done
[6] [Okt 06 18:49:45:232] JSON service request https://localhost:4441/opsiclientd isInstallationPending
[6] [Okt 06 18:49:45:529] JSON Bench for isInstallationPending "params":[],"id":1} Start: 18:49:45:232 Time: 00:00:00:297
[5] [Okt 06 18:49:45:622] resultstring={"id": 1, "result": false, "error": null}
[5] [Okt 06 18:49:45:622] No installation pending - fine
[6] [Okt 06 18:49:45:622] JSON service request https://localhost:4441/opsiclientd fireEvent
[6] [Okt 06 18:49:45:966] JSON Bench for fireEvent "params":["on_shutdown"],"id":1} Start: 18:49:45:622 Time: 00:00:00:344
[5] [Okt 06 18:49:46:091] resultstring={"id": 1, "result": null, "error": null}
[5] [Okt 06 18:49:46:091] Succesfull fired event: on_shutdown
[5] [Okt 06 18:49:51:107] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:49:51:107] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:49:51:357] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:49:51:107 Time: 00:00:00:250
[5] [Okt 06 18:49:51:451] resultstring={"id": 1, "result": true, "error": null}
[5] [Okt 06 18:49:56:467] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:49:56:467] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:49:56:935] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:49:56:467 Time: 00:00:00:468
[5] [Okt 06 18:49:57:060] resultstring={"id": 1, "result": true, "error": null}
[5] [Okt 06 18:50:02:076] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:50:02:076] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:50:02:545] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:50:02:076 Time: 00:00:00:469
[5] [Okt 06 18:50:02:670] resultstring={"id": 1, "result": true, "error": null}
[5] [Okt 06 18:50:07:686] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:50:07:686] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:50:08:186] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:50:07:686 Time: 00:00:00:500
[5] [Okt 06 18:50:08:311] resultstring={"id": 1, "result": true, "error": null}
[5] [Okt 06 18:50:13:327] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:50:13:327] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:50:13:624] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:50:13:327 Time: 00:00:00:297
[5] [Okt 06 18:50:13:749] resultstring={"id": 1, "result": true, "error": null}
[5] [Okt 06 18:50:18:765] calling: isEventRunning,[on_shutdown]
[6] [Okt 06 18:50:18:765] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:50:19:030] JSON Bench for isEventRunning "params":["on_shutdown"],"id":1} Start: 18:50:18:765 Time: 00:00:00:265
[5] [Okt 06 18:50:19:171] resultstring={"id": 1, "result": false, "error": null}
[5] [Okt 06 18:50:19:171] calling: isEventRunning,[on_shutdown{user_logged_in}]
[6] [Okt 06 18:50:19:171] JSON service request https://localhost:4441/opsiclientd isEventRunning
[6] [Okt 06 18:50:19:452] JSON Bench for isEventRunning "params":["on_shutdown{user_logged_in}"],"id":1} Start: 18:50:19:171 Time: 00:00:00:281
[5] [Okt 06 18:50:19:562] resultstring={"id": 1, "result": false, "error": null}
[5] [Okt 06 18:50:19:562] Task completed
or
[1] [Okt 12 18:07:57:352] opsiclientd_shutdown_starter: version: 4.0.7.0
[5] [Okt 12 18:07:57:352] clientid=pctry4detlef.uib.local
[5] [Okt 12 18:07:57:352] service_url=https://localhost:4441/opsiclientd
[5] [Okt 12 18:07:57:352] service_user=pctry4detlef.uib.local
[5] [Okt 12 18:07:57:352] host_key=***(confidential)***
[5] [Okt 12 18:07:57:352] myevent=on_shutdown
[6] [Okt 12 18:07:57:352] Working with ssl protocol: sslvSSLv23 - auto negotation
[6] [Okt 12 18:07:57:946] JSON Bench for backend_info "params":[],"id":1} Start: 18:07:57:352 Time: 00:00:00:594
[6] [Okt 12 18:07:58:055] opsidata connected
[5] [Okt 12 18:07:58:055] init Connection done
[6] [Okt 12 18:07:58:055] JSON service request https://localhost:4441/opsiclientd isInstallationPending
[6] [Okt 12 18:07:58:290] JSON Bench for isInstallationPending "params":[],"id":1} Start: 18:07:58:055 Time: 00:00:00:235
[5] [Okt 12 18:07:58:399] resultstring={"id": 1, "result": true, "error": null}
[2] [Okt 12 18:07:58:399] State installation pending detected, do not starting shutdown event.
[2] [Okt 12 18:07:58:399] Terminate called.
This Logfiles are rewritten each time and can be checked in case of a malfunction.



9.18. opsi Feature SilentInstall (free)



The opsi feature SilentInstall-provides for administrators the ability to install software on a client without the logged on user being disturbed. This chapter describes the characteristics of this feature and offers a guideline for configuring this new installation method.
Preconditions for the Silent Installation



For using this feature, opsi version 4.0.3. or above is required. Basically the opsi-client-agent version 4.0.3.1 or above is required.

Overview of the SilentInstall feature



The SilentInstall method offers the ability to install a pre-defined list of products on a client, without the user having to interrupt his work.
Unlike the installation by the onDemand-Event (push Installation), the SilentInstall method does not display anything on the user desktop.
All displays are suppressed and are not to be seen on any desktop. Of course this feature bears some risk. In case of a problem, e.g. a syntax error of the opsi-winst script, there is no way to interact with the installation process, for no dialog windows are shown. So this would result in the opsi-winst and so the Event processing not coming to an end, and so no more events will be executed. To avoid this "Worst case scenario", the maximum installation time is limited by a timeout configuration. This timeout value might have to be adapted in case of an extended installation. For further information, see the configuration chapter.
Another very important ability of this feature is the predefined list of products to be installed silently. Contact to the service is established, but different from the usual procedure, the ActionRequests given by the service are ignored. The list of software to be installed is defined by an opsi-client-agent configuration. The "setup" action will be executed for all the products on this list and they do not have to be set to setup. As usual after processing the setup script, also the update script will be executed, if there is one. No product dependencies will be resolved. So either no products containing product dependencies should be installed by the SilentInstall feature, or all the products from the dependency list must be added to the SilentInstall product list. As usual the installation process is completed by sending the installation status and installation logfiles to the service.
In summary it is recommended to use the SilentInstall only for products, that meet the following requirements:
	
small packets or installations only

	
little system load: some software installations, so for instance most of the MSI installations, request during installation most of the clients ressources. This could result in a poor system performance remaining for the user.

	
installable within a fixed amount of time: the default timeout for this event is set to 300 seconds. If the installation process has not completed within the timeout, the 'opsi-winst’process will be terminated and so the event can be completed.

	
no reboots required: software requesting a reboot should not be installed from the SilentInstall. With the default configuration the event is configured not to process any reboot requests. Without this safety configuration the opsi-client-agent could reboot the client without any warning to the user. This could result in loss of data if there is a logged on user. This could result in an inoperable software installed by SilentInstall without reboot.



Within the default configuration swaudit and hwaudit are installed by this method. The inventory products of opsi meet all the requirements above and so are applicable for this method. With the default configuration the opsi hard- and software inventory are generated on demand, without the need to set the setup action request with the opsi-configed. With this method the inventory information can be generated in real-time operation. Also applicable would be any configuration products, that perform automatic repairs or restore client patches.

Executing the Silent Installation



This event will not be triggered automatically like other events. So there are two ways to perform this event.
The first way is to trigger the event from the opsi webservice, like e.g.:
opsi-admin -d method hostControl_fireEvent silent_install client.domain.local
So this command is scriptable and can be used within scripts that can be combined with an at-job to plan the execution of the event.
As an alternative the event can be triggered by a timer event after a certain amount of time. The default configuration for this event is 6 hours. This value presumes, that a work station usually is in use for 8 hours. So the event would be executed once a day after six hours of uptime. For mor information on configuring and activating this event see the following configuration chapter.

Configuring the opsi-feature: SilentInstall



This chapter is about the default configuration of this feature. The default opsiclientd.conf has got a SilentInstall event. This listing just shows the important options:
Standard Event SilentInstall:
[event_silent_install]
process_shutdown_requests = false
action_processor_productIds = swaudit,hwaudit
action_processor_command = %action_processor.command% /productlist %action_processor_productIds% /silent
action_processor_desktop = winlogon
action_processor_timeout = 300
	
action_processor_productIds

	
This option is an important new property for the event control. For all events that perform product actions, this option can define a list of products. The product list must be given as a comma separated list.




	
process_shutdown_request = false

	
this configuration suppresses reboot requests from the opsi-winst.




	
action_processor_command

	
this prepares the call of opsi-winst.




	
action_processor_desktop

	
This option defines the desktop to display the opsi-winst GUI.




	
action_processor_timeout

	
This option sets the timeout for terminating the opsi-winst-process.






The second event is the Timer Event, which triggers the event after a certain amount of time:
Default Timer Event for SilentInstall
[event_timer_silentinstall]
super = silent_install
type = timer
active = false
interval = 21600
	
super

	
This option defines the event to inherit properties from. As the default configuration the Timer-Event inherits from the event silent_install.




	
type

	
This option defines this event configuration to be a Timer-Event.




	
active

	
as default this event is not active. To acivate it, set this option to true.




	
interval

	
This option defines the intertval to fire the event. The default value is set to 6 hours, so after six hours of uptime the event is triggered the first time and then every other six hours. So this interval should (like any timer intervall) not be too short, otherwise the event would be peformed most of the time and thereby block the execution of other actions. On the other hand the interval also should not be too long, for the  opsi-client-agent must be running all that time until the event is triggered. If the client or the opsi-client-agent always is restarted before the interval elapsed, this event never will be triggered.






Also the SilentInstall event could be triggered by another system event detected by an WMI request. Therefore a wql option can be specified. How to specify a wql option is to be seen in the event_net_connection section. If the wql option is used, the event should be set to active = false as default, so it can be activated later on when requested.
To trigger the event by a timer, usually it only needs to set a host parameter. Therefore at first a default configuration has to be created. In this case it is sufficient to activate the Timer Event.
To create the standard option the following host parameter are to be created by the opsi-admin. Also this configuration could be created by the opsi-configed:
opsi-admin -d method config_createBool opsiclientd.event_timer_silentinstall.active "event_timer_silentinstall active" false
So at first this event is disabled for all the clients. Then the event can be enabled for single clients:
opsi-admin -d method configState_create opsiclientd.event_timer_silentinstall.active silentclient.domain.de true
To define the products to be installed, the following entry must be set.
If for instance instead of swaudit and hwaudit the product firefox shall be installed, the entries should be created as described above:
opsi-admin -d method config_createUnicode opsiclientd.event_silent_install.action_processor_productIds "event_silent_install productIds" "swaudit,hwaudit"
With this option as the default for all clients the product list for the Silent Install Event is set to swaudit and hwaudit. To change the product list for a single client into firefox execute the following command:
opsi-admin -d method configState_create opsiclientd.event_silent_install.action_processor_productIds client.domain.de "firefox"
As you can see, the product list can be different for each client.


9.19. opsi Setup Detector (free)



Introduction



The basic steps of software packaging and distribution are:
	
analyzing the setup and creating the files on the opsi workbench

	
packing the opsi package

	
installing the opsi package on the opsi server

	
installing the software on the clients (roll out)



The opsi setup detector is a tool for supporting the packaging of software to prepare for software rollouts. All the steps can be done from the graphical user interface: selecting and analyzing the setup, creating the files on the opsi workbench, packing and installing the package on the opsi server. For packing and installing, the opsi setup detector invokes the community projekt opsi Package Builder.
When opening a setup file, the opsi setup detector checks whether it is a well known Installer type and then automatically detects the available parameters from the setup file. Over the time, by feed back from opsi users and increasing experience with different installer types and setup files, the setup detector will improve its ability to detect different setup types.

Preconditions for using the opsi Setup Detector



The opsi Setup Detector runs on Windows XP or above.
It is part of the default repositories of opsi.
It can be installed with the following command:
opsi-product-updater -i -p opsi-setup-detector
If also packets shall be packed and installed on the opsi server, the community projekt opsi Package Builder is required to be installed on the same Windows client. For further information about the opsi Package Builder see the Community Projects section of the opsi Forum: https://forum.opsi.org/viewforum.php?f=22
For creating the files and packets a writable Samba share to the opsi Workbench is required. Further on some software setups (especially for 64 bit software) require for analyzing and integration the matching Windows system. This means, that analyzing and integrating software for 64bit Windows7 might not run on a 32bit Windows XP Client. This must be considered in each individual case.
So this is the list of preconditions:
	
Windows clients from Windows XP and above

	
opsi package Builder installed and configured

	
writable Samba share to the opsi Workbench

	
opsi Setup Detector itself with all its helper files




Setting up the opsi Setup Detector



The opsi Setup Detector is a Windows program developed with Lazarus. It requires some additional helper files to analyze special Setup types and  some templates to generate the files for a new opsi packet from. The opsi Setup Detector is available as an opsi package, which includes all its helper files (but not the community project opsi Packet Builder).
After installing the opsi Setup Detector, just the Share to the opsi Workbench has to be configured as Packet BaseDir and then a setup file to analyze can be opened with File - Open Setup File And Analyze.
Language Support



When starting the opsi Setup Detector, the language of the Windows system is detected and, if for language xx a suitable language file languages\opsisetupdetector.xx.po is detected, it will be used. The opsi Setup Detector comes with German and English language files. Additional languages can be supported by generating a suitable language file.

Files of the opsi Setup Detector



The opsi Setup Detector package contains the following files:
	
opsisetupdetector.exe - the opsi Setup Detector itself

	
extractMSI.cmd - helper file for analyzing Setups with embedded MSI files

	
MSIInfo.js - helper file to analyze MSI files

	
innounp.exe - helper file to analyze Inno Setup files

	
innounp.htm - help for the innounp.htm helper file

	
favicon.ico - opsi Icon

	
languages\ - directory for language specific files

	
languages\opsisetupdetector.po - default language file (English)

	
languages\opsisetupdetector.de.po - German language file

	
languages\Help.en.html - English help file

	
languages\Help.de.html - German help file



To create new opsi packages on the opsi workbench, several template files are required. These templates will be copied and patched according to the information from the opsi Setup Detector:
	
files2opsi\OPSI\ - templates for the opsi packaging

	
files2opsi\OPSI\control

	
files2opsi\OPSI\postinst

	
files2opsi\OPSI\preinst

	
files2opsi\CLIENT_DATA\ - templates for the opsiscripts

	
files2opsi\CLIENT_DATA\setup.opsiscript

	
files2opsi\CLIENT_DATA\uninstall.opsiscript

	
files2opsi\CLIENT_DATA\delsub.opsiscript

	
files2opsi\CLIENT_DATA\check_advanced_exitcode.opsiscript

	
files2opsi\CLIENT_DATA\check_inno_exitcode.opsiscript

	
files2opsi\CLIENT_DATA\check_installshield_exitcode.opsiscript

	
files2opsi\CLIENT_DATA\check_installshieldmsi_exitcode.opsiscript

	
files2opsi\CLIENT_DATA\check_inno_exitcode.opsiscript

	
files2opsi\CLIENT_DATA\check_msi_exitcode.opsiscript





The Menu of opsi Setup Detektor



The menu on the upper left contains the following options:
	
File - (opens a sub menu, see below)

	
Help - show help in an opsi Setup detector window. The help file %ProgramFilesDir%\opsiSetupDetector\languages\Help.de.html also can be displayed with a browser.

	
About - Show program version



The menu option File opens a sub menu with:
	
Open Setup File and Analyze - select the Setup to be analyzed. This option has the same effect as the Open Setup File button on the Analyze Tab down at the right side and opens a file selection dialog, which shows all file types. The file selection dialog on the other setup tabs only shows files with the extension .MSI(MSI Tab) or .EXE (on all the other Tabs).

	
Create Logfile - The current content of the Analyze Tab will be written as logfile. The name of the created logfile is %TEMP%\opsitmp\opsiSetupDetector.log and will be shown when generating a logfile. The logfile will be generated when executing this command and only contains information, that is currently shown in the Analyze tab.

	
Exit - quits the opsi Setup Detektor




Automated Analysis of a Setup file



When opening a setup file with Open Setup File and Analyze, it will be analyzed automatically and, if it is a well known Installer type, automatically switched to the suitable tab.
If the installer type is not detected, the Analyze tab keeps the focus. Even when the installer type was detected, you can switch back to the Analyze tab any time to check the info details sampled by the analysis.
When analyzing a MSI file, the extension .MSI already indicates a MSI setup file. When analyzing an .EXE file the extension is not very specific and could be anything. So the EXE file is scanned for special markers to indicate the installer type.
If the marker of a well known Installer type is found, the focus switches to the corresponding installer type tab. This might give some clue to what kind of installer it is.
If the Setup type cannot be detected, the file will be scanned for a special set of words like (e.g. "Installer" or "Setup") and the corresponding lines will be written to the Analyze tab. This also might show some cryptic text passages and error codes, which are contained within the setup file like:
o@dejDs@s@t@t@du@u@<v@w@w@lx@Hy@x@x{@X|@|@@@@L@x@@Inno Setup Setup Data
The Setup has detected a serious error and quits
This just means, that these strings are found within the setup file and match the search pattern, so they are written to the Analyze Tab . In this case the search pattern is "Setup". In case of an unknown setup type this might give some clue about the installer type.
All output on the Analyze Tab, which is preceded by:
Analyzing: F:\<setup.exe>
und closed by:
default grep finished.
derives from the automated analysis. If the setup type is detected, it is written below "default grep finished". In case of a well known installer type, the focus switches to the corresponding Tab.
According to the installer type some more information is to be found in the Analyze tab. This will be discussed in each of the installer chapters.
The content of the Analyze tab is cleared when starting a new analysis and so only contains information from the current setup analysis.

Setup-EXE with embedded MSI



Before going into the different installer types, just a few general things about setup files with embedded MSI: at the moment the opsi Setup Detector automatically detects embedded MSI that are wrapped by by Advanced Installer and Installshield based EXE files. The opsi Setup Detector extracts and analyses the MSI and writes the detected information to the Advanced+MSI Tab or InstallShield+MSI Tab and additionally to the MSI Tab.
An EXE file with embedded MSI can contain several different MSI packages, e.g. for different Windows platforms 32bit/64bit. Usually a setup like this detects the system to use the matching MSI. In this case, when analyzing a setup, only the MSI will be detected for the system where the opsi Setup Detector is running on.
Such EXE files often have command line options to get more information about the package and install options. Also there might be several MST-files, which will be used in case of detectable conditions. To make a long story short: you never really know, what a setup might do under different conditions. So in most cases you just need the MSI code to patch the deinstallation script. So you just have to make sure, that you have captured all of the codes to be handled in the deinstallation script. For instance a MSI for 32bit and 64bit usually has got a different code.
To get all of the codes, you can run the opsi Setup Detector on different platforms to grab the MSI codes.
When the opsi Setup Detector detects an embedded MSI, it will be analyzed and the information is shown in the MSI tab. It is possible to create the opsi packet based on the MSI tab. But usually you would take the EXE file for the packet, for it is easier to adapt it to updates and also the EXE file might do some additional jobs.
During the analysis the MSI and other components of the EXE file will be extracted to the directory %TEMP%\opsitmp. Before doing so, the directory will be cleaned, so all files to be found there are from the current setup.

Supported Installer Types



Some of the well known installer types have pretty good standards and are accessible for automated analysis. From a MSI packet or an Inno Setup based Setup a lot of useful information can be detected automatically, whereas other Installer types, like NSIS, don’t make any information accessible. So in many cases the automatic analysis gives good results, but in other cases it doesn’t work at all or requires to work it over. With increasing experience from user results the detection skill of the opsi Setup Detector will surely improve.
MSI packages are the most important and widespread Installer type, so the MSI tab is the first one to follow the *Analyze tab, and then the others in alphabetical order.
Installer Type MSI



MSI files are the installer format of the Microsoft Windows Installer.
Setups of type MSI can be detected by the file extension .MSI. The internal format of MSI packages is a well known standard, so the opsi Setup Detector can read several information from the packet to show on the Analyze tab and the MSI Tab, where the focus will switch to. When analysing a MSI, the detected information shown in the Analyze Tab looks like this:
Analyzing MSI: F:\Setups\MSI\7-zip\7-Zip.msi

Microsoft (R) Windows Script Host, Version 5.8
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

MSI file: F:\uib\setupdetector\Setups\MSI\7-zip\7-Zip.msi
Manufacturer: Igor Pavlov
ProductName: 7-Zip 4.57
ProductVersion: 4.57.00.0
ProductCode: {23170F69-40C1-2701-0457-000001000000}
UpgradeCode: {23170F69-40C1-2701-0000-000004000000}
MSI file size is: 0,9 MB
Estimated required space is: 5,2 MB

get_MSI_info finished
The detected information is extracted from the MSI packet and automatically fills in the MSI tab form. It is used to patch the opsiscript installation/deinstallation scripts:
	
MSI file: Name of the analysed MSI file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from the MSI. This name can be changed, but most likely the detected name will fit.

	
Product Version: the version of the software as detected from the MSI. Usually the detected value can be taken, but it should contain only numbers and points.

	
MSI Product Code: the MSI product code as detected from the MSI. It will be used to patch the deinstall opsiscript. Caveat: a MSI product for 32bit and 64bit usually has a different product code.

	
Required Space: this value is not read from the MSI packet, but is assumed as being six times the size of the MSI file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
MSI File Size: the size of the MSI file.

	
use MST File: if there is a MST file (Transform file) to be found in the same directory (where the MSI file is), its name will be filled in this edit field and will be checked to use for installation. By using the Select button on the right, another MST file can be selected. By removing the selection mark on the left, the MST file will not be used.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



In case of analysing an EXE file with embedded MSI, the MSI file will be extracted automatically and the detected information will be shown in the MSI tab in addition to the corresponding tab (Advanced+MSI or InstallShied+MSI).

Installer Type Advanced+MSI



The Advanced Installer is a tool for creating MSI packets that also can be embedded in EXE setup files. When the opsi Setup Detector detects an EXE file as an MSI embedded with Advanced Installer, it extracts the MSI file from the EXE file and analyses the information. The result is shown in the Advanced+MSI tab and in addition in the MSI tab. For further information on the MSI tab see chapter the section called “Installer Type MSI”.
When extracting and analysing an embedded MSI from an Advanced Installer setup the Analyze tab will look like this:
xxxxxxxxxxxxxxxxxxxxxxxxx
Analyzing AdvancedMSI Setup:
F:\Setups\AdvancedMSI\Phase5\phase562install.exe
Analyzing MSI from Setup
F:\Setups\AdvancedMSI\Phase5\phase562install.exe
cmd.exe /C "F:\Setups\AdvancedMSI\Phase5\phase562install.exe" /extract:e:\Temp\opsitmp\
!! PLEASE WAIT !!
!! PLEASE WAIT !! Extracting and analyzing MSI ...
!! PLEASE WAIT !!
e:\Temp\opsitmp\*.msi
Analyzing MSI: e:\Temp\opsitmp\phase5.msi
The MSI will be extracted to the directory =%TEMP%\opsitmp= and then analysed. With the result the Advanced+MSI tab will be filled in:
	
Setup file: Name of the analysed setup file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from the MSI. This name can be changed, but most likely the detected name will fit.

	
Product Version: the version of the software as detected from the MSI. Usually the detected value can be taken, but it should contain only numbers and points.

	
MSI Product Code: the MSI product code as detected from the MSI. It will be used to patch the deinstall opsiscript. Caveat: a MSI product for 32bit and 64bit usually has a different product code and an Advanced Installer packet might contain different MSI files. In this case it depends on the system the analysis is running on, which MSI is extracted and analysed. Usually a 64bit MSI cannot be extracted on a 32bit system. So for packing a 64bit software, a 64 system should be used.

	
Required Space: this value is not read from the MSI packet, but is assumed as being six times the size of the EXE file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
Setup File Size: the size of the EXE file.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



Signature Advanced+MSI: for detection of an Advanced+MSI setup, the EXE file is scanned for the marker:
name="microsoft.windows.advancedinstallersetup

Installer Type Inno Setup



Setups created with Inno Setup follow a pretty well known standard and contain a special file named install_script.iss, which can be extracted from the EXE file. The information from install_script.iss is filled into the edit fields of the Inno Setup tab and the focus switches to this tab.
Going back to the Analyze Tab it looks like this:
............................................
Analyzing: F:\Setups\Inno\openssl\Win32OpenSSL_Light-1_0_0i.exe
stringsgrep started (verbose:false, skipzero:false)
found string "<description>Inno Setup</description>"
detected Inno Setup
stringsgrep completed (verbose:false, skipzero:false)
............................................
Analyzing Inno-Setup:
extract install_script.iss from F:\Setups\Inno\openssl\Win32OpenSSL_Light-1_0_0i.exe to
C:\ProgramData\opsi setup detector\INNO\Win32OpenSSL_Light-1_0_0i\install_script.iss
"E:\Program Files (x86)\opsiSetupDetector\innounp.exe" -x -a -y -d"C:\ProgramData\opsi setup detector\INNO\Win32OpenSSL_Light-1_0_0i" F:\Setups\Inno\openssl\Win32OpenSSL_Light-1_0_0i.exe install_script.iss
; Version detected: 5402
#66 install_script.iss
C:\ProgramData\opsi setup detector\INNO\Win32OpenSSL_Light-1_0_0i\install_script.iss
........
[Setup]
AppName=OpenSSL Light (32-bit)
AppVerName=OpenSSL 1.0.0i Light (32-bit)
AppPublisher=OpenSSL Win32 Installer Team
AppPublisherURL=http://www.openssl.org
AppSupportURL=http://www.slproweb.com
AppUpdatesURL=http://www.slproweb.com/products/Win32OpenSSL.html
DefaultDirName={sd}\OpenSSL-Win32
DefaultGroupName=OpenSSL
OutputBaseFilename=Win32OpenSSL_Light-1_0_0i
Compression=bzip2
........
Setup file size is: 1,9 MB
Estimated required space is: 11,1 MB
........
get_inno_info finished
Inno Setup detected
The information from install_script.iss is taken to fill in the edit fields of the Inno Setup tabs to patch the opsiscripts:
	
Setup file: Name of the analysed setup file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from install_script.iss. This name can be changed, but most likely the detected name will fit.

	
Product Version: the version of the software as detected from install_script.iss. Usually the detected value can be taken, but it should contain only numbers and points.

	
Install Directory: this is the name of the directory, where the software is supposed to be installed on the client. This is taken to patch the deinstall script. The installation dir is read from install_script.iss and usually can be taken as is. But sometimes this entry might contain some Inno Setup specific notations, which are usually enclosed in curly braces. Some of them the opsi Setup Detector will translate to opsiscript syntax, like
There could be a number of other entries in curly brackets, which opsiscript does not understand. In this case manual translation to opsiscript syntax is required. The entry UninstallDisplayName from install_script.iss might give some clue to this. A list and description of Inno Setup constants can be found in the Inno Setup help, e.g. http://www.jrsoftware.org/ishelp/index.php

	
Required Space: this value is not read from install_script.iss, but is assumed as being six times the size of the EXE file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
Setup File Size: the size of the EXE file.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



Signature Inno Setup: for detecting a setup as Inno Setup, the EXE file is scanned for the marker:
<description>inno setup</description>

Installer Type InstallShield



EXE files created with Installshield are not accessible for automated analysis. It just can be detected, that it is a setup of type Installshield. So all the entries to be found in the InstallShield tab are derived from the name of the setup file. So if the filename is simply Setup.exe, the edit fields will be filled with Setup. In addition it depends on the Installshield version, what command line parameters are accepted by the setup and the deinstallation program. So integrating an Installshield setup is mainly manual work. The first test could be to check out available command line parameters of the setup, e.g. with setup -?.
More and more Installshield packets contain embedded MSI files. So pure Installshield packets without MSI will become less important.
When analysing an Installshield setup, the Analyze tab looks like this:
.....................................
Analyzing: F:\uib\setupdetector\Setups\InstallShield\viclient\VMware-viclient.exe
stringsgrep started (verbose:false, skipzero:false)
found string "InstallShield"
detected InstallShield Setup
stringsgrep completed (verbose:false, skipzero:false)
.....................................
Analyzing InstallShield-Setup:
Setup file size is: 32,1 MB
Estimated required space is: 192,6 MB
........
get_InstallShield_info finished
InstallShield Setup detected
The edit fields of the InstallShield tab are:
	
Setup file: Name of the analysed setup file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from the setup filename. Most likely it has to be adapted.

	
Product Version: the version of the software as detected from  from the setup filename. It should contain only numbers and points and most likely has to be adapted .

	
Install Directory: this is the name of the directory, where the software is supposed to be installed on the client. This is taken to patch the deinstall script and must be set manually

	
Required Space: this value is assumed as being six times the size of the EXE file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
Setup File Size: the size of the EXE file.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



Signature InstallShield: for detecting an Installshield setup file, the EXE is scanned for the marker:
<description>InstallShield.Setup</description>
Finding the Installshield signature without detecting the marker for embedded MSI, the setup is assumed to be of type InstallShield. If also the marker for an embedded MSI is found, the setup is assumed to be of type InstallShield+MSI (see below).

Installer Type InstallShield+MSI



Setups created with InstallShield often contain embedded MSI files. To extract the MSI file from the EXE file, a batch is invoked to start the setup and wait for a MSI file to be extracted. The batch will wait for about 10 seconds for a MSI file to appear and then kill the setup tasks. The extracted MSI will be analysed and the gathered information will be shown in the InstallShield+MSI tab and the MSI tab. It depends on the EXE file and the system conditions, whether it extracts an MSI file or not. Eventually it does not extract any MSI for the operating system is not suitable or because ther is a GUI question waiting to be answered. If the automated extraction fails, the MSI might be unpacked manually and analysed as MSI. These entries can be transfered to the InstallShield+MSI tab.
In case of a successful InstallShield+MSI analysis the Analyze tab looks like this:
.....................................
Analyzing: F:\Setups\Installshield-MSI\javavm\jre-6u22-windows-x64.exe
stringsgrep started (verbose:false, skipzero:false)
found strings "Installer,MSI,Database" and "InstallShield"
detected InstallShield+MSI Setup (InstallShield with embedded MSI)
found strings "Installer,MSI,Database" and "InstallShield"
detected InstallShield+MSI Setup (InstallShield with embedded MSI)
stringsgrep completed (verbose:false, skipzero:false)
.....................................
Analyzing InstallShield+MSI Setup: F:\Setups\Installshield-MSI\javavm\jre-6u22-windows-x64.exe
Analyzing MSI from InstallShield Setup F:\Setups\Installshield-MSI\javavm\jre-6u22-windows-x64.exe
cmd.exe /C E:\Program Files (x86)\opsiSetupDetector\extractMSI.cmd "F:Setups\Installshield-MSI\javavm\jre-6u22-windows-x64.exe"
!! PLEASE WAIT !!
!! PLEASE WAIT !! Extracting and analyzing MSI ...
!! PLEASE WAIT !!
e:\Temp\opsitmp\*.msi
Analyzing MSI: e:\Temp\opsitmp\phase5.msi
cmd.exe /C cscript.exe "E:\Program Files (x86)\opsiSetupDetector\msiinfo.js" "e:\Temp\opsitmp\phase5.msi"
........
Microsoft (R) Windows Script Host, Version 5.8
Copyright (C) Microsoft Corporation 1996-2001. Alle Rechte vorbehalten.

MSI file: e:\Temp\opsitmp\phase5.msi
Manufacturer: Systemberatung Schommer
ProductName: Phase 5 HTML-Editor
ProductVersion: 5.6.2.3
ProductCode: {20B1B020-DEAE-48D1-9960-D4C3185D758B}
UpgradeCode: {C63B6E47-6A28-44B6-A2C9-2BF084491FAD}
MSI file size is: 0,3 MB
Estimated required space is: 1,7 MB
........
get_MSI_info finished
Setup file size is: 15,4 MB
Estimated required space is: 92,7 MB
........
get_InstallShield_info finished
InstallShield+MSI Setup detected
If the automated extraction of the MSI succeeds, the detected valueswill be written to the InstallShield+MSI tab:
	
Setup file: Name of the analysed setup file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from the setup filename. Most likely it has to be adapted.

	
Product Name: this is the name of the software as detected from the MSI. This name can be changed, but most likely the detected name will fit.

	
Product Version: the version of the software as detected from the MSI. Usually the detected value can be taken, but it should contain only numbers and points.

	
MSI Product Code: the MSI product code as detected from the MSI. It will be used to patch the deinstall opsiscript. Caveat: a MSI product for 32bit and 64bit usually has a different product code and an Advanced Installer packet might contain different MSI files. In this case it depends on the system the analysis is running on, which MSI is extracted and analysed. Usually a 64bit MSI cannot be extracted on a 32bit system. So for packing a 64bit software, a 64 system should be used.

	
Required Space: this value is not read from the MSI packet, but is assumed as being six times the size of the EXE file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
Setup File Size: the size of the EXE file.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



Signature InstallShield+MSI: for the automated detection of an Installshield setup with embedded MSI the EXE file is scanned for the Installshield marker and the marker for an embedded MSI:
<description>InstallShield.Setup</description>
...
installer,msi,database
If both of them are found, the EXE file is supposed to be InstallShield+MSI.

Installer Type NSIS



NSIS setups are known to be small and fast. But it is not possible to extract further information from the packet, besides from detecting it as a NSIS setup. All further information to be shown is derived from the name of the setup. So the information must be sampled manually (for instance by installing the setup).
The entries in the Analyze tab might look like this:
...................................
Analyzing: F:\Setups\NSIS\7z920\7z920.exe
stringsgrep started (verbose:false, skipzero:false)
found string "Nullsoft.NSIS.exehead"
detected NSIS Setup
stringsgrep completed (verbose:false, skipzero:false)
...................................
Analyzing NSIS-Setup:
Setup file size is: 1,1 MB
Estimated required space is: 6,4 MB
........
get_nsis_info finished
NSIS (Nullsoft Install System) detected
The edit fields of the NSIS tab are:
	
Setup file: Name of the analysed setup file

	
opsi Product ID: this is the name of the new opsi packet to be created. It is derived from the product name below, by substituting spaces and other invalid characters with -. The suggested opsi Product ID can be changed.

	
Product Name: this is the name of the software as detected from the setup filename. Most likely it has to be adapted.

	
Product Version: the version of the software as detected from from the setup filename. It should contain only numbers and points and most likely has to be adapted.

	
Install Directory: this is the name of the directory, where the software is supposed to be installed on the client. This is taken to patch the deinstall script and must be set manually.

	
Required Space: this value is assumed as being six times the size of the EXE file. Before installting the software on the client, the setup.opsiscript checks, whether there is enough disc space.

	
Setup File Size: the size of the EXE file.

	
Description: The product name is set to this edit space and can be supplemented with additional information to be shown in the product description of the opsi product.

	
License required: When this selection mark is checked, the opsiscript will be patched with license=true to indicate that a license is required.



Signatur NSIS: for detecting a NSIS Setup, the EXE file will be scanned for the marker:
Nullsoft.NSIS.exehead
...
Nullsoft Install System


Creating a new opsi Packet



After analyzing the setup and the edit fields of the corresponding tab being filled, clicking the button Create opsi Packet (on the lower right) generates the files for a new opsi product.
Attention:
	
the Packet BaseDir must be a writable share to the opsi Workbench.

	
for safety reasons a new opsi packet only can be created if it doesn’t exist. To rewrite the product, first delete the product directory from the opsi workbench.



Left of the Create opsi Packet button are three available options to specify the operation of the button:
	
create opsi packet: the product directory and the corresponding files will be generated and patched on the opsi workbench. The packet will not be packed nor installed.

	
create opsi packet and start interactive PacketBuilder: as above the files will be created and patched and then the opsi Packet Builder will be started. The product data will be passed to the Packet Builder and the packet can be packed and installed in interactive mode. After completion the opsi Packet Builder should be closed to be startable again for the next data transfer.

	
create and auto -build -install -quiet: as above the directory and the files will be generated and patched and for further actions the opsi Packet Builder will be started. The opsi product data will be passed to the packet Builder and the packet will be built and installed, if the corresponding options are checked. If e.g. the packet just should be packed but not installed, the checkmark at install can be removed. Additionally the checkmark quiet can be set to execute the opsi Packet Builders without showing its user interface. After completion the opsi Packet Builder should be closed again.



For installation, configuration and instructions for the Community Project opsi Packet Builder see https://forum.opsi.org/viewforum.php?f=22



10. opsi localization



10.1. Most opsi parts



The localization of the opsi software is done through Transifex:
https://www.transifex.com/
Transifex allows for an easy translation of software projects.
You can find the opsi.org translation project at link:
transifex.com/opsi-org/opsiorg/.
Everyone interested in translating opsi can participate!
With this we hope to get not only improved translations but also be able
to integrate new languages that you are currently missing!

10.2. opsi configed



It is now possible to translate the opsi Configuration Editor - best know by its short name Configed - in Transifex.
After logging in you will be able to access the resource configed.properties.
We think that translating Configed poses a bit more of a challenge. For most messages the context in which they appear is important and therefore simple word-by-word translation often does not result in a good translation.
This is why we want to handle things different in this case.
In the past there were no reviews involved when we updated translations.
But as Configed is such a vital and important part for many users that we will change our way from here on.
To ensure the quality of translations for Configed that makes it of good and easy use for all opsi users we only want to publish translations that are reviewed.
To review a translation you need the role of a reviewer in Transifex.
If you login as a user with this role you get a button in the translation interface that says review. Any reviewed string can not be further translated.
If you are a partner, customer or someone very active inside the opsi community and you are interested in doing reviews for opsi please do not hesitate to contact us through mail or at the opsi forum.

10.3. Localization contact



Please send any questions, hints or localization files to: locales@uib.de


OEBPS/opsi-configed-client-reachable.png





OEBPS/opsi-systray-menue.png
Install now

=-
% Check for Installations
Abort Program
4

1:40 PM
)
A ) DR 8/16/2017 EZ





OEBPS/netboot-pxeos.png
depotserver

dhcp server provides
net configuration
and tftpserver

opsiconfd

PC/Client

!

dhcp-request
————»

Bootimage

. .

Disk will be partitionied,
formated and made bootable

request
for configuration data

Installation directory
(/opt/pcbin/install/winxppro)

coPY

Bootimage mount with
configuration information
the installation directory
and start the

installation script

CoPY

File for operating system
installation will be copy on
the disk and setup control
will be create

Reboot start the automatic
operating system
installation






OEBPS/opsi-configed-clientselection.png
File Selection OpsiClient Help

- 3 v

&

Jdy

Depot-server

Hardware information =

Software inventory™\

| togfies’=

Product default-properties!

Depot configuratiion

==

\ T

bonifax. uib.local 3 Clientsil Product configuration ) [ Netboot products &
tat-srv-00L. uib.local
tat-erv-002.uiblocal search in [all columns mode fulltext search
tat-erv-003.uib local
i e client name 4| description [on |[last seen I
pebon12.uib.local 2010-06-29 17:33:34 19
pebon1 3.uib.local testpe bardo alte opsi AMD K 2010-06-29 17:33:34
pebon1 4,uib.loc] 31316:27:17
bebon1 4ol Wake clients, each delayed by B s siz20
v 5 CLENT UsT 2] || pebonLs.uibloc) Fire opsiclientd event > 10629 17:33:34
adtestbkuib.local pebonlt.uib.loc Send popup message 0522 11:38:32
adtestblocuiblocal pebondtclone.ui Request session Info l06-24 14:32:59
annawin?d.uib local pebon2.uibloce) on WaN-clients: Delete package caches L
pebon20.uib.loc] 1127 10:16:50
asrockLuib.local pebon2kopie i shutdown 0629 17:32:34
asusvivo0L.uib.local pebons.uib.loca) 0629 17:32:34
beclient.uib.local pebond.uib.loca| Remote Contréb call Leertaste [09-05 12:06:51

pebons.uib.locaf
pebons.uib.loca|
pebong. uibloca|
pebonerol.uib.

pcbonerolwin?.

pebonuibtime.u|
pedhcptest uib,
pefrese.uib.loca|
peian.uib.local

pejan-umo. ib.

pekarsten vib.

pemathias. ib.
pe-meier.uib.loc|
pemiriam. uib o
pemiriam111.ui
pemme3.uibloc:
pesusanne.uib.|
petdsl.uib.local
petest.uib.local
petestkks.uib.lof
potryldetlef.uib

backup-dns. uib.local
bardo2003english.uib.loc:
bardaclane2.uib.local
bardaclanes.uib.lacal
bardodepot uib.local
bardodumrmy2.uib local
bardorpu.uiblocal
bardatest2.uib.local
bardotestsxp.uib local
bardaw2008test.uib.local
bardawin2003x64.uib.lac.
bardoxpsd.uib.local
bardoxpenglish2.uib local
birgit10.uib local
birgit11.uib local
birgit13.uib local

Create new opsi client
Remove clierts

Re-intialize localboot products
Free licenses

Rename client

Move client(s) to a different depot
Show IP address

Show opsi mac address

Show session infos

Show invertory number

Show creation date

Define search

Use saved search defintion

Show only selected clients

@ Reload

> Create PDF

10620 17:33:34
0211 08:29:11
10620 17:33:34
0219 18:44:22
(06-01 16:14:33
0917 15:03:11
0913 10:20:13
10629 17:33:34
(05-07 15:35:24
04-15 09:13:53
(06-09 16:34:15
0515 10:59:22
l08-2411:32:53
(09-01 19:07:29
106-09 10:23:06
04-16 15:22:42
106-09 16:39:08
104-22 09:10:50
0620 17:33:34
(06-06 12:28:40
0522 14:36:16

birgit16 uib local
bwfscdummy. uib.local .v

<X I

petry2detlef. uib. oeaT
petry3detlef.uib. ocal
petryddetlef.uib.local

0o00000000000000000000000

etlefs testoe
detlefs testpc 3

T5-0518 20:51:43
2015-0227 18:03:30
20150802 17:55:35

Clients total: 416 SELECTED group:

client(s): pcbon1 a.wib.local

pcbon1a.u

Description
Inventory number

opsi MAC address

InstallByshutdown | on | [ off |
(] uefi Boot
(L waN Konfiguration

client one time password

Notes

number of clients: |1

(Depots: bonifax.uib.local






OEBPS/opsi-configed-treeview-groupname.png
Hew group

Name

Description






OEBPS/opsi-configed-editlist2.png
Property name.

| Property valus

additonal_drivers
askbeforeinst
fulname
imagename

orgnal

true

Name.

[Windows 7 ULTIMATE]

imagename. SRS %

produ
Windows 7 STARTERE 03
WINDE| | \indows 7 STARTERN
Windows 7 ULTIMATE v
faxuib|

— V¥ @






OEBPS/opsi-configed-client-message-reading.png
Opsi Message

Hello,

please save yor data.
We will shutdown the server.

your system administrator





OEBPS/clonezilla_choose_restore_targetdisk.png
Clonezilla - Opensource Clone System (0CS) i Mode: restoredisk
Choose the target disk(s) to be overuritten (ALL DATA ON THE ENTIRE DISK WILL BE LOST AND REPLACED??)

The disk name is the device name in 6NU/Linux. The first disk in the system is "hda” or “sda”, the 2nd disk is “hdb” or
“sdb”... Press space key to mark your selection. An asterisk (x) will be shoun when the selection is done:

fsda_21.56B_UBOX_HARDD ISK__ata-UBOX_HARDDISK_UBF cf 6278818464611}

<0k> <Cancel>






OEBPS/clonezilla_select_mode.png
- T cionezilla: <lect pode b— 0

| Clonezilla: Select mode |
Clonezilla is free (GPL) softuare, and comes with ABSOLUTELY NO WARRANTYx
This softuare will overurite the data on your hard drive when restoring? It is recommended to backup important files
before restoringtesx

///Hintt From now on, if multiple choices are available, you have to press space key to mark your selection. fn asterisk
(%) will be shoun uhen the selection is done///

Select mode:

saveparts Save_local_partitions_as_an_inage
restoredisk Restore_an_image_to_local_disk
restoreparts Restore_an_inage_to_local_partitions
1-2-mdisks Restore_an_image_to_multiple_local_disks

recovery-iso-zip  Create_recovery Clonezilla_live
chk-ing-restorable Check_the_inage_restorable_or_not
exit Exit. Enter command line prompt

<0k> <Cancel>






OEBPS/configed_productgroup_en.png
File Selection OpsiClient Help

cMg vV 2 eE=aLIN "
Depot.Server Hostparameters 7 | Hardware normation™ | Sotwareinventory. | Logle: Depots Y
] s Clientss) Progustconfauration ) Netooot pod
S4-51v-001 i Jocal
Y &
L ||| Nameaum SpeichemiLsschen EEEE
)| | sotware-or-demand software-on-demand group XY
=1 | e s oot |romsomia [vomn | | comowa. 90
v DA 72ip 4| || Prope...| Prope.
» T oroues “7;':“1
ace
T I M e
L asrackt uib local v accesskp
¥ol | ||| zooon v

Clients: 183 Seletedt Narne(s) In depots:





OEBPS/opsiclientd-event-processing-flow.png





OEBPS/opsiclientd-action-notifier.png
3
Ereignis on_demand: Ationen starten in 01:32
o(Q)e






OEBPS/licensemanagement-reconciliation.png
=lolx|

i ] e i Lcenses saso) EEINEITEN Ic sl

Reconcilltion to software audit

hostld 4| licensePoolld | used_by_opsi | Swinventory_used |
adtestokud local b_icense st mbed [ 8] I
ardorpu i ocal P lcense st mped v u] I
ardorpu i ocal Plcense-testvolume v a
bardatesthp.i ocel p_winsppro-msdn o a
irgtestwin? b ocal _vin7-msdn-profiesiansl v a
12005 i ol _wirsppro-madn o a
w201 i local p_win7-msdn-profiesiansl v a
cashetestuid ocal P_icense-teskcerm o a
aetetr0 uis ocal Plcense-t et v o
deteniod uis ocal J— o a
detenrioz uis ocal p_win7-msdn-profiesiansl v a

devwinT 154 uis vl _vin?-msdn-profizsiansl o a
w138 i ocal P o a
dev-wigHE8 i ocal pool_testl g e
dev-wigH38 i osal synetest v g
dev-wigE5 i ocal testosol g e
erotw2uis ocal p_winsppr-msdn o a
ero23 i ocal Plcense-teskvolume o a

euin ocal p_win7-msdn-profiesiansl v a

e ocal B_vinsta mstin v a

e ocal P O o

e ocal p_winsppro-msdn o a

e ocal pool_testl g o

e ocal testoool g o

x40 wk-001 i osal P u} o

e 40-wke-001 i ogal p_vinsppro-msdn o o






OEBPS/clonezilla_choose_diskimage2restore.png
Clonezilla ~ Opensource Clone System (0CS) | Mode: restoredisk
Choose the image file to restore:

j014-06-11- ng 2014-061 dal

<0k> <Cancel>






OEBPS/opsi-client-kiosk2.png
The following Actions will be done:

firefox: setup.

Install now (Close all Applications)
Install at next Standard Event (e.g. Reboot)






OEBPS/login-action-notifier.png
e

Starte dis Bearbitung von Produic Acianen, Sie
Fonnen dlese Aion insgesamt 0 mal sbbrachen. Die
o urds bare = 0 ] Shgsbrachen.






OEBPS/netboot-win-nt6-properties-imagenames.png
e 8

Windows 7 ENTERPRISE
Windows 7 ENTERPRISEE
Windows 7 ENTERPRISEN
Windows 7 HOMEBASIC
Windows 7 HOMEBASICE
Windows 7 HOMEBASICN
Windows 7 HOMEPREMIUM
Windows 7 HOWEPREMIUME.
Windows 7 HOMEPREMIUMN
Windows 7 PROFESSIONAL
Windows 7 PROFESSIONALE

Windows 7 PROFESSIONAL

Windows 7 STARTER
Windows 7 STARTERE.
Windows 7 STARTERN
Windows 7 ULTHATE

Windows 7 ULTIATEE
Windows 7 ULTIATEN

¥ @






OEBPS/opsi-wim-cap-backup.png
Disk backup

A with
opsi opsi-clonezilla
System
depot
g
images

N\ opsi-WinPE





OEBPS/opsi-configed-produkt-defaultproperties-jedit-different-values_en.png
File Selection OpsiClient Help

alllrd
(= /Y= )
Depot-Server (&
\ Product default-properties Depot configuratiion’
jedit
searchin (all columns ) mode [starttext search v . .
L =) k =) jEdit programmer's text editor
productid productName | productType | productversion | packageversi, Software/package version: 5.1.0-2
ava-se-devel... Oracle Java 5. LocalbootPro.. 1.7.0.45 1 -
javaruleset  [avaruleset  LocalbootPro... 0.1 2 JEdit with opsi-winst SyntaxcHighlighting 3
javavm oracle Java k.. LocalbootPro... 1.7.0.60 4
javaum oracle Java R.. LocalbootPro... 1.7.0.50 1 =
L ||| favavm oracle Java R.. LocalbootPro... 1.7.0.21 1 =
v ||| favaum oracle Java R.. LocalbootPro... 16.0.32 1
javavm oracle Java k.. LocalbootPro... 1.7.0.51 4 Pependencles:
+ ) GRUPPEN javaum1607  Sunjava Runt.. LocalbootPro.. 1.6.0.7 1 required | pre-req.. | postre... | on dein.
+ @ orectorr Pl || fvamiels  SunjavaRunt... LocalbootPro.. 1.6.0.13 1 T installed
=4 avaum1623abo  Sun Java Runt... LocalbootPro... 1.6.0.23 3
» [0V cuentusTe favaum1623st... SunJava Runt... LocalbootPro... 1.6.0.23 3
javaum1sas  Oracle javaR.. LocalbootPro.. 16.0.45 2
java old SunJava Runt... LocalbootPro... 15.0.22 1 Edit properties on depot(s]
jedit Edit program... LocalbootPro... 5.1.0 2 bonfax.uib local
jedit Edit program... LocalbootPro... 4.5.2 2 TR
jedit Edit program... LocalbootPro... 5.1.0 1
jedit-test Edit LocalbootPro... 5.0.0 1
Idesktop Desktop for Li.. LocalbootPro... 1.0 5
Idesktop Desktop for Li.. LocalbootPro... 1.0 3 2
I waudit Linu client H... LocalbootPro... 4.0.4 3
Hedit [Edit for Linu .. LocalbootPro... 5.2 3 T eI
Iedit [Edit for Linu .. LocalbootPro... 5.2 1 *
Ikde KDE for Linwc  LocalbootPro... 1.0 2 gui_language
Hazarus Lazarus for Li... LocalbootPro... 12.2 1 start_server false
S I-make-opsivm  Create opsivm  LocalbootPro... 1.0 2 N
w| (| LR brivbiotonei 00 B
< Ty
clients total: 348 SELECTED group: |GRUPPEN client(s}: number of clients: 120 (Depots: )






OEBPS/discontinued.png





OEBPS/opsi-configed-client-unreachable.png





OEBPS/clonezilla_choose_partimage2restore.png
Clonezilla ~ Opensource Clone System (OCS) | Mode: restoreparts
Choose the image file to restore:

2013-02-27-19-img 2013-0227-1839_sdal
2014-06-11-12-img 2014-0611-1031_sdal

fpart ing
xpelient-ing 2013-0301-1646_sdal

<0k> <Cancel>






OEBPS/opsi-configed-netbootproducts.png
File Selection OpsiClient

Help

(-

Y]

™

(=)=

)

Depot-s... (.)(.) Hardware information® | Software inventory™ | Log files’= Product default-properties§} Depot configuratiion#}
bonifax uib local | [& Clientsl I Product configuration ) | Netboot products Host parameters /%
tat-erv-00L. uib.local [P -
tat-erv-002 b local win-x64
e D Product ID 4| status [ Report [Requested ... | version |
tetere0os il ‘“‘1‘ | Win2003-msdn-de-enterprise. g || S
vmax12susel3L.u Win2003-12:64 [ softwarespackage version: 4.0.5:7
win2003-12e
win2008 Microsoft operating system / Systéme d'explaitation Microsoft 3
Win2008-12
Win200864 =
win2012 -
e win2012.12
win2012-12-standard-msdn Dependencies;
Crsmuzunory | [ win2k [required | pre-requir...| post-requ.. | on deinstall
£ sles-proxy.uf win?
O soundhiug ui win7-enterprise-msdn
= win7-oem
stb40-snv w764 installed  success 4054 —
O sth40-srv-1 win764-erterprise
L stb40-srv-1 win7x64-enterprise-msdn Property configuration
3 ot 40-orvL win7-x64-home-premium
T .| Property name [ Property value [
L sth40-srv-L win7xednaberth ‘additional_drivers K
CJ surfacel.uib. Win7%645p1 askbeforeinst true
O surfacez.ub, win7emb bl true
O susamneiap win7embedrestoreimage
win7epanish boot_partition_label BoOT
CJ swuproto.ut
s proto.uib win7thinpc boot_partition_lstter -
tdebiand.uib)
wing boot_partition_size a
& test-a-win7 wing-enterprise-msdn 2 X
TP EEE = data_partition_create true
wing-64-enterprise data_partition_label DATA
D ectelent-a1 Wing 64-wilb data_partition_letter o
O testelient-az wingl - -
D teoteliont 05 inBLo64 data_partition_preserve never
3 tosicliont-ad. winB1.x64-uib fullname, Name
winBltest
imagename Windows 8 Pro
& tostcliont-as, wingdummy 641 N
L testerol.uib. I winvista orgname Orgname
C testora b | || wiviataos pre_format_system_partitions  true
v L L
T s winvista64-msdn 5| || prodctiey I
clients total: 416 SELECTED group: client(s): test-a-win764b.iblocal number of clients: |1 (Depots: bonifax.uib.local )






OEBPS/opsiclientd-control-server-web-interface.png
["}®) opsi client daemon - Mozilla Frefox VO

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

¢ P v € O @ [N s a1/ G B2

Laden... |+ v

g
2@9 opsiclientd

o software on demand
« opsiclientd info page
« opsiclientd control interface

o) Authentiiderung erforderlich Pe®
® httpsy/' . ~~:4441verlangt einen Benutzemamen und ein Passwort. Ausgabe der
& Website: "OPS! Service*

Benutzername: | Administrator

passwort: (XTI )

<( m e ¢






OEBPS/opsi-configed-treeview.png
+ O crours
» (& omecTorr
» [ cusnTusT






OEBPS/configed_toolbar_icons_connected.png
& e W@ v (v=]~






OEBPS/opsi-systray-message.png
opsi: Pending installations:
‘ Motzilla Firefox : setup

opsi-client-systray.exe

1:42 PM
~ )
. = 71 4 bRy 8/16/2017 % ‘





OEBPS/opsi-configed-treeview-generate-group.png
>

v & g
. testelient-a0.uib.locsl
L testelient-a1. b locsl
0 testelient-a2.uib.locsl
0 testelient-a3.uib.Iocsl

) ab_aroup






OEBPS/opsi-configed-editlist1.png
Konfiguaton fur Cient (A4
Property-Name | Property-wert
additional_drvers

-

askbeforeinst false
blockalignment true
default rue]

Option for writing Partitiontable in Block Alignment / Option pour écrire la table
de parttion dans le Block Alignment

data_parttion_label DATA

data_parttion_letter D

fullname. Name.

imagename. Windows 7 PROFESSIONALN
orgname. Orgname

productkey

‘system_keyboard_layout 0407:00000407






OEBPS/opsi-configed-client-message-editing.png
Wiite message:

Hello,

please save your data.
We will shutdown the server.

your system administrator

v @






OEBPS/licensemanagement-licensepools.png
4-0psi conig editor Licenses

W e e s el o fsisial)

License pools (stock of licence keys for fixed installation purposes)

licensePooll | description
_2009-05-26_14:4320_0 Lizensen fuer 7zip
p_license-estmied opsi license test
p_license-testoem opsi license test
p_license-test retail opsi license test
p_license-testvolume. 0psi licpnea tast
p_win?_re_32hit Lizenzsl  New license pool
p_winpro Lizenze|

Delete row

v o Save data

Aandon changes
Assignments: License pool ... stores licences for product ..
Reload data

licensePooll ] produe
_2009-05-26_14:4320_0 datacc2
p_license-estmied license-est mived
p_license-testoem licenseest-oem
p_license-test retail licenseest retail
p_license-testvolume. license-estvolume
p_win7_rc_32bit win?

p_winpro winppro

v o

Windows software ID assigned to the selected License pool

windowsSoftwareld | displayName | displayve... | installatio... | binanNa.. |
(083F79E4-6FEQ-46FB-ABCE-4F8862742047)  ATI HYDRAVISION 3250008 3 CiiProgra
{08B74145-B396-4EF 3-BFOD-21 24FDE4BES3)  Microsoft NET Framework 2.0 SDK - DEU 2050727 1
{0BCECCT1-AGB1-4170-AB3A-C5TCAFB54F53)4 . Pirmasoft RundsSyc - netiod 143600 1
{0BCECCT1-AB1-4170-AB3A-C57CAFB54F53)7 .. Pirmasoft RunAsSyc - netio2 143601 1
{09298F26-A95C-31E2-9D95-2C60F586F075)  MicrosoftVisual C++ 2008 Redistributable -85 .. 9021022 1
3
1
1

CitPragra,
CitPragra,

{09715083-8F10-4834-9E28-B5D8820513CA} 108126
{09E3AZB0-6816-4858-9E40-FE4BF72848E8)  Lewware buchhalter 2007 1200

{0A3D3C54-2EC0-4D67-B265-FF17926E6D67)  Nokia Connectvity Cable Driver 6.85.100
0A86965-8004-4F7C-AGCT-07 2DICACEDOE}  MSML 6.0 Parser (KBII3579 61012000

v o

CitPragra,






OEBPS/licensemanagement-statistics.png
¢ opsi config editor Lizenzen Q@ [i]

| Lizenzpools | Lizenz anlegen | Lizenzen bearbeiten | Lizenzenverwendung Lgmgmg:]

Ubersicht Lizenzenverwendung

licensePoolld 4| licence_options | used_by_opsi | remaining_opsi | SWinventory_us... | SWinventory_re...
acrowrite 34 1 32 45 =11

mstest 1 0 1 0 1

sapp 1 0 1 0 1

winvista 2 0 1 1 1

winxppro 2 1 0 0 2






OEBPS/opsi-config-server.png





OEBPS/clonezilla_restoredisk_command.png
S. Next time you can run this command directly:
opt/drbl/sbin/ocs-sr -g auto —el auto —e2 —c —r —j2 —p true restoredisk 2014-06-11-12-ing sda

his conmand is also saved as this file name for later use if necessary: /tmp/ocs-2014-06-11-12-ing-2014-06-11-16-26
ress “Enter” to continue






OEBPS/opsi-vhd-control-1stsnap.png
Snapshot 2

PE creates Child VHD
Child stores changes
Child is boot target

Container

opsi-WinPE

e





OEBPS/clonezilla_tool-priority.png
——————————————— Clonezilla advanced extra parameters | Mode: savedisk ——————————————
uhich clone program(s) and what priority do you prefer? Progran priority means that if the file system is not supported by
the first program, the next program will be used. E.g. If you choose “Priority: ntfsclone > partimage > dd”, then if the
file system is xfs, Clonezilla will try to use ntfsclone first, and of course, xfs is not supported by ntfsclone, so
Clonezilla will try to use partimage with dd being the last program to try if that does not work.

The default settings are optimized. If you have no idea, keep the default value and do NOT change anything and continue.

—ql Priority: Only dd (supports all filesystem, but inefficient)
-q Priority: ntfsclone > partimage > dd
Priority: partimage > dd (no ntfsclone)

<0k> <Cancel>






OEBPS/opsi-webinterface2.png
opsiconfd interface page - Mozilla Firefox k§) k@ k’é)

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

CEI ) [ MR nttpsinocalnost 4447iinterface?( " 1,"mthod": "config_getot v | | W v [ 1@,
ES

| © opsiconfd interface page |

Path: | interface ;I
=]

Method: | config_getObjects

*attributes: | |
*filter: | |

resulting json remote procedure call:

{ "method": "config_getObjects",
"params": [],

"id" 1}

Execute

json-rpc result

"ident": "clientconfig.configserver.url”,

"description™ "",

"defaultValues": [
"https://192,168.1.14:4447/rpc"

"multiValue": false,
"possibleValues™: [
"https://192,168.1.14:4447/rpc"

pe": "UnicodeConfig",
"id": "clientconfig.configserver.url"

"ident": "clientconfig.depot.drive",
"description™ "",
"defaultValues": [

<E >

E Yaditable": true,






OEBPS/multidepot-without.png
opsi-configed (Management Interface)

4
v

opsiconfd (web service)

opsi library
opsipxeconfd
opsi-atftpd
Sy GElE depot share
storage
tftp files






OEBPS/clonezilla_choose_restore_targetpart.png
Clonezilla ~ Opensource Clone System (UCS) i Mode: restoreparts
Choose the target partition(s) to be overuritten (ALL DATA ON THE PARTITION WILL BE LOST AND REPLACED!?)

The partition name is the device name in GNU/Linux. The first partition in the first disk is "hdal” or “sdal”, the 2nd
partition in the first disk is "hda2” or "sda2”, the first partition in the second disk is “hdb1"” or “sdb: If the
system you want to save is MS windous, normally C: is hdal (for PATA) or sdal (for PATA, SATA or SCSI), and D: could be
hdaz (or sdaz), hda5 (or sda5)...:

fsdal 21.56B_ntfs_UINDOUS(In_UBOX_HARDDISK_)_ata-UBOX_HARDDISK_UBfcf62788-1846d611]

<0k> <Cancel>






OEBPS/opsiclientd-event-notifier.png
Ogen—Pe'Ss'rvsz\

opsitinst 4303
=3

g g

Processing event gui_startup

st i local






OEBPS/opsi-vhd-inst4.png
Snapshot 1 Container
Activate and boot e
to WinPE
System

opsi-WinPE





OEBPS/clonezilla_parameter5.png
Clonezilla advanced extra parameters i Mod
After the image is saved, do you want to check if the image is restorable? ///NOTE/// This action
inage is restorable, and it will not urite any data to the harddrive.

Yes, check the saved image

=sc Mo, skip checking the saved image

1 only check the

<Cancel>






OEBPS/opsi-client-kiosk_tile_simple_en.png
§: opsi-client-kiosk

o [ Expert mode

7-Zip
Tzip
Installed
Action Request
@® None
O setup
O Uninstall

1dacity-win-2.0.3_lame_plugi

audacity
Unknown
Action Request
@© None
O setup
Eraser
eraser

Adobe Acrobatreader 9.x
acroread9

Not installed
Action Request
@® None
QO Setup

BCDEdit
bededit

Not installed
Action Request
@® None
O setup

FileZilla
filezilla

Connected to https://localhost:4441/kiosk as messe2.uib.local

Adobe Flashplayer
flashplayer

Installed
Action Request
@® None
O setup
O Uninstall

CDBurnerXP

cdburnenxp

Not installed
Action Request
@® None
O setup

Firebird SQL RDBMS
firehird

+f Install now

e Search

Adobe Reader 10
acroread

Not installed
Action Request
@® None
O Ssetup

classic shell
classic-shell
Installed
Action Request
@ None

O setup
O Uninstall

®
O i

Foto-AufmaR Professional

fotn_anfmass





OEBPS/licensemanagement-usages.png
nses [_[oIx]

psi config editor

Uicense pools | Newicense | Eaticenses ] Hoenasausagsy| Reconliaton | statstcs |

Usage o esnces, detal

hostd 4] sotwareLicenseld [lcenseraoiid licensekey notes

002 ocal 2006-05-29_11.2604 0 p_lcenseastimbed  [oenseesk s variay T
00s s ocal Corugpro_volume_Izen... p_wincsors " ez

vmax011.uib local 1_2008-05-29_12:40:30 p_winxppro-msdn { Delete row

021 ujocal Corugpro_volume_izen... p_wincors Save datn

022 jocal Coirsppro_volume_izen . p_wincoro

vmax150.uib local 1_2008-05-29_11:20:48_0  p_license-test-retail licer Abandonlcfianges]

S0 ocal 2008.05207112244 70 censeastoclums  loar| Relosd date

S0 ocal 2000.052071126570 picenseastmbad  losnewmessmmrren

a1 S2uisocal 20060626 124030 windgpre-madn

1. ocal 2000520711204 0 censedactoetal  losnsesstrealker-4

16 s ocal 2008.05297112244 70 lcense-stoclums  loensetectiohmevory

16 s ocal 20080529711 26540 picensestmbad  losnee ect et et

1SS ocal Zvin7_tc_avduionng ~ p_win?_te_32i

g ubscal 060520 12050 0 picensestietal  losnsesstrsalbers

g bl 2008.05207112244 70 lcense-stoclums  loensetectiohmevory

g bl 20000520711 26550 picensestmbad  losnce-ect ket

iz ub s 20080520711 24570 picenseastmbad  losnee-eck ket

i ibocal 2008.05207112604 0 lcenseestmbed  loensetesk ook ey

bl 20080520711 204570 picenseastietal  losnse sckrtalber

b ocal 2008.05297112244 70 lcensestuclums loensetectiohmevory

b ocal 20080520711 265270 picenseastmbad  losneedect ket

vmic-altuib local 1_2008-05-26_11:25:04 0 p_license-test-mixed license-test-mixed-vol-key L
i ocal Corugpro_volume_izen... o wincsors 5
v o

Resenve license for client

License pools (stock of licence keys for fixed installation purposes)

lcensePoola ] dessrption I
o_lcense festoem opsicense fest E

{S—er ca—)






OEBPS/configed_serverkonsole-defcommands.png
Menu text Konfiguration initalisieren B(=
Parent menu opsi |52
Description Konfiauration intialisieren

Position 40
Need root rights @

Commandiist (one line per command)

opsi-setup -

it current config

Insert parameter into command line [Interactivinput.

formatted as. xyz

i
i






OEBPS/clonezilla_parameters6.png
Clonezilla advanced extra parameters i Mode: savedisk
The action to perforn when client finishes cloning:

~p reboot  Reboot client when the clone finishes
-p poveroff Shutdown client when the clone finishes

<Cancel>






OEBPS/configed_serverkonsole-terminal.png
- | Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-59-generic x86_64)

7

*Documentation: https://help.ubuntu.com
| *Management: https:/landscape. canonical.com
*Support:  https:/jubuntu. com/advantage

17 packages can be updated,
16 updates are security updates.

*+% Neustart des Systems erforderlich ++
Last login: Wed Mar 8 13:29:16 2017 from 192.168.27.70
| adminuser@edges30-1:~$ bash
adminuser@edges30-1:~$

Command ( covered (] )

Insert parameter into command line [ Interactiv input

formatted as xyz





OEBPS/unsupported.png





OEBPS/opsiclientd-configuration-via-configed-serverdefault.png
psi config editor - certel@bonifax

File Selection OpsiClient Help

A | Ry

23
EX
333

t

Depot-server ClientsHl Product configurationt@l Netboot products &
bonfexub ocal 2 [ vostparametes | e normaionm Sofware mventonll LogieslBl
Il | sto—s0-srv-001.uibJocal .
| — — . Configuration: configuration server (bonifax uib.local)
v FEI‘}VW"’S Property name | Property value
» [ bardo_testoc.
I " iy clientconfig configsenverurl hitps:/192.168.1.14:4447ipc
v (Y oeterspes
VB deterstostocs clientconiig.depot drive. 2
I CJ dettvmt . === true.
| L petrytdetit . clientconfig.depotid bonifaxuib.local
CJ pery2ceter Add property
fuio clentconfig win Uiz
& petryadetif.uib.
o b, license-managementuse e
£ petrysdetiet.u. opsiclientd event_gui_startupwaring_time 20
I & vaetet.uiblocsl opsiclientd event_on_demand.shutdown_user_cancela.. 4
J pesont.
ubecs! opsiclientd event_on_demandwarning_time 10
=
» B e o4 opsiiinuxbootimage.append
[=X ol
W Clients: 181 Selected: Name(s): In depots:






OEBPS/opsi-configed-failedactions-today_en.png
File

[l Opsiclient Help

| Define search

£ Use saved search definttion

| current version not installed for product

Failures with product

Del e5 0 d -

borl  cancel selection since yesterday.

tst show only selected clients since 3 days

ot last 7 days

tst-sn003.uib local client name 4 | description zs;:y“:;fm [P

wmax12susel31.uib.local e naruin EMEEETER T
pcbardo.ui.. BardosPC .  2012.0615.. 19
pebirgit.ub.... Birgit, Arbel... 7 2014-07-07.. 19
pebonl a.ui . 20090313
pcbonld. JansVMWar.. . 20080125
pebonitclo. . 20080624,

E1S pcbon2.uib.... ute A 2014-07-07... 19
pcbon20.ui.. Niko, Deskt.. . 20121127.. 19

» [ GruppEn ||| pebond.ub... detlef @ 20140707.. 19

» ) orectory ||| pecbonGuuib.. testpcbard.. o 2010-0211

= y pebonerol....  Erols PC . 20030210, 19

> W CLENTLSTE pejan-/mo. . 20100415

pckarsten....  Karstens PC . 2014-07-07.. 19






OEBPS/opsi-configed-mode-depotselection.png
File Selection OpsiClient Help

Depot-server

bonifax.uib.local
tat-srv-00L. uib.local

tat-srv-002.uib.local
tat-srv-003.uib.local

clie
adte
adkte
ann:

vmax12suselsL.uib.local






OEBPS/opsi-configed-clientinfos.png
Hardware information™=! i Software inventory®\ 1

Log files|

Product default-

rfiguratiion

Clients. 1 Product configuration ) i Netboot products i Host parameters /5
search in [all columns. (¥ mode [Full-text = [N

ame 4] description [nventory no [on [last seen [ WAN co.. [ UEFIm,
5.uib.local abc defa 2017-03-21 14:32:29 2 Deserpt
Luib.local Rupert Roeders Mini-Des... 00:26:18:aailfi9b 2017-06-20 14:23:10 CEEEAE
001.uib.local Rupert Roder Desktop 2015-02-10 11:03:28
rupertos.uib.local 2015-07-08 12:48:59 2 v et ™
30-2.uiblocal Lenovo ThinkPad Edge 5. 2016-06-08 12:15:40 WL ARG
30-3.uiblocal Lenovo ThinkPad Edge 5. 2017-05-08 13:43:54
b1.uib.local testl fscnotebl von Ima...  inv 0101 2016-07-15 10:50:55 v T
ant2.uib.local 20180111 14:39:25 opsi MAC address
tb1.uib.local fupert Samsuing Netbook 2014.01-20 13:25:27 v v
01.uiblocal Tuxedo Rupert privat 2017-04-11 15:18:47

rtkurs.uib.local
rtopsi.uib.local
rttom.uib.local
rtubuntu.uib.local

rtuefi.uib.local
s

VM-basierte Testserver w.
virtual box testserver auf,
tomeat experiment rupert

20161219 13:56:46
2014-05-22 09:25:24
2016-01-25 14:44:29
2017-1219 14:09:34

2017-01-03 11:56:48

InstalleyShutdown [ on | [ off
Uefi Boot []
WAN Konfiguration [





OEBPS/opsi-wim-cap-restore.png
Disk restore

N with
opsi opsi-clonezilla
System
depot
A"
images

N\ opsi-WinPE





OEBPS/opsi-configed-client-new.png
IP name (without domain) IP domain name

uib.local

Description

Inventory number

Notes

Hardware address (required if the opsi server serves PXE services)

IP address (required if the opsi server DHCP config needs it)

(] InstallByShutdown
[ uefi Boot

(L] Standard WaN configuration

belongs to depot: bonifax.uib.local v
Primary in group 2

Netboot product






OEBPS/opsi-vhd-control-work.png
Production

All changes are
written to the
child VHD

Container

opsi-WinPE

e





OEBPS/ospclientd-infopage-wan-cached.png
Dote _gearbsten Ansicht _Chronk _Lesezeichen _Extras e

- ¢ X G

ttps:fflocahosti4441,nfo.html

o) Meitbesuctte Seten | rsteSchrtce | Akcuele Nachrichten ) opsiclentdaeron

© opsi client daemon info B
@ Febsot startedby ser | QEvent Gustartin  nmmg astins
@Fepsoting oo wamine
@ Event yne_competea Frocerong svert aw_start
Fronesaig event sync._conpleted  Opsiientd version: 4050 (11 runnig
@ Febsot requestd Hocking g
Fepeor warming
Zache procct javam
iche products
@ Event net_conastion
Frosesang svent et _comection
[ e
Y
H T
g J1ane e — anr
£ "
E . b

0






OEBPS/clonezilla_compression.png
—————————————{ Clonezilla advanced extra parameters i Mode: savedisk ———————————————
Choose the compression option. If you have no idea keep the default value and do NOT change anything. ///NOTE/// ~z3

(lzop) is the fastest for compressing an inage while the image size is sufficiently small (slightly larger than that of
gzip). Houever, it is not recommended when saving the image while using (1) a netuork-based directory (2) a machine with

bad quality RAM. The lzop algorithm requires a good quality netuork and RAM. If the netuork guality or RAM is not good
enough, your saved image will be broken and not working???

z1 gzip compression (fast with a smaller image)
22 bzip2 compression (slouest but smallest image)

23 1zo compression (faster with image size approx. to that of gzip)(NOTE??)

~z4 lzna_conpression_(slouest_but_also_small_inage, faster_decompression_than_bzip2)
20 No compression (fastest but largest image size)

<Cancel>






OEBPS/configed_package-actions.png
& opsi config editor Produktaktionen

opsi-Paket
Installieren auf

Zielverzeichnis (opsi_workbench)

Server.
Windows-Produkt

"PE-Dateien nehmen aus
InstallFiles nehmen aus.
Zielverzeichnis (in opsi_depot)

Default Windows-Produkt-Key

opsi Paketinstallation

bonifaxuibJocal

Venvolistandigung eines Windows-Produkts

bonifaxuibJocal

opsilocakimage-win7.






OEBPS/configed_serverkonsole-exec.png
Commandiist: 0
Is <<<search files in following directory (optional)>>>
search files in following directory (optional)
/home/adminuser
concer ] (6]
v






OEBPS/central-config-server.png
central LAN

]
<
2
S
<
<]
o

decentral LAN






OEBPS/clonezilla_imagename.png
Clonezilla - Opensource Clone System (OCS) | Mode: savedisk
Input a name for the saved image to use

<0k> <Cancel>






OEBPS/clonezilla_restorepart_progress.png
Partclone

Partclone v0.2.8 http://partclone.org
Starting to restore image (-) to device (/dev/sdal)
Calculating bitmap... Please wait... domet

File system: NIFS

Device size: 21.5 GB
Space in use: 13.8 GB
Free Space 7.7 GB

Block size: 4096 Byte
Used block : 3371140

Elapsed: 00
Rema inin






OEBPS/multidepot-with.png
opsi-configed (Management Interface)

4
v

opsiconfd (web service)

opsi library
opsipxeconfd
opsi-atftpd
Sy GElE depot share
storage
tftp files
depot Server
P opsiconfd
Client H -
= = opsipxeconfd
Service

share
Mount <—|_>

PXE |-=1 opsiatipg

> tftp files






OEBPS/clonezilla_parameters1.png
Clonezilla advanced extra paraneters i Mode: savedisk
Set advanced parameters (multiple choices available). If you have no idea, keep the default values and do NOT change
anything. Just press Enter. (Press space key to mark your selection. fn asterisk (x) will be shoun uhen the selection is
done):

<Cancel>






OEBPS/clonezilla_restorepart_askbeforeinst.png
ctivating the partition info in /proc... done?
etting /dev/sdal info...

Ithe follouing step is to restore an image to the hard disk/partition(s) on this machine: “home/partimag/parting” —> “sda sda:
ARNING! 11 UARNING!!? UARNING?
ARNING! THE EXISTING DATA IN THIS HARDDISK/PARTITION(S) UILL BE OVERURITTEN? ALL EXISTING DATA WILL BE LOST:

tachine: UirtualBox
dal (21.56B_ntfs_WINDOUSCIn_UBOX_HARDDISK_)_ata-UBOX_HARDDISK_UBfcf62788-1846d611)

re you sure you want to continue? 7 (ym) y
K, let’s do ittt

This program is not started by clonezilla server.

The follouing step is to restore an image to the hard disk/partition(s) on this machine: “/home/partimag/parting” -> “sda (sd

JARNING?1? UARNING??? UARNINGI?Y
ARNING? THE EXISTING DATA IN THIS HARDDISK/PARTITIONCS) WILL BE OVERWRITTEN? ALL EXISTING DATA WILL BE LOST:

tachine: UirtualBox
dal (21.56B_ntfs_WINDOUSCIn_UBOX_HARDDISK_)_ata-UBOX_HARDDISK_UBfcf62788-1846d611)

et ne ask you again. Are you sure you want to continue? 7
[y n1






OEBPS/agplv3-127x53.png





OEBPS/oli-prepare.png
disk 0

prepare

opsi-local-image-prepare

" Hel pi






OEBPS/configed-masterbuttons2.png
(e
fepars)
ik

=@






OEBPS/opsi-wim-cap-deactivate-oli.png
deactivate
opsi-client-agent

System

images

N\ opsi-WinPE





OEBPS/opsi-wim-cap-capture.png
System backup

e ig by winpe and
opsi stored Svstem
- to wim y
g
images‘

&

N\ opsi-WinPE





OEBPS/configed_clientselection2.png
© W Saved Searches

testiransiation

test

alle_petry
not_petry
testuebersetzung
bardodelltest

bla

vo =





OEBPS/opsi-wim-cap-work-cmd.png
create work.cmd
and reboot

System

opsi-WinPE





OEBPS/netboot-pxe.png
Depot-Server

PCIClient

from

letc/hosts +
letc/dhcp3/dhcpd.conf

dhcpdiscover
-~

dhcpoffer
—
dhcprequest

dhcpack

PXE-Bootprom
becomes active

PC now knows:

-it'sIP

- the server

- Gateway and netmask
- bootfilename






OEBPS/opsi-configed-wake-on-lan-scheduler.png
opsi config editor: Scheduler for Wake On LAN

Wake On Lan: Scheduler (2016-06-06) 17:22

Delay between WakeonLan actions

Clock for start time

(day) time ~ (2016-06-06) 17:31

Clients to wake up |3 Involved depots |1

00:05:12






OEBPS/opsi-vhd-control-activatepe.png
Recovery

Activate PE
Reboot to PE

—

Container

opsi-WinPE

1






OEBPS/clonezilla_parameter4.png
Clonezilla advanced extra paraneters i Mode: savedisk

Choose if you want to check and repair the file system before saving it. This option is only for certain file systens
which are uell supported by fsck on GNU/Linux, like ext2/3/4, reiserfs, xfs, jfs, vfat. Not for NTFS, HFSs..

Skip checking,/repairing source file systen

~fsck-src-part  Interactively check and repair source file system befare saving
~fsck-src-part-y Auto (Caution?) check and repair source file system before saving

<Cancel>






OEBPS/opsi-client-kiosk_tile_expert_en.png
§: opsi-client-kiosk

View
OlList o

@Tiles

@© Info [ Expert mode
7-Zip
7zip

Installed

Action Request

@® None

O setup

O Uninstall

1dacity-win-2.0.3_lame_plugi

audacity
Unknown
Action Request
@© None
O setup
Eraser
eraser

T Filter for Upgrade

Adobe Acrobatreader 9.x
acroread9

Not installed
Action Request
@® None
QO Setup

BCDEdit
bededit

Not installed
Action Request
@® None
O Ssetup

FileZilla
filezilla

Connected to https://localhost:4441/kiosk as messe2.uib.local

®
O i

« Show Actions ) Store Actions.
S showall G Reload Search
Adobe Flashplayer Adobe Reader 10
flashplayer acroread
Installed Not installed
Action Request Action Request
@® None @® None
O setup QO setup
O Uninstall
CDBurnerXP classic shell
cdburnerxp classic-shell
Not installed Installed
Action Request Action Request
@® None @ None
O setup O setup
O Uninstall
Firebird SQL RDBMS Foto-AufmaR Professional

firehird

fotn_anfmass





OEBPS/opsi-configed-hardwareinformation.png
File Selection Opsiclient Help

2@/ [V ) m) (@]
Depot:s.. (][ clemtst | Product configuration ) I Netboot products & I Host paramsters /7
Bonifaxuib local |4 Hardware information=1 | software inventony | Product default-properties§ Depot configuratiion
tat-srv-00L uib lacal
tst-srv-002.uib.local Selection for byAudit driver path: Vendor Product/Model
tst-erv-003.uib local
| @ (innotek GrmbH 7 [VirtuaiBox

O [oracle Corporation 7 [VirtuaiBox
/M Scan 2014-12-16 13:21:49 2| Name Intel(R) Core(TM) i3-3110M CPU @ 2.40GHz B
Lilllvesos Description Intel54 Farmily & Model 58 Stepping 9
| © 508 0 vendor Genuinelntel
=l ||, s ris
CsmuZ b o chassis Current clock speed 2,386 GHz
£ sles-proxy.uf computer Masimum clock speed 2.386 GHz
©J soundhlug.ui » 4 HD Audio device Address width b4 8t
O sth40-srv-1 » £ Harddisk drive
O sth40-srv-1 » 1 IDE controller
O sto40-srva1l | 1| | » (L Keyboard
O sth40-srv-1 » ™ wonitor
O sth40-srv-1 Network adapter
CJ surfacel.uib. » = Pel device
 surface2.ub » 2 Partition U
CJ susannelap. » (%) Pointing Device
£ swwproto.uib » i Printer
CJ t-debians.uib v @ Processor
& test-a-win7 © Intel(R) Core(TM) i3-3110M
O testelient-a0, » 9 USE controller
O testelient-al, » % UsE device
O testelient-az » ¥ video controller
O testelient-a3,
O testelient-ad,
O testelient-as,
C testerol bl
testiars b iy L L
TSIy v v

Clients total; 416 SELECTED group: client(s): test-awin764b.uib.local number of clients: 1 (Depots: bonifax.uib.local )






OEBPS/opsiclientd-shutdown-notifier.png
s I e |





OEBPS/licensemanagement-editlicense.png
-opsi config editor Licenses

e ] i R e e oo il

Available license options (license keys are editable)

softwareLicenseld 4] licensePoalid [ icenseKey
1.2009-05-20_11:20:45_0 p_license-test retail license-test retail-key:1
1.2009-05-26_11:20:45_0 p_license-test retail livense-test retaik-key-2
1.2009-05-20_11:20:48_0 p_license-test retail livense-test retaik-key-3
1.2009-05-26_11:20:48_0 p_license-test retail stretaikkey-4
1.2009-05-26_11:20:50_0 p_license-test retail Newlicence option bt retailkey-5
1.2009-05-20_11:21:44_0 p_license-testoem T stoem-key-1

1.2009-05-26_11:21:45_0 p_license-testoem stoern-key-2
1300.05.20_ 112147 11 lirense.test. Save data ke

Abandon changes
v o =

Reload data

Software licensing clause (defines the validity of icense keys)

softwareLicenseld 4 licenseContractid | licenseType. | maxnstaliations | boundTaHost | expirationDate
1_2008-05-26_1026... ¢_defaull VOLUME 0

12009-05-26_11:20... c_license-testretail  RETAIL

12009-05-20_11:20... c_license-testretail  RETAIL

12009-05-26_1120... c_license-testretail  RETAIL

12009-05-20_11:20... c_license-testretail  RETAIL

12009-05-26_1120... c_license-testretail  RETAIL

12009-05-20_1121... c_license-testoem  OEM petyl detiefuib local
700.05.20 1121 ¢ lirence-tect 1 b win Incal

v o

Select or enter license contract

licenseContracti 4| partner | conclusionDate notifcationDate | expirationDate | notes.
©_2008-05-28_08:3, 2009-06-18 2009-06-23 testt
©_2008-07-09_16:2... uib grbh 2009-07-09 10 gebrauchte XP Li
c_default 2009-08-11 2009-06-23 2009-06-18 Auto generated defa
c_license-test-mixed  uib gmbh test contract
c_license-testoem  uib gmbh autogenerate test o
c_license-test-retail b gmbh test contract

c_license-testvolume  uib gmbh test contract
_ewal Micrnsot

v o






OEBPS/oli-os-install.png
OS-Install

Paketbasiert
z.B.
opsi-local-image-win7-x64






OEBPS/clonezilla_choose_disk.png
Clonezilla ~ Opensource Clone System (0CS) | Mode: savedisk
Choose local disk as source.

The disk name is the device name in GNU/Linux. The first disk in the system is "hda” or "sda”, the 2nd disk is "hdb” or
"sdb

Press space key to mark your selection. An asterisk (x) will be shoun uhen the selection is done

1 sda_ 21.56B_UBOX_HARDDISK__ata-UBOX_HARDDISK_UBf cf 62788-1846d61:

<0k> <Cancel>






OEBPS/verteilte_checks_en.png
B
S
S
®
g
2
3
S
s






OEBPS/opsiclientd-configuration-via-configed.png
@ opsi config editor - oertel@bonifax

File Selecion _OpsiClient

Help

& -
<Al 1 N 2L | E ) &
Depot-Server Clientsl&l [ Product configuration ) [ Netboot products 3
ey s Hostparameters [ | Harawareinfomation= | Sofware imenton .|
Stb-40-6rv-001 ub local .
= — . Configuration: detlefvmo1.uib.local
v F-"}qmb’s Property name | Property value
> [ bardo_testoc
L), berdo.! dlientcontig configserver ur hitps11192.168.1.14:4447irpc.
v [ oeterspes
v ) detetotostocs clientconfig depot rive: 2
& detietvmot.ui || ctentonta dspotgnamic true.
L petrytdetit . clientconfig.depotid bonifaxuib.local
0 peryadeter
fuio clientconfig windows. domain Uiz
& petryadetif.uib.
o b, license-managementuse e
£ petrysdetiet.u. opsiclientd event_gui_startupwaring_time 20
& vaetet.uiblocsl opsiclientd event_on_demand.shutdown_user_cancela.. 4
J pesont.
ubecs! opsiclientd event_on_demandwarning_time 10
=
» B e o4 opsiiinuxbootimage.append
[=X >
Clients: 181 Selected: 1 Name(s): | detlehm01.uibJocal Indepots: | bonifaxuib local






OEBPS/oli-backup-1.png
Backup

Image basiert

opsi-local-image-
backup






OEBPS/opsi-wim-cap-backup2.png
opsi-Metadata

- Backup
aai c:\opsi.orgllog
System
depot
\A"~
images

N\ opsi-WinPE





OEBPS/opsi-configed-login.png
opsi config editor Logon

opsi configuration editor, version 4.0.6.7.6 2016/06/06

Connect to opsi configserver

exp-s1v-001:4447

wer D

adminuser

Password

) Use gzip compression

Check which clients are reachable every 0| minutes

Connect Exit






OEBPS/opsi-configed-client-contextmenu.png
b loc:
local
local
local
local
local
local

local
local
ib.loc
uib. o
uib.lo
ocal

cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
cal
S

v

Wake clients, each delayed by
Fire opsiclientd event
Send popup message
Request session info
On WAN-cliertts: Delete package caches

Shutdown

Remote Control call

Create new opsi client
Remove clierts

Re-intialize localboot products
Free licenses

Rename client

Move client(s) to a different depot

Show IP address
Show opsi mac address
Show session infos

Show invertory number
Show creation date

Define search

Use saved search defintion

Show only selected clients
@ Reload
> Create POF

Leertaste

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
S





OEBPS/cc-by-sa.png
() DO





OEBPS/opsi-configed-properties-remotecontrol.png
File Selection Opsiclient Help

@ [ &

4)[Y]

Depot-s...

L]

bonifacuiblocal  [&
tat-srv-00L uib.local [
tat-srv-002.uib.lacal
tat-srv-003.uib.lacal
vmax12susel3L.uib.

e

San

<

T crours [+
5 omecTorr
) cuentusT

e

Wl

Clients total

a16

Hardware informationm

Software inventoryBL

Product default-properties#

Depot corfiguratiior i}

Clientsill Product configuration@ Netboot products f§ Host parameters
local (configuration server) |4 | Property name [ Property value
[ | configed.remote_control.clientdinterface firefox https:/%hosté: 4441 Anfo.htm!
clientconfig configed.remote_control clientdinterface.editable  true
v corfiged configed.remote_control.ping_kde konsole ~noclose -& ping %host%
= configed.remote_control.ping_kde.description ping. started in a Linux KDE environment
= saved search configed.remote_control.ping_kde.editable false
~ opsilientd configed.remote_control.ping_linux sterm +hold -& ping %host?

coftware-on-dermand configed.remote_control.ping_linu description ping, started in & Linux environment
configed.remote_control.ping_linux editable true
configed.remote_control.ping_windows fcmd, exe /c start bina %hosth!
configed.remote_control. ping_windows. descri

|| configed.remote_control.ping_windows. editabl
configed.remote_control.putty £md.axs Jc start ping Bhost: pw
configed.remote_control.rdesktop_linusx
configed.remote_control.ssh_kde
configed.remote_controltest_windows
configed.remote_controltestl topt,
configed.remote_control testmstsc 144,
configed.remote_control testmstsc.editable
configed.remote_control ultrawncuiewer
configed.remote_control.vncviewer_windows
v
< o
SELECT.. gro... |GROUPS client(. rumberof cents || /(@) (=) (5 [.oxe e start ping hostk






OEBPS/opsi-setup-registerdepot-configserver.png
& uib@sepiell: /nome/opsiproducts

| conftig server connection






OEBPS/opsi-vhd-control-resnap.png
Recovery 2

PE replaces child
Reboot to new child

Container

opsi-WinPE

. R





OEBPS/mysql-config-output.png
Connecting to host 'localhost' as user 'root'
Successfully connected to host 'localhost' as user 'root'
Creating database 'opsi'

Database 'opsi' created

Creating user 'opsi' and granting all rights on 'opsi'
User 'opsi' created and privileges set

Testing connection to database 'opsi' as user 'opsi'
Successfully connected to host 'localhost' as user 'opsi'
Updating backend config '/etc/opsi/backends/mysql.conf'
Backend config '/etc/opsi/backends/mysql.conf' updated
Initializing mysql backend





OEBPS/clonezilla_savedisk_progress.png
ieading the partition table for sdevssda...RETUAL=(

the first partition of disk /dev/sda starts at 2048.

aving the hidden data betueen MBR (1st sector, i.e. 512 bytes) and ist partition, uhich nig
by
@ if=/dev/sda of =/home/part inag.parting sda-hidden-data-af ter-mbr skip=1 bs=512 count=2047
047+0 records in

047+0 records out

1048064 bytes (1,0 MB) copied, 0,0257349 s, 40,7 MB/s

onet

aving the MBR data for sda...

140 records in

140 records out

12 bytes (512 B) copied, 0,00170123 s, 301 kB/s

tarting saving /dev/sdal as /home/partinag,/parting/sdal.XxX. ..
dev/sdal filesysten: ntfs.

hecking the disk space...

jse partclone with gzip to save the image.
Inage file will be split with size limit 2000 MB.

1f this action fails or hangs, check:
Is the disk full 7

artclone v0.2.8 http://partclone.org

tarting to clone device (/dev/sdal) to image (-)
eading Super Block

alculating bitmap. ..

lapsed: 00:00:01, Remaining: 00:00:00, Completed:100.00%
Total Time: 00:00:01, 100.007% completed?
ile systen: NIFS
evice size:  21.5 6B
13.8 GB
7.7 GB
409 Byte
jsed block : 3371140
lapsed: 00:00:35, Remaining: 00:08:55, Completed: 6.14%, Rate:  1.45GB/min






OEBPS/clonezilla_savedisk_command.png
S. Next time you can run this command directly:
opt/drbl/sbin/ocs-sr g2 -j2 ~rm-uin-suap-hib -z1 i 2000 —p true savedisk 2014-06-11-12-ing sda
his conmand is also saved as this file name for later use if necessary: /tmp/ocs-2014-06-11-12-ing-2014-06-11-12-21






OEBPS/configed-depotsettings.png
File Selection OpsiClient Help

233
& 3 2 R 233 |22
& . r A s 3
% 233 B2 \4
Depot-Server Clients il Product configuration@ Nethoot products
orifex b focel [ Host parameters¥ Haraware Informationm® e LogfieslB  [uuDepotsifi
Sth-40-519-001 uiblocal =
Sth-d0-srv-002 b local
Select. | honifacuib.local
Property name | Propertyvalue
depotLocalurl flesvariibiopsiidenot
depotRemoteUn smbiihonitadopsi_depot
depotiendavn webdavs:ihonifaculb Iocal:4447idepot
description stsf
» [T reporteD FaLLRes [4
v & AL hartwareAddress 54:52:0063.99:30
» 5 orowes i i hontaxuislocal
£ actestok.io ocal - 125t
invertoryNumber
L asrackt uib local i
£ bardozn0sengish.i lcs ipaddress 192.168.1.14
. bardosianezublocal P — pa
£ bardosiane3 uiblocal
[ bardodepot uib locl masterDepotid nul
£ bardodummy 2. focal maxBandwitth 0
J bardorpuib ocal
networkaddress 192.168.1.01265.265.255.0
CJ bardtest2.iblocal
. bardetestza b local notes abed
& berdatestaxpublocsl opsiHostKey 432721185f1 ab54a990ab4148bdas3f
) bardowin2003:64 b loc
O3 beronptsoloca repositoryLocalUrl fledaribiopsifeposiory L
L bardoxpengish2.uibocal E






OEBPS/opsi-wim-cap-pre1.png
Windows
Installation

Preserve PE Partition = true

System

opsi-WinPE





OEBPS/licensemanagement-editlicense-copying-license-id.png
Available license options

sotwareLicenseld 4] lcensePoolid [ censekey T
12009-05-29_11:2144_0 p_lcense-testoem lcense-testoem-key-1 0
122009-05-29011:21:45_0 _lcense-testoem lcense-testoem-key-2

12200905 29011:21:47_0 p_lcense-testoem lcense-testoem-key-3
122009-05.29011:21:48_0 _lcense-testoem lcense-testoem-key-4 I

v @

Software licensing clause (defines the validity of icense keys)

sofwareLicenseld_ 4 | licenseContractid | icenseType | masnstalaions | boundToHost | expirationDate
frefox ©_2000-05-26_093.. RETAIL T 0000-00-00
1_2008-05-26_1025... c_efaut VoLUME 0 0000-00-00
112008-05-261121.._c_license-testoem  OEM 1 etytdetiefuib acal 0000-00-00
122008-05-26 1 pchonzuibocal  0000-00-00 5
New lcensing clause
v @
Delete row -
Save data
Selector enter | 4021101 changes
licenseConra| Reload data 75 | [nofficationDate | expirationDate | notes
¢_2008-05-26.093 BN EE] 2006-06-23 0000-00-00 et
¢ 2008-07-09_162.. uib gmbh 20080709 0000-00-00 0000-00-00 10 getrauchte xP Li.. [
c2000-10-08130.. _ Microsoft 2003-10-08 0000-00-00 0000-00-00 kenr 1201623155 |y

v @





OEBPS/configed_serverkonsole.png
File Selection OpsiClient

Windows_Help

ares

Depot-server

‘edge530-L.uib local
dummyserverol. uib.local
dummyservero2.uib.local
dummyservero3.uib.local

adminuser@edges30-1 (connected)

Connection data
Edit commands

Terminal

client name

001 -client.uib.local
002-client.uib.local
003-client.uib.local
004-client.uib.local
005-client.uib.local
008-client.uib.local
007-client.uib.local
008-client.uib.local

Konfiguration initalisieren
Produkte aktualisieren
opsiconfd neustarten
opsipreconfd neustarten

Install product
Uninstall product

Create opsi product
File-download

set opsi rights

Deployment of opsi-client-agent






OEBPS/configed_serverconfiguration_en.png
File_Selection OpsiClient Help

EFE]
& 9 28
o . -i J Y . 235
299
Server configurati
Depot-Server Clients® | Product configuration Netooot products & [ Hostparametersifil| Harcware information® | Software inventoryBl | Log files] Depots¥¥
orifax b focel olls
SOl Configuration: bonifaxuib.local
Property name | Property vaiue [
conliged progusToncTen_drsplayiieds_localboot ACONREqUES, TGOS, MS{EANONSHaIlS, PYOGUCT, Versionini &
configedt productonclient_displayfields_netooot actionReguest, nstallationino, InstalationStatus, productd versioninfo
ficense-managernent use True
apsicliente.confia_service.user_cancelable_after
opsiclientct.event_gui_startup active e
apsiclient.event_oul_startup(user_logged_inj active e
= :
© revommen FavLres ||| opsiclienta event_net_connection active false
M=y
+ B croes apsicliente.event_on_demand(user_logged_inj action_processor_deskiop
£ actestok.io ocal apsicliente.event_timer active false
) asrockt ibocal apsHinuc-hootimage. append
£ bardozn0sengish.i lcs
perde2003enalih b product_sort_algorithm algoritm?
. bardosianezublocal
O parcoconeastosocnl sotware-on-demantactive True
. bardodepat uiblocal Softwate-or-demand product group-ids sotware-on-demant
J bardodunmy2 b focal Soware-on-demant show-detalls True
£ bardorpu.i ocs
pardorpuib locel testtesti testz
CJ bardtest2.iblocal
 baractestaaubiocsl |7 Slpronor) false L






OEBPS/opsiconfd-info-day.png
Last day

avg per minute

&

s0

w0

Sun 18:00 Hon 00:00 Hon 06:00 Hon 12:00

Requests total 7713 requests avg: 5.3 requests/min max: 73 requests/min

0 0AV requests  total 498 dav requests avg: 0.35 dav requests/min max: 28 dav requests/min
| Recs total 7014 rpes avg: 4.87 rpes/min max: 72 rpcs/min

B RPC errors  total S rpc errors  avg: 0.01 rpc errors/min  max: 3 rpc errors/min

[Mon, 30 Aug 2010 14:36:01]

B
o e

e

: A + P

- v
[
S

ER
i
Do
N o
son 100 o 3656 o 55 50 o 12:00
B Thresds S threads ot 665 thresds 28 threads
Stons Gaeltions  me.  0'%asemmns/min wax 12 zestions/win
B o osa wel v i s
Bin oo curl esalc0 vt ol e gt Tl e eyt

[Mon, 30 Aug 2010 14:36:01]





OEBPS/opsi-wim-cap-activate-pe.png
activate
PE Partition

System

opsi-WinPE





OEBPS/configed_groupaction_localimage.png
& opsi config editor opsi-client-Gruppe: Aktionen e o=
Gruppe test AnzaniGlients |15
Image zurickspielen
Wahle OS-mage v speicnem | @






OEBPS/mysql-config-input-mask.png
| MysQL config |
r

| ok |
cancel |
[ I | L






OEBPS/netboot-pxelinux.png
depotserver

Itftpboot/linux/pxelinux.0

searching in:
Itftpboot/linux/pxelinux.cfg

-01-file

TETP-requests a
bootfile

PCIClient

PC knows IP, Server,
boot-bfilename ...

Bootimage will be loaded






OEBPS/opsibackend_configuration_layers.png
ExtendedConfgDataBackend

JSONRPCBackend

Estended Con fgDataBackend

ConfigDataBackend

BackendDispatcher

DepotBackend

BackendExte nder
Prote cts instan ce m etho ds of:

Dspatche s nstance methods of
s *Con fgDataBackend
Exte nde dConfgDataBacken d “Dep gm,‘,,‘m,






OEBPS/opsi-configed-clientselection-search.png
Host parametersﬂ T

Hardware information =1 T

Software inventory...

TLo

J[ Clientsl=| |

Product configuration ]

Netb:

vtest

caarch in | all columns

client name

vmix11.uib.lod
vmix14.uib.lo
vmix15.uib.log

vmix16.uib.lod

JTableSelectionPanel.search
advance to next hit ( F3)
start new search

Hits as selection ( F5 )
empty search field

\v| mode |partial string se... ¥/

-

| last seen | IP address |
2009-05-22 23:37... 192.168.4.11 %

2008-10-30 13:30...
2008-04-11 01:53...
2009-06-04 08:37...






OEBPS/configed_productsearch.png
Hardware information =

[

Softwa

TR
Clientsd

Product configuration |

config

Product ID

configwin-base
i e

Advance to next hit (F3)
Restart search

Select al hits (FS)
Empty search field

| status

mode (starttext search v,

| Report

| Requ.

[ Version |

N T N





OEBPS/opsi-configed-hardwareinfo-treiberintegration.png
Datei Auswahl Opsiclient Hilfe

o Y|

Depot-server
banifaxuib.lacal

tat-srv-00L. uib.lacal
tat-srv-002.uib.lacal
tat-srv-003.uib.lacal
max12suselsl.uib.local

SH40-Sr-LUA Ui Toca
Sth40-srv-110.uib.local
sth<0-srv-111.uib.local
Sth<0-srv-113.uib.local
Sth<0-srv-117.uib.local
surfacel.uib.local

surfacez.uib.local

susannelsp.uiblocal

00o0o000004q

swuproto.uib local
L t-debiand.uib.local

1 test-a-win764b.uib.lo
L testclient-a0.uib.lacal
[ testclient-aL. uib.lacal
L testclient-a2.uib.lacal
[ testclient-a3.uib.lacal
[ testclient-ad.uib.lacal
[ testclient-as.uib.lacal

ey

Clients gesamt: 416 AUSGEWAHLT Gruppe:

v

2fe Hez W) @)=
Clientsl Produktkonfiguration ) [ Netboot-Produkte | Host-Parameter ;.
Hardwareinformationen Software-nventur™ | togdateien™= Produkt-Defaultproperties| Depot-Konfiguration!
Auswahl fur den Byaudit-Trelberpfack Hersteller Produkt/Modell @
O linnotek GmbH J [VirtualBox
@ [oracle Corporation J [VirtualBox

M Scan 2
» @ Bi0S
» ] chas;
v M. comy
= an|
> i Drucl
> I Fest
» % Grafi
> HD-A
v Haup

= \/\r]
» = IDEC
> wont]
> = etz
» = POl
» 12 Parti]
> @ Proze|
> i Tastd]
» 9 USE-
> % Use-
» 5 zeig

Bereitstellung von Treibern fur Client | test-a-win764b.uib.local

auf Depotserver oz uib local fiir Windows-Produkt | win7-x64

Treiber | B

Methode der Treiberintegration

O standard (Fallback fii alle Clients) [Nach Treiberupload create_driver_links aufrufent]

O Preferred (Unspezfisch bevoraugte Treiber) (Nach Treiberupload create_driver_links aufrufent]

O Bxcluded (Keine Integration, Treiber nur ablegen)

© Additional (Vorrang der Treiber fir den Client konfigurierbar) [Nach Treiberupload create_driver_links aufrufent]

@© byAudit (speafisch bereitgestellt fur den Maschinertyp)

byAudit-Verzeichnisname | Oracle Corporation/virtualBox

* Verbindung zu Share nicht aktiviert

Zielverzeichnis = 4/opsi_depot_rwwin7x64/drivers/drivers/additional/byaudit/oracle Corporation/virtualBox






OEBPS/opsi-configed-depotconfiguration.png
File Selection OpsiClient Help

-3 /) ]| | = =] @

CJCI Clientsil Product configurationl Netboot products f§ Host parameters¥§

bonifax uib.local \_A Hardware informatior s Software inventory§ Log files] Product default-properties /i Depot configuratiion ¢ L

tst-srv-00L. i lacal
tst-srv-002.uib.lacal —
e e Select: [bonifauibiocal v
max2susel3Lub| bonifa b, ocal
P tst-eru-00L.ib.local W
depotfocalt] tst-enu-002.vib.local BB
depotRemoteUrl tat-arv-003.uib.local opsi_depot
depotwebdauUrl mad2susel3Lublocal  [ib.local:44a7/depot
description ol
hardwareAddress 46152:2022:99:46
) st0emv1d id bonifas.ib.local
O surfacer.ub ident borifax.uib.local
O surfacezub, inventoryhiumber 123456
O susannelap. ipAddress 18216811111
J swwprato.ub) isMasterDepot true
 t-debiand.uib masterDepotid null
[ test-a-win7| maxBandwidth 0
L testelient-30. networkaddress 192.168.2.0/255.255.255.0
O testelient-al. notes abode
G testclient-az opsiHostkey 432721195f1ab5439903ba1 48bdasaft
B testcliont-o3. repositoryLocalurl files/varfiblopsifrepository
E fooiiont repositoryRemoteUrl webdavs://bonifax ib.local: 4447 repository
=N type OpsiConfigserver
O testhurs.ub|
0 v1297.ublaq
L vbrupertiinux
L vbrupertopsi
L vbrupertopsi
L vbrupertwin]
) vbrupertuing|
- O somperopt iy

Clients total; 416 SELECTED group: client(s): test-awin764b.uib.local number of clients: 1 (Depots: bonifax.uib.local )






OEBPS/opsi_with_sql_file_backend.png
opsi-client-agent ]

opsi-linux-bootimage

Management GUI
opsi-admin (cmdline) web service (opsiconfd)
Python-library: backend-interface, acl, extensions opsipxeconfd

Python-library: backend-interface, acl, extensions

I

FILE MySQL






OEBPS/configed_clientselection.png
Select Clients (opsi config editor) Y
o) Property Value and/or
4 Select by host criteria
Group = e |9 andv [0
( Name = e ] o v (I
IP address - 192.168.14. and v [
B - Wi
| Select by opsi product criteria: and W
Software/Name = [swaudit and v
Software/Status - and v
Software/Result - and v
Software/Requested Action = sewp [y and v
Software/Progress - and v
Software/Last Action - [Fmwm g ad-
Software/version - [ and v

Software/last state update

Add additional criterio.

save search

st

Reset Close






OEBPS/opsi-setup-registerdepot-depotsettings.png
& uib@sepiell: fnome/opsiproducts

| Depot server settings






OEBPS/clonezilla_existing_setting.png
csroot device is skip
Ixisting setting is:

ilesysten Size
ootts [
proc 0
sus 0
one 0
one 0
one 506M
one )
one 506M
one 506M
one 506M
one 506M
|/ sepiolina/opsi_depot
8686
|/ sepiolinasopsi_inages
8686

Used Avail Usex

°

0
0
0
0
128K
)
0
K
)
0

3566
3566

0 -
o -
o -
o -
o -
S06H 12
o -
506H 0%
506H 12
506H 0%
S06H 0%
4696 442
4696 442

Mounted on

’

/proc

/sys
/sys/kernel/debug
/sys/kernel/security
sdev

Adevspts

sdev/shn

svar/eun
svar/lock
Alibsinit/ru

/mnt sopsi

/home,/part inag

lress "Enter” to continue.






OEBPS/editconfigdefaults.png
bonifax : ueluekmen

Datei Bearbeiten Ansicht Verlauf Lesezeichen Einstellungen Hilfe

Please select config value to change

uib

rdesktop

bonifax : ueluekmen






OEBPS/clonezilla_skip.png
- 71T Mcunt Clone=illa imace divectoryyt —0 0 o
| Mount Clonezilla image directory |

Before cloning, you have to assign where the Clonezilla image will be saved to or read from. We will mount that device or
remote resources as /home/partimag. The Clonezilla image will be saved to or read from /home/partinag.

Select mode:

local dev  Use local device (E.g.: hard drive, USB drive)
ssh_server  Use SSH server

samba_server Use SAMBA server (Netuork Neighborhood server)
nfs_server  Use NFS server

enter_shell Enter comnand line prompt. Do it manually

fskip Use_existing /home/partinag (Writable netuork disk. E.g. NFS/SHBFS))

<Cancel>






OEBPS/oli-restore-image.png
Restore
Image basiert

opsi-local-image-
restore

Method:
image-restore






OEBPS/mysql-schema-inventory-software.png
[opsi.SOFTwARE

nstallSize BIGINT(19) NULL

lname VARCHAR(100) NOT NULL (PK)

ersion VARCHAR(100) NOT NULL (PK)

Jsubersion VARCHAR(100) NOT NULL (PK)

language VARCHAR(10) NOT NULL (PK)

[prchitecture VARCHAR(3) NOT NULL (PK)
indowsSotwareld VARCHAR(I00) NOT NULL
indowsDisplayName VARCHAR(1 00) NOT NULL
indowsDisplayversion VARCHAR(100) NOT NULL.
pe VARCHAR(30) NOT NULL

[opsi.SOFTWARE_CONFIG
leonfig_id INT(10) NOT NULL (PK)
lusageFrequency INT(10) NOT NULL
fastUsed TIMESTAMP(19) NOT NULL
[plientd VARCHAR(255) NOT NULL.
lname VARCHAR(100) NOT NULL.
ersion VARCHAR(100) NOT NULL
Jsubversion VARCHAR(100) NOT NULL
language VARCHAR(I0) NOT NULL
[prchitecturs VARCHAR(3) NOT NULL.
luninstallString VARCHAR(200) NULL
loinaryName VARCHAR(100) NULL.
frstseen TIMESTAMP(19) NOT NULL
[astseen TIMESTAMP(13) NOT NULL.
Jstate. TINYINT(3) NOT NULL.
licenseKey VARCHAR(100) NULL.






OEBPS/opsi-configed-config-host-displayfields.png
Hardware information= |

Software inventory™\

| togfies

Product default-properties!

Depot corfiguration

Clientsl

Product configuration ) [

Netboot products

\ it

test-a-win764b.uib.local

clientconfig
v [ configed
emote_cartrol
aved_search
opsiclientd

- software-on-demand

I

Property name.

[ Property value

configed.host_actions_disabled
configed.host_displayfields
configed.license_inventory_extradisplayfields
corfiged.opsiclientd_everts
corfiged.productonclient_displayfields_localboot
carfiged.productoncliert_displayfields_netboot

clientCannected

clientCreated
clientDescription
clientHardwareaddress
clientiPAddress
clientinventorylumber
clientLastSeen
clientiiame

clientSessianinfa






OEBPS/opsi-configed-hostparameter_setting.png
¥ Save
@ Reload

> Create POF

[ Remove the specific value (then, the default will be taken)

[3] Set the current default as specific value (whereby it will be fixed)






OEBPS/opsiconfd-info-hour.png
18] Meisthesuchte Seiten 0 Aktuelle Nachrichten

Bearbeiten Ansicht Chronik Lesezeichen Extras

> C

ING .- [T

) opsi34 Al SugarCRM (( OTRS: Logi

opsiconfd info

2010-08-30 14:36:02

Last hour

o

avg per minute

.

Toa0 1m4s Lm0 1mss | 1600 1405 1410 Ikis 1w 1e3 1% 163

W Requests total 759 requests avg: 12.86 requests/min max: 62 requests/min

0 0AV requests  total 6 dav requests avg: 0.10 dav requests/min max: 3

RPCs

B RPC errors  total ©rpcerrors  avg: 0.00 rpc errors/min  max: 0

%/ num / MByteto.l

0 sessi
H cPU

HEM u

dav requests/min
total 729 rpes avg: 12.35 rpes/min max: 60 rpcs/min
rpe errors/min
[Mon, 30 Aug 2010 14:36:01]

_\_\_\J__,_,\_‘_,_,_\_\Q,_,-\_ﬂ-\__._ﬂ—\_—_—

T30 1m4s | Lm0 1mss 1400 ko5 110 1415 1% 14z 1430 183
cur 5 threads avg 8.74 threads nax 17 threads

ons cur 0 sessions avg 1.41 sessions/min nax 10 sessions/min

sage cur 0.83 % avg 3.50 % maxi  15.67 %

sage cur: 684,00 HByte avg:  680.76 Meyte naxi 804,83 MByte

[Hon, 30 Aug 2010 14:36:01]

Google [ Kalender 4 opsiorg B8 DB B8 bahn.corporat
© opsi configuratio... | © opsiconfiguratio.. | N Nagios | opsi-winst - Featu..| (( OTRS  Dashboard | ) Aufgaben 9 SugarCRM 4
g





OEBPS/opsi-wim-cap-sysprep.png
<)

Sysprep

D (@

o\

= (O

System
depot y

images
\ <

\A" opsi-WinPE





OEBPS/supported.png





OEBPS/oli-delete-image.png
Delete

opsi-local-image-
delete






OEBPS/opsi-configed-localbootproducts.png
File Selection Opsiclient Help

2 ()| v

Y]

Depotss.. ()()

Software inventory™,

| Logfiles

Product default-properties§}

Depot configuratior§}

Db ol [
tstsrv-00L ub local
totarv-002 ub local
totarv-003 ub local
wmaazsuse1siuib |

Hardware information= |
clients

Product configuration ) |

Netboot products 3

\ BT \

opsi-configed

|

searchin (all columns

Selected product group((none) Y (g

¥) mode [starttext search

v

apsi configed

Software/package version; 4.0.5.8.1-1

Product ID [ status [Report  v| Requested ... | Version ||| apsi Graphical Management Interface tWindaws / Linus) 3
mysal-odbe installed success (se. 51121 I
openpn installed success (se. 2211 =
opsi-adminutils installed success (se. 4.0.41 =
=< opsi-client-agent installed success (se... setup 4.0.5.3-1 Dependencies:
opsiconfiged setup 405423
I SmuZubery] || opsidoginscripttest Save 411,211 | required | pre-requ... | post-req... | on deins,
£ sles-proxy.uf opsi-setup-detector D o (e fmet) 4051241 Javavm installed
©J soundhlug.ui opsitemplate € relosd 4051
O stb40-are-1 opsiackaqebulder | 3 Creste POF, ol raws rt maty 6,91
paintshoppro =
O sth40-srv-1 T =
picasa 3 name
O stvoereat] | [ ytnon S sccoes o JgALeriet Contaitacon FProperty corfiguration 29
0 stb40-srv-1 shutdownwanted installed success (se...| ¥ Status R iR T
3 ot 40-orvL swaudit installed success (se...| v Report
tortoise-svn installed suiccess (se...| v Requested Action checklizachablolintora S0
O surfacel.u. tortoiseqit installed success (se, Priority Class > client_language auto
CJ surfacez.uib. uibtime installed success (se...|  postion memory_requirement 1024
O sussnmelep. untis installed success (se.| laat state update |3 it
O swuproto.uib visio2013 installed success (se...| y version i
vie installed success (se. sldata_onstart false
& t-debian3.uib winscp installed success (se. 5151
& test-a-win7 ved installed success (se. 211115
O testelient-a0, opsiwinst installed success 411511
3 tosicliont-aL. mediaplayer unknown installing ( )
ganttproject unknown failed (setup)
E testelient-a2 opsi-python-extension unknown failed (setup)
testelient-a3 mshotfic unknown faileck Inifile
O testelient-ad, acroread1l installed (setup) setup 110101
3 tosicliont-as, firefox installed (setup) setup 31.4.0esror.
flashplayer installed (setup) setup 13.0.0.2691
DD testerol uib | qoogle-chromefor-business  installed (setup) setup 40.0.2214.1
U testiurs.ub i | || avavm installed (setup) setup 1.7.0.753
=Ty thunderbird installed (setup) setup 31.4.0-1 ",
clients total: 416 SELECTED group: client(s): test-a-win764b.iblocal number of clients: |1 (Depots: bonifax.uib.local )






OEBPS/configed-masterbuttons.png





OEBPS/netboot-win-nt6-properties-winpartionsize.png
windows_partition size.

IR ER R RRRE AL IR EE S






OEBPS/opsi-configed-hostparameters-EN.png
File Selection OpsiClient Server-console Windows Help

2 (W@ v | Y2
Depot ser.. Hardware informtor Sotware iventonBl | Log e Depot confguration
bonfoxub ocal Clents Product confgurato Netooot procucs EE

dummydepoti2 uiblocal
fst-srv-001 uibocal ‘bonifax.uib.local (configuration server

tst-srv-002.ibocal
tst-srv-003.ubocal

brupertdepott.ub.ocal

‘Add configuration entry list with multselection”
Add Boolean configuration entry
Remove configuration entry

opsiclientd event_on_shutdown action_.. 0
opsiclientd event_silent_install action_p...
opsiclientd.event_sync_completed{cach...
opsicientd.event_sync_completed{cach...
opsiclientd.event_sync_completed{cach...
opsiclientd event_timer_silentinstall act...
opsiclientd event_timer_silentinstallinte..






OEBPS/clonezilla_expert.png
Clonezilla ~ Opensource Clone System (0CS)
Choose the mode to run the following wizard about advanced parameters:

Beginner Beginner mode: Accept the default options

[Expert  Expert mode: Choose your oun options

<Cancel>






OEBPS/clonezilla_saveparts_command.png
PS. Next time you can run this conmand directl
opt/drbl/sbin/ocs-sr -q2 —¢ -j2 —z1 -1 2000 —p true saveparts parting_ sdal

[This conmand is also saved as this file name for later use if necessary: ,tmp/ocs-partimg -2014-06-11-12-39
IPress “"Enter” to continue






OEBPS/opsi-configed-logfiles.png
File Selection OpsiClient

Help

@ (.= v |y

200

- (=)=

Depot-s... (][] Clientsl [ Product configuration ) [ Netboot products & | Host parameters |
borifaxublocal [k Hardware information=1 | softwareinventony™. [ Logfiles ‘ Product default-properties§ Depot configuratiion¥§
tat-srv-00L uib lacal =]
tst-srv-002.uib.local clientconn. ‘ instlog userlogin ‘ bootimage ‘ opsiconfd ‘
tst-erv-003.uib local
e et o (1105) (8] [Jun 05 10:55:14:359] [firefor]  Delete "C:\lsers\volf\AppData\Local \Hozilla\Firefox\ozilla Firefox\active-update. xnl” 0
(1106) 5] [Jun 05 10:55:14:356] [firefox]  Notice: Directory C:\lsersiwolf\ippData\Local\Hozilla\Firefor\Hazilla Firefox\ does not exist, P
(1107) 6] [Jun 05 10:55:14:359] [firefox]  Delete "C:\lsersivalf\ippData\Local \Hozilla\Firefox\azilla Firefox\updates. zml®
(1108] 5] [Jun 08 10:33:14:350] [firefox]  Notice: Directory C:\Usersiwolf\ippData\local \Mozilla\Firefox\Hozilla Firefox\ does not exist,
(1109)  [8] [Jun 05 10:55:14:356] [firefor]  Delete recursively "Ci\Users\wolf\AppData\Local \Mozilla\Firefox\Hozilla Fireforiupdates\”
(1110) 5] [Jun 05 10:55:14:359] [firefox]  Notice: Directory C:\Usersiwalf\fppData\Local\Hozilla\Firefox\Hozilla Firefox\updates\ does no
LI (1) 5] [Jun 08 10:55:14:350] [firefox] Make it for user directory: C:\Users\Administrator\
v/| | (1112) (6] [Jun 08 10:55:14:560] [firefox]  Delete "Ci\Users\Administrator\Appbata\Local \Hozilla\Firefox\Mozilla Firefox\active-update. nl
< Al (1115) 5] [Jun 05 10:55:14:360] [firefox]  Notice: Directory C:\Users\Administrator\AppData\Local\Mozilla\Firefor\Hozilla Firefor\ dogs n
———— || (11 (8] [Jun 05 10:55:14:360] [firefox]  Delete "C:\lsers\Adninistrator\ippData\Local \Hozilla\Firefox\bzilla Firefox\updates. zml®
O stoaoorvaa] | | (1115 [S] [Jun 08 10:55:14:360] [firefox]  Notice: Directory C:\Users\idministrator\AppData\Local\Mozilla\Firefor\tozilla Firefory does n
W || (1116 (8] [Jun 05 10:55:14:360] [firefor]  Delete recursively "Ci\Users\Administrator\Appbata\local\ozilla\Firefox\Mozilla Firefoxupdat
CJ surfacel.uib. (1117) 5] [Jun 05 10:55:14:360] [firefox]  Notice: Directory C:\Users\Administrator\ippData\Local\Mozilla\Firefor\tozilla Fireforiupdates
O surfsce2.uib (1118) 5] [Jun 08 10:55:14:360] [firefox] Make it for user directory: C:\Users\Default\
(1119) (8] [Jun 05 10:55:14:360] [firefor]  Delete "C:\lsers\Default\AppData\Local\Mozilla\Firefor\tozilla Fireforiactive-update. xml®
CJ susannelap. (1120) (5] [Jun 05 10:35:14:360] [firefox]  Notice: Directory C:\Users\Default\AppData\Local\Mazilla\Firefox\Mozilla Firefor\ does not exi:
CJ swuprota.uib (1121) (6] [Jun 05 10:55:14:360] [firefox]  Delete "C:\lkers\Default\fppData\Local \Mozilla\Firefor\Hozilla Firefoxiupdates . xnl
O rebiams ] || 113221 [5] [3un 08 10:33:14:360] [firefox]  Motice: Girectory Ci\Users\Default\ippDataiLocal Mozilla\Fireforiozilla Firefory does not exi
(1125) (6] [Jun 05 10:55:14:361] [firefox]  Delete recursively *Ci\sers\Default\ippData\Local \Hozilla\Firefor\Hozilla Fireforiupdates\”
U testawin7ed || | (1124)  [S] [Jun 08 10:55:14:361] [firefox]  Notice: Directory Ci\Users\Default\AppData\Local\Mozilla\Firefox\Mozilla Firefor\updates) does
O tosteliont-a0, (1125) (5] [Jun 05 10:35:14:361] [firefor] comment: custom specific stuff
(1126] 5] [Jun 08 10:33:14:361] [firefox] Set $customscriptfilenanes = "p:\firefox\customscriptsicuston.actions.post setup”
O testelient-al, (1127) (8] [Jun 05 10:55:14:361] [firefox]  The value of the varisble "fcustonscriptfilenanes® is nowi 'pi\fireforicustomiscriptsicuston.a
O testelient-a2. (1128) (6] [Jun 05 10:55:14:361] [firefox] If
(1129) (5] [Jun 08 10:55:14:361] [firefox] Starting query if file exist
U testelient-a (1150) 5] [Jun 05 10:35:14:365] [firefox]  FileExists(fcustonscriptfilenamey] <<< result true
O testelient-ad, (1151) (8] [Jun 05 10:55:14:35] [firefox] Then
O testcliont-os (1152) (5] [Jun 05 10:35:14:366] [firefor]  comment: include insert
(1153] 6] [Jun 08 10:33:14:383] [firefox]  Included (insert] file: p:\firefox\custom\scriptsicuston actions.post.setup with encoding: cpl:
L testerol uib I (1154) 5] [Jun 05 10:55:14:389] [firefox]  comment: nothing to do
O tostiurs.uib.| (1155) (6] [Jun 05 10:35:14:389] [firefor] EndIf
(1156) 8] [Jun 05 10:35:14:389] [firefox] Endlf
1257 uib o (1157) (1] [Jun 08 10:55:14:389] [firefox]
O vbrupertind (1158) (1] [Jun 05 10:35:14:389] [firefor] Script Finished
(1159) (1] [Jun 08 10:55:14:389] [firefox] O errars
L wbrupertopsi (1140) (1] [Jun 05 10:35:14:389] [firefor] 3 varnings
CJ sbrupertopsi (1141) (1] [Jun 08 10:55:14:389] [firefox] L
O verupertein] (1142] (1] [un 05 10:55114:503] [firefor] installed product: firefox Version: 51.7.0esrarss. Gesrorstandard-4 i
) wbrupertwims]| | | < =
L vbruperb®1 (7| | search Gol Cast Event type [ fal v) Loglevelsupto O
< - [ case sensitive type [fall ! 9 PB o a5 6
clients total: 416 SELECTED group: client(s): edge540-Luib.local | number of clients: |1 (Depots: bonifax.uib.local )






OEBPS/opsi-setup_editconfigdefaults.png
| Please select config value to change | |






OEBPS/mysql-schema-licensemanagement.png
SOFTWARE_LICENSE

*softwareLicenseld varchar(100)
* licenseContractld varchar(100)
foreign key LICENSE CONTRACT

type varchar(30) licenseContractid varchar(100)
>boundToHost int(11) type varchar(30)
foreign key °description varchar(100)
emaxinstallations  int(11) P varchar(1000)
| expirationDate timestamp partnen varchar(100)

[+ conclusionDate timestamp

* notificationDate timestamp

* expirationDate timestam

LICENSE_ON_CLIENT L L

[‘license_on_client_id int(11)
auto_increment

SOFTWARE_LICENSE TO_LICENSE_POOL

* softwareLicenseld varchar(100) *softwareLicenseld varchar(100)
foreign key foreign key

PRODUCT ID TO LICENSE POOL

*licensePoolld varchar(100) *licensePoolld varchar(100)
foreign key foreign key

°clientldNumber int(11) [°licenseKey varchar(1024)

varchar(100)
varchar(30)
varchar(200)

*licensePoolld varchar(100)
foreign key

‘productid _varchar(255)

foreign key

varchar(1024)
varchar(1024)

AUDIT SOFTWARE _TO LICENSE POOL
*licensePoolld  varchar(100)

foreign key
*name varchar(100)
*version varchar(100) WINDOWS SOFTWARE_ID_ TO PRODUCT

*subVersion varchar(100)
‘language  varchar(10)
*architecture varchar(3)

*windowsSoftwareld varchar(100)

* productid varchar(255)

SOFTWARE_CONFIG SOFTWARE
[ config_id int(11) *name varchar(100)
auto_jicrement +version varchar(100)
.« clientid varchar(255) +subVersion varchar(100)
*name varchar(100) ilanatage) uarcha(Io)
e version varchar(100) *architecture varchar(3)
+ subversion varchar(100) o windowsSoftwareld  varchar(100)
heneness CEREE0) o windowsDisplayName  varchar(100)
o Comiene) > windowsDisplayVersion varchar(100)
ouninstallString ~ varchar(200) "type varchar(30)
binaryName ~ varchar(100) einstalisize bigint(20)
 firstseen timestamp
+lastseen timestamp
+state tinyint(4)
*usageFrequency int(11)
+lastUsed timestamp
licenseke varchar(1024)






OEBPS/modules-status.png
valid: true

expires: never

multiplex: true

vista: true

van: true

treeview: true

customer: uib GmiH
license_management: true
mysgl_backend: true






OEBPS/clonezilla_choosepart.png
] Clonezilla - Upensource Clone System (OCS) | Mode: saveparts ———— |

Choose the source partition(s) to save (only unmounted partition is listed). The partition name is the device name in
GNU/Linux. The first partition in the first disk is "hdal” or "sdal”, the Znd partition in the first disk is “hdaz” or
“sdaz”, the first partition in the second disk is “hdb1" or “sdb: If the system you want to save is MS windous,
normally C: is hdal (for PATA) or sdal (for PATA, SATA or SCSI), and D: could be hdaZ (or sda2), hda5 (or sda5)... Press
space key to mark your selection. fn asterisk (x) will be shoun uhen the selection is done

[x] sdal 21.5GB_ntf's_WINDOWSCIn_UBOX_HARDDISK_)_ata-UBOX_HARDDISK_UBf cf 62788-1846d611}

<0k> <Cancel>






OEBPS/opsi-vhd-inst1.png
disk 0

Installation 1

Create partition and

VHD File
I .

>

—L///

Container

S ———
op5|-WmPE






OEBPS/develop.png





OEBPS/netboot-win-nt6-properties.png
Property-Name. | Property-Wert

‘addtional_drivers.

‘administrator_password e
askbeforeinst false
boot_partiion_label BOOT
boot_partition_letter -
boo_pariiion_size 0
data_parttion_create. true
data_parttion_label DATA
data_parttion_letter )
data_partion_preserve. never
fullname Name.
imagename. Windows 10 ProN
installto disk
multi_disk_mode 0
orgname. Orgname
pre_format_system_paritions true
preserve_winpe_partiion false
productkey
setup_after_install
system_keyboard_layout 0407:00000407
system_language de-DE
system_timezone. W. Europe Standard Time.
use_raidt false
windows_partiion_label WINDOWS.
windows _partiion_size 100%
winpe_dir auto
winpe_inputiocale 0407:00000407
winpe_partion_size. 40001

deDE

deDE

true.






OEBPS/opsiclientd-blocklogin-notifier.png





OEBPS/opsi-vhd-inst2.png
Windows

Installation 2

Container

System

——
opsi-WinPE

_






OEBPS/opsi-configed-client-remotecontrol-choice.png
& opsi config editor: Remote Control Software a.

krde

ping_kde
ping_linux

ping_windows
remotedesktop_inux
remotedesktop_windows

ssh_linu
test T Remote Desktop connection, from a Windows syste

ultravne

@ @  [cmdexe /c start mstsc M%hostt






OEBPS/opsi-configed-client-change-depot.png
Move the following clients:

pebond.uib local  (from: bonifax uib local)






OEBPS/netboot-win-nt6-properties-keyboards.png
@ system_keyboard layout

0407:00000407

0407:00000c07
0807:00000807

Yo =






OEBPS/opsi-configed-editlist3.png
Propsry name | Propery value |
adional_civers ymware_busiogie LD

asknefarzinst tu
additional_chivers o

vmware_buslogic

¢ @ & mwareauio






OEBPS/opsiclientd_infopage_event_on_demand.png
@ opsi client daemon info - Mozilla Firefox QoW
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hife
@ D -G O i https://c v v |Google
| © opsi client daemon info |+ v
g
g g . . .
= ~ opsi client daemon info
Timeline
Opsiclientd version: 4.0.54 (ful) running Rremgactons
Commandine: C:Programmelopsi org\apsiclient- @Event sync._completed
agentiopsictentd.exe. Cache product opsi-winst
Working directory: C:AWINDOWS\system32 —
Usinghostid'c. ., =  Sotheproduct frfox
11,01 Apr 2011 12:06:27 GHT Eacheproduct 720 )
1301 Apr 2011 17:21:58 GHT Cahe products E
(@Event on_demand
Froceszing event on_demand
1 20 o1
7l
£ v
4 iz b [1ene
: | T
£ [2.r -
< — s
{ aAufuwarts @ Abwarts  Hervorheben [ GroR-Kleinschreibung






OEBPS/configed_toolbar_icons_sessions.png
2@ W@ v (=[]






OEBPS/mysql-schema-configdata.png
[HosT [CoNFIG_vALUE T
[hostid VARCHAR(255) NOT NULL (PK) lranfia_valus_id INT(1) NOT NULL (PK) lconfig_state_id INT(10) NOT NULL (PK)
e VARCHAR(I0) NULL foniigid VARCHAR(200) NOT NULL (FK) lconfigid VARCHAR(00) NOT NULL.
lieseription VARCHAR(100) NULL alus TEXT(B5535) NULL Bhectid VARGHAR(25%) NOT NULL
fotes VARCHAR(500) NULL fsDefault BIT(O) NULL alues TEXT(E5535 NULL

harcwareddress VARCHAR(IT) NULL
JastSeen TIMESTAMF(19) NOT NULL

InAddress VARCHAR(I5) NULL

[vertoryNurmber VARCHAR(I0) NULL [CONFIG
[ireated TIMESTAMP(1) NOT NULL onfigld VARCHAR(200) NOT NULL (PK)

JopsiHostiey VARCHAR(32) NULL pe VARCHAR(3D) NOT NULL

foneTimePassword VARCHAR(32) NULL [Hescription VARCHAR(256) NULL

Imax@andwioth INT(10) NULL fruitivalue BITE) NOT NULL [PRODUCT_PROPERTY

IHepotLocalur VARCHAR( 28) NULL feitable. BIT(O) NOT NULL orocuctia VARCHAR(S0) NOT NULL (PK) (FK)
e e R Jproductversion VARCHAR(32) NOT NULL (PK) (FK)
(e AR e packageVersion VARCHAR(18) NOT NULL (PK) (FK)
FenositoryLocalun VARCHAR(I 26) NULL rapertid VARCHAR(200) NOT NULL (FK)

Fepositon/RemoteUr VARCHAR(258) NULL [PRODUCT_PROPERTY_STATE e VARCHAR(I0) NOT NULL
hetworkaddress VARCHAR(31) NULL lorocuct_property_state i INT(10) NOT NULL (PK) biescription VARCHAR(256) NULL
fsMasterDepot BIT(O) NULL lroductid VARCHAR(S0) NOT NULL (FK) Inultivalue BITE) NOT NULL
IrasterDenotic VARCHAR(255) NULL loropertid VARCHAR(200) NOT NULL letable. BIT(O) NOT NULL

[pbjectid VARCHAR(255) NOT NULL.
alues TEXT(65535) NULL

[PRODUCT_ON_CLIENT
fproductid VARCHAR(50) NOT NULL (PK) (FK)

fienild VARCHAR(255) NOT NULL (PK) (FK) [PRODUCT_PROPERTY_VALUE
fprocuctType VARCHAR(15) NOT NULL [PRODUCT fprocuct_property_id INT(10) NOT NULL (PK)
argetConfiguration VARCHARI(IE) NULL productd VARCHAR(S0) NOT NULL (P19 froductld VARCHAR(S0) NOT NULL (FI)
nstallationStatus VARCHAR(1E) NULL froductyersion VARCHAR(32) NOT NULL (FK) froductyersion VARCHAR(32) NOT NULL (FK)
[actionReguest VARCHAR(1E) NULL packageVersion VARCHAR(16) NOT NULL (K9 fpackageVersion VARCHAR(16) NOT NULL (K}
[petionProgress VARCHAR(258) NULL pe VARCHAR(32) NOTNULL foropertyid VARCHAR(200) NOT NULL (FK)
[actionResuit VARCHAR(16) NULL hame VARCHAR(1 28) NOT NULL alus TEXT(B5535) NULL
Jastaction VARCHAR(16) NULL JicenseRequired VARCHAR(S0) NULL fsDefault BIT(O) NULL
fprocuctyersion VARCHAR(32) NULL JestupSeript VARCHAR(SD) NULL
fpackageversion VARCHAR(18) NULL luninstallScript VARCHAR(50) NULL
rociicationTime TIMESTAMP(19) NOT NULL lupoiateSerint VARCHAR(S0) NULL
[pwaysSeript VARCHAR(S0) NULL [PRODUCT_DEPENDENCY
fonceScript VARCHAR(50) NULL Joroductid VARCHAR(S0) NOT NULL (PK) (FK)
[PRODUCT_ON_DEROT lrustornSeript VARCHAR(SD) NULL jrocuctversion VARCHAR(32) NOT NULL (PK) ()
o i Voo SO L L luserLoginSeript VARCHAR(SD) NULL packageVersion VARCHAR(18) NOT NULL (PK9 (FI9
e (AR R R e L pririty INT(10) NULL fprocuctiction VARCHAR(16) NOT NULL (k)
e e ARE S  RETULLE ) liescription TEXT(E5535) NULL feairedProductid VARCHAR(50) NOT NULL (FK)
] ARG O AL (T 0 facvice TEXT(E5535) NULL fequiredProductversion VARCHAR(32) NULL
[ [preConfigTemplate VARCHAR(SD) NULL fequiredPackagsyersion VARCHAR(1E) NULL
o) B AL lthangelog TEXT(65535) NULL feauiredAction VARCHAR(16) NULL
fequiredinstallationstatus VARCHAR(16) NULL
feauirementType VARCHAR(16) NULL

[GRoUP
[OBJECT_T0_GROUP e VARCHAR(30) NOT NULL (PK)
Iobiect_to_oroup_ic INT(10) NOT NULL (PK) >/<gmumd VARCHAR(255) NOT NULL (PK)

laroupType VARCHAR(30) NOT NULL (FK) lpareniGroupld VARCHAR(255) NULL
laroupld VARCHAR(100) NOT NULL (FK) lHescription VARCHAR(100) NULL
[pbjectid VARCHAR(255) NOT NULL. lnotes VARCHAR(S00) NULL






OEBPS/opsi-configed-mode-selection.png





OEBPS/clonezilla_savepart_progress.png
Reading the partition table for sdev/sda...RETUAL=0

The first partition of disk /dev/sda starts at 2048.
Saving the hidden data betueen MBR (1st sector, i.e. 512 bytes) and 1st partition, which mig
by:

dd_if=/dev/sda of=/hone/part inag/part ing/sda-hidden-data-af ter-nbr skip=
2047+0 records in

2047+0 records out

1048064 bytes (1,0 MB) copied, 0,0257349 s, 40,7 MB/s

1 bs=512 count=2047

donet
Saving the MBR data for sda.

1+0 records in

1+0 records out

512 bytes (512 B) copied, 0,00170123 s, 301 kB/s

Starting saving /dev/sdal as /home/partinag /parting/sdal.XXX. ..
/devssdal filesysten: ntfs.

Checking the disk space.

Use partclone with gzip to save the image.
Inage file will be split with size linit 2000 MB.

If this action fails or hangs, check:
« Is the disk full 7

Partclone v0.2.8 http://partclone.org
Starting to clone device (/dev/sdal) to image (-)
Reading Super Block

Calculating bitmap. ..

Elapsed: 00:00:01, Remaining: o
Total Tine: 00:00:01, 100.00%
File systen: NTFS
Device size
Space_in us
Free Space: 7.7 GB

Block size: 409 Byte

Used block : 3371140

Elapsed: 00:00:35, Remaining: O

0:00, Completed:100.00%,
completed!

55, Completed: 1.456B/min,





OEBPS/oli-image-upgrade-flow.png





OEBPS/licensemanagement-createlicense.png
-opsi config editor Licenses

e R 523 e o ool

Select license pool

licensePooll | description
p_license-testmied opsi license test
p_license-testoem opsi license test
p_license-test retail opsi license test

Enter new license for the selected pool:
Select or enter license contract

licenseContractid 4 | partner [conclusionbate | notifcationDate | expirationDate [ notes [
¢ default 2008-06-11 2008-06-23 2008-06-18 Auto generated defa._ |

v @

Configure license.

( Standard

D Expiration date
License tyne
Max. installations. unbounded) Contract

Boundto

License key

Send

Available license options (license keys are edtable)

softwareLicenseld 4] licensePoalid | licenseKey
1 2009-05-29 11:20:45 0 b license-test retail license-test retail-keye1

v @






OEBPS/opsi-vhd-inst3.png
Software
Installation

Container

System

opsi-WinPE

s





OEBPS/opsi-setup-product_sort_algorithm2.png
r | Edit default values for: product sort_algorithm | 1

Product sorting algorithm

[

(*) algorithmi]
() algorithm?|

| Back | | ok |
I






OEBPS/opsi-client-kiosk_list_expert_en.png
é- opsi-client-kiosk -

View o 9 o

@ List + Show Actions + Store Actions

O Tiles
gm IZIEnpergde ? Flllg)r Upgrade 52 srgan Qm Search X
Productid () [ProductName [Installationstatus | ActionRequest | ~
sqlite-browser SQLite Browser + sqlite3.exe

| squirrel-sq-client Squirrel SQL Client with some JDBC-Drivers

|teamviewers TeamViewer

[teamviewers TeamViewer

T e A NP
teamviewer TeamViewer

" tightvne TightVNC

git Tortoisegit installed

" tortoisegit Tortoisegit installed

|tortoise-svn TortoiseSVN

" truecrypt TrueCrypt

vie VideoLAN - VLC media player v

Details Dependencies / winmy@
@ Description:  Remote Control

Advice:

Version at Server 10.0.47484-1
Version at Client

Connected to https://localhost:4441/kiosk as messe2.uib.local





OEBPS/clonezilla_restoredisk_askbeforeinst.png
ctivating the partition info in sproc... done?
etting /dev/sdal info

Ithe follouing step is to restore an image to the hard disk/partition(s) on this machine: “home,partinag,2014-06-11-12-ing" -
da sdat’
ARNING!?? UARNING!?? UARNING!?®
ARNING! THE EXISTING DATA IN THIS HARDDISK/PARTITION(S) UILL BE OVERURITTEN? ALL EXISTING DATA WILL BE LOST:

tachine: UirtualBox
da _(21.56B_UBOX_HARDDISK__ata-UBOX_HARDDISK_UBf cf62788-1846d611)
dal (21.56B_ntfs_WINDOUSCIn_UBOX_HARDDISK_)_ata-UBOX_HARDDISK_UBfcf62788-1846d611)

re you sure you want to continue? 7 (ymn)






OEBPS/opsi-configed-hostparameters.png
File Selection OpsiClient Help

- v Y e?] 2
Depots... (][] clientsi) | Product configuration’ ) | Netboot products 3 | Host parameters i | Hardware information= | Software inventory™ | Log files|= | Froclict defaui-properts
bonfacub local |4
teterv0or b jocal [ ||| test-a-win76ab.uib.local Property name [ Property value
tat-erv-002 b local = opsiclientd. action_processor.un_as_user
tst-erv-003.uib local “ clienteonfig opsiclientd.cache_service.product_cache_... 5000000000
vmaxi2susel3L.uib| v corfiged opsiclientd.config_service.connection_time.

opsiclientd.config_service.user_cancelable.
opsiclientd. event_defaul. action_processor... current
opsiclientd. event_gui_startup.action_user_.
opsiclientd. event_gui_startup.action_warri

- remote_cantrol
© saved_search

[ opsiclientd
}_,—r * software-on-demand

true

[ sth40-srv-114 he_read. o

O surtacer.ui [} per_logged... true

[ surface2.uib. ctive true

[ susannelap. true

L swuproto. uib) false

[ t-debian3. uib| false

& testearwin?]

 testelentao 20

O tostelonta.

O tostelonta2

D testatentas. | | || D

O tostelonta. a6400

O tostelontas. 200

) testeroluib | e

) testiars.uiv | — S

S v1297.uib.lod opsiclientd. event_timer,active false

E ::::::‘;Z: opsiclentd.event_timer. = 2600 ———
opsiclientd.event_timerl.acti false

L vbrupertapsi defalt [3600] yact{ © R0 oo 1l

O vorupertoind] opsiclientd.event_user_login. At 7 Croate POF ice_sessiond /allloginsc
opsiclientd.event_user_login. rue

CJ vbrupertwing

Add standard configuration entry
Add Boolean configuration entry
Remove configuration entry

opsiclientd.global log_level 5
opsiclientd.globalverify_server_cert by ca  false

L vbrupertepl,
T vmax00L.uib.

L vmax10100
L vmax10111
L vmax10112

[ vmnax10113.





OEBPS/opsi-configed-softwareinventory.png
File Selection OpsiClient Help

sV 2] ulsle) ‘

Clientsl [ Product configuration ) [ Netboot products & Host parameters
bonifaxuib.local & Hardware information =1 | software inventory" Log files| = Product default-properties! Depot configuratiionf
tat-erv-00L. uib.local [P
Pt Software inventory test-a-win764b.ib.local (s at 20141218 16:17:58)

i TR b ezl name 4] version [ subversion | architec... | language | licensekey | windows.
vmaxi2susel3L.uib| 7-2Ip 9.20 (64 edition) 9.20.00.0 64 23170,
7-2ip 9.2 (x64 edition) 9.22.00.0 %64 23170f,
AddressBook %88 address.
AddressBook %64 address.
Adobe Flash Player 16 ActiveX 16.0.0.235 %88 adobe fl
Adobe Flash Player 16 NPAPI 16.0.0.235 %88 adobe fl
F Adobe Reader I (11.0.10) - Deutsch 11010 86 {ac76b.
AutoHotkey 1.0.48.05 1.0.48.05 %88 autohot.
T SMUZEI00] ||| Avira Antivir Professional 10.2.0.1045 %86 avira an.
£ sles-proxy.uf Auira Security Management Center Agent %88 {3493
3 soundhiug.uf Connection Manager %88 connecti
Connection Manager %64 connecti
D stb-40-orv1 DirectDrawtx 586 directdr.
& stb0-srv1. DirectDrawEx 64 directd,
O sth40-srv-1 XM Runtime %64 dn_run,
O stao-srv-1 Frebrd 203 %88 odzery
FlameRobin 0.8.6 %86 jamero.
G stb-40-omv-1 Fontcore %88 fontcore
L surfaced.uib Fontcore %64 fontcore
CJ surfacez.uib. GanttProject %88 ganttpr.
O susannelap. GIMP 2.8.0 280 %64 gmp-2_is1
0 o Google Chrome 66.30.49247 %88 {eaffsac
swvproto.ul Google Update Helper 1.3.25.11 x@6 {a92da.
L tedebiand.uib Greenshot 1.1.5.2643 1.1.5.2643 %64 greensh.
& test-a-win7 IE40 %88 iea0
O testelent-a0. E40 64 i
IE4Data %64 ieadata
G testeient-al, IE4Data %88 ieadata
U testelient-a2 IESBAKEX %64 ieshakex
O testelient-a3, IESBAKEX %88 ieshakex
O testeliont-as, EData %64 iedata
EDzta %88 iedata
& testeient-as. InstEd 1.5.15.26 151526 86 {ac7ea.
U testerol.uib| InterBase Client 5.1.1 %88 interbas.
O testiurs.ubfe | ||| Java 7 Update 71 7.0.710 %88 126324,
L= java 7 Update 71 (64-bit) 7.0.710 %64 26224,
Ty I 2 T
clients total: 416 SELECTED group: client(s): test-a-win764b.iblocal number of clients: |1 (Depots: bonifax.uib.local






OEBPS/eventflowchsrt.png





OEBPS/opsi-setup-product_sort_algorithm.png
| Please select config value to change |

[ —
cancel |
[ I |






OEBPS/pnp4nagios.png
Service detalls bonifax -> opsi-webservice

Host: bonifax Service: opsi-webservice Search

4 Hours 05.05.11 8:48 - 05.05.11 12:48

Datasource: Requests and RPCs (Actions
Requests bonifax / opsi-webservice mq @1@/ [4)
P
LR My basket
[ Basketis emply
= 100
e Status
= ot 2 A
700 03,70 G940 1006 1020 1040 oo W W Lo @ 1w o N
M Requests  total 0 requ avg 0.00 requ/min  max O requ/min vice: opsi-webservice
DAV requ total 1808 requ avg 7.76 requ/min  max: 393 requ/min Last Check: 05.05.11 12:47
Erecs | total 297 rpes  avg: 1,27 rpcs/min  maxi 54 rpcs/min
B e total 0 rpcs  ava: 0,00 rpcs/min  maxi O rpcs/min Time ranges
Tenptete created by uio g ||| 24sas
Check Comnand opsi-vebservice | | ZZAHous
2 One blonth
2 One Year
Datasource: Threads and Sessions o
Services
A Threads and Sessions bonifax / opsi-webservice » Host Peridain
5 2 AllDisks
@ 2 Check Swy
& o Zcheck_swap_ext
2 2 Current Load
z » Al A il Sanal
. s 2 Disk Space
H 2 opsi-vebsenvice
¢ 2BING
H Gio0 03,20 G940 10:06 10,20 10,40 oo 1120 1140 1200 122 1240
@ Sessions cur 0 sessions  avg:  0.80 sess/min  max 7 sess/min
B Threads  cur 7 threads  avg 6.80 threads  nax 13 threads
Template crested by uib gubh
Check Conmand opsi-vebservice
Datasource: CPU & Memory Usage o @
CPU & Memory-Usage bonifax / opsi-webservice
Lo
e
g s
P e
§ =
S
T

09:00 03:20 09:40 10:00 10:20 10:40 1L.0D 1120 1L40 1200 1220 1240
W CPU Usage  cur 0.00 % avg 1.20 % nax:  30.48 %
M VEM usage  cur: 641,00 MByte avg:  642.61 MByte  max:  665.00 MByte

Template created by uib ambh
Check Comnand opsi-webservice





OEBPS/opsi-wim-cap-pre2.png
Product

. installation
obsi eg. mshotfix
System
depot
A
images

\/ opsi-WinPE





OEBPS/clonezilla_restoredisk_progress.png
Partclone

Partclone v0.2.8 http://partclone.org
Starting to restore image (-) to device (/dev/sdal)
Calculating bitmap... Please wait... domet
: NTFS

21.5 GB
Space in use: 12.7 GB
Free Space: 8.7 GB
Block size: 4096 Byte

3108766






