opsi documentation

PC Software Installation
using winst

- the opsi Windows Installer -

Manual for software developers

Winst Version: 4.10.3

Revision date: 20/04/10

uib gmbh
Bonifaziusplatz 1 b
55118 Mainz

Tel. +49 6131-275610
www.uib.de
info@uib.de

Content

1 Windows Installer 9
2 Command Line Parameters 11
2.1 L0 PARES. ...ttt h bt et bt et eh e et bt et eh et eh e et en e e bt eateeae et naes 13
3 Additional Configurations 14
3.1 Central Logging Of EITOr IMESSAGES....ccuvecvertierietietieiierteeiesteetesteestesseessesseessessaessesssessesssesseessessesssesseessessesssessssseens 14
3.2 SKINNADIE WINIST. .. .vviiiiiiieiiiie ettt e e e ettt e e s et e eeeeeeateeeseesasaeeesesasaaseeessaasasaeessessnseeessssnnsaseesssasaseeessssnnnnen 15
4 The wlnst Script 16
e BN 1 2. 1101) [OOSR 16
4.2 Primary and Secondary Subprograms of @ WINSt SCIIPE......cc.eeruirieriiiieriiiierieeesteete et 18
4.3 String EXPressions i @ WINSE SCIIDE ...vveeeeereiieeeeeieieeeeeeeeeeeeeeeeeeetteeeeeeeeeeeesesesraseeesseseseeeesesesseesessesnsennnnnnnennnnnnnns 19
5 Definition and Use of Variables and Constants in a winst Script 21

5.1 OVEIVIEW .evvvieeiieeieee ettt e e e ettt e e e e et e e e eeeaaeeeeseesaaaeeeessaaaaeeeesaasasseeesesasaseesesantaaeeessasssseeessesasaeeesesassaeeessnnssnnnnnn 21
5.2 GlODAl TEXE CONSLANLS.eeeeieieueeeiieeieieeeeeeeeeieteeeeeeeeateeeeeesetaeeeessessasaeeessssssseeeesssasaaseessssssseeessssssseessseseeeseeereeerreenee 22
I B LY (<SPS 22
I A 2. < 1111 0) (< OO URP U PRRRSPPSRN 22
5.2.3 LiSt Of EXISTNE CONSTANES. ...ceeevvereeeeeeeeeeeeeeeeeeeeeeeeseeteeeeeeeeeaeeeeeseesseeesseseeseeeesesansaeeeessasassssesssssssseeeseesssesseeesee 22

(1) SYSTEIM PALIS. ...ttt ettt b e bttt h e bt h e bbbt bt bbbt bbbt bbbt bttt et s 22

(A1) WINSE PALRIS. ...ttt b e et b e a et b et a e bt bbbt et eb et ettt et e e bt et s 24

(111) NEtWOIK INTOIINALION.uvvvvieieeieeeeeeeeeeee e e e e e ettt e e e e e e e e ettt eeeseee s aaaaeeeeeeeessasneaaaeeeeseesesasssassseeeesesssssnnnsnnsnseseeessnes 24

(iv) Data for and frOM OPST SEIVICE.erutertietietieiientteteeite et ettt ettt et e bttt e sbe et e e bt eate s bt e bt eateabtesbe e bt eabesbsesbeebeesabaeeennbeeas 25

5.3 String (O TeXt) VAITADIES. ... co.eeiiiieiiiieiteetet ettt bt b et b et e be et eb e bt eaee bt eneesbeeebeeens 26
5.3.1 DECIATALION. 1. eeeeieee et e e ettt e et ee e e e et ee e e s e et e eeeeeeeeaseeeeseaaaeeeesesaasaeeeeesasaseeessaaaaseeeesanaseeeesenenensrnnnnnnn 26
5.3.2 Value ASSIGNMENL......cceeiieieitreiestieitietteteeteseetesseestesseasaesseassessesssesseessesssessesssesseassessesssesseessesseessessssseessseenns 26
5.3.3 Use of variables in StriNg EXPIESSIONS. ...c.ceeuuurreeeeeiereeeeeeserereeeeseirreeessesssseeesssssssseessssssssseessssmsseeesssssssessssssee 27
5.3.4 Secondary VS. PriMAIY SECHIOMNS.eeueeuiereeruierteeiesteetesseetesseentesseeneeeseenseeseenseeneesseansesseansessesnsesseensesseensessnseens 27
5.4 StHNGIST VATIADIESveouieutieiieiieieeie ettt ettt ettt ettt et e bt s et e ea e e eaeeae e saeemeesaeemtesseentesseenseenseeeseeeenseeeaneeanns 28
6 Syntax and Meaning of Primary Sections of a wlnst Script 29
6.1 PIIMATY SECHOMS.eeueeueeuieuieteeteeteeteeteeteetestestestest e eesteseesteseeteebeebeebe et eebese e s en s et eneentemteneeseeseeseese et eabesbesbenbeseenseenseenses 29
6.2 Parametrizing WINSE........ccueieieieieiieieeieet ettt ettt h bbbt bt be sttt et e st e st e st eb e bt bbbt e b e e bt e sbeesaees 30
LY D 5 1111 o) (< USRS 30

The winst manual -2-

6.2.2 Specification of Logging Level
6.2.3 Required winst Version
6.2.4 Reacting on Errors

U
jen)

o8]
—

(98]
—

6.2.5 Staying On Top

6.3 String Expressions, String Values, and String Functions
6.3.1 Elementary String Values

6.3.2 Strings in Strings (Nested String Values)

6.3.3 String Concatenation

6.3.4 String Variables
6.3.5 String Functions which Return the OS Type

6.3.6 String Functions for Retrieving Environment or Command Line Data

6.3.7 Reading Values from the Windows Registry and Transforming Values into Registry Format
6.3.8 Reading Property Values

6.3.9 Retrieving Data from etc/hosts
6.3.10 String processing.
6.3.11 Additional String Functions

6.3.12 (String-) Functions for Licence Management

6.3.13 Retrieving Error Infos from Service Calls

6.4 String List Functions and String List Processing

6.4.1 Info Maps

6.4.2 Producing String Lists from Strings
6.4.3 Loading Lines of a Text File into a String List

6.4.4 Simple String Values generated from String Lists

6.4.5 Producing String Lists from winst Sections

6.4.6 Transforming String Lists
6.4.7 TIterating through String Lists
6.5 Special Commands
6.6 Commands for User Information and User Interaction
6.7 Conditional Statements (if Statements)

6.7.1 Example
6.7.2 General Syntax

6.7.3 Boolean Expressions

6.8 Subprogram Calls
6.8.1 Syntax of Procedure Calling

6.9 Controlling Reboot

6.10 Keeping Track of Failed Installations

7 _Secondary Sections

7.1 Files Sections

N e S > SN ¥ SN (U5 S (U6) (US R (S R (S T (US R (US R (VS T (US B (S I (PSR (98]
EBEEEBRBRERRERRRERERERERIRIER I

T T T R K N
BREKEER

N
—

[N A T |, T O, T (0 R (O, S [0/, T (O, R (O
BRRERERRRRIRI

|€\
i N

N
~

The wilnst manual

7.1.1 Example
7.1.2 Call Parameters

N

The wilnst manual

T.1.3 COMIMANAS. ...eeeiineeiieeeeeieeeeee e ettt e e e e et e e e e e et e eeeeeeaaeeeeessaaaaeeeessesasteessesasseessessssaseeessessssssessssnnasseeessssnnseeesssnn 66
T2 PAtCRES-SECIONS ...eeeeeeeeeeeeeeeeeee et ee e e eeeeeeeeeeeeeeesesaaaaaaaae e eeeeeeeeeeeennaaeeeeeennnaaens 68
R B o< 1111 o) <O OO UPSUPPRROTS 68
T.2.2 CAll PATAIMELET ooeeeeeee ettt e e ettt e e e et eeeee et e e eeeaeaaeeeeesenneaeeeesessaaeeeeseseanseeeessaanseeeesssenraneeessannannes 69
T.2.3 COIMUMANAS. ..eeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e eeeeaeeeeeese et eeeeseeaeeeesssaesaseesssesaseeessasaasseeesesasasaeeessasssaseesssanaseeeesssansseeeeenan 69
7.3 PALChHOSES SECLIOMS. . .veeiiieuerieeeeeeeieeeeeeeeeee e e e eeeeaeeeeeeeeeteeeeeeseeaaaeeeesessasteessesasaseesssaasasesessssassseesssssasseeesssasssssssnnans 70
7.4 1dapiCONTiZ SECHOMS. .c..eeueruirtietirtirtitet ettt ettt ettt ettt ettt b ettt ettt a e bt e bt e bt s bt s bt s bt e b e s b st et et et e e esn et eneenee 71
.S P aAtC T EXEFILE SECTIOMNS. et e e e et et eeeeeeeeeeeseseaaae e e e s e eeeeeeeeeeeeeeeeeeeannaaeeeeeennnaens 72
AT B o< 1111 o) (<O OSSOSO PPRROTS 72
T.5.2 CAll PATAIMELET eeeeeeee ettt ettt e e et e e e et e e e e e e eeeeeeaeaaeeeeesesaaeeessaseeaeeeesesannseeeessaanseeeesssenraneeessennnnnes 73
T.5.3 COIMMMANAS. ...eeeeeeeeeeeeeeeeeeeee e e et e e e e eeea et eeeeeeeaeeeeeeseeaaeeeeeeseeaaseeessesasaeessaseasseeesesanssseeessasasastessssnaseeeesssansseeeeenan 73
T.6 LANKEFOLAET SECLIOMS. ...eeeiieeeeieeeeeeeeeeee ettt eeee et e e e e e et eeeeseaaeeeeeseeaaaeeessesaaaseeessseasaeeessssssaaeeessenasseessesesssssssnsnnnn 75
To6.1 WINAOWS. ..c.cuiiiiiiitietinteiteet ettt ettt et etk h e bttt b ettt et e st ebeebeeb e e bt e bt sb e et e b e s b e st et e satesaaesebesaneeane 75
Ti60.2 LUITIUR et et e et e e e eeeeeeeeeeeee e e e e e e e e e e e nnneeteteeeeeaeeeaaeaeaaaaaaaaaaaan——————————————— 71

T T XIMLPALCIH SECTIONS. ..ttt ettt et e e eeeeeeeeeeeeseseaaeae e e e aeaeeeeeeeeeeeeeeseeeeseranaaaaaseeeeeaaaaess 82
7.7.1 Structure 0f @ XIML DOCUITIENL.eeeeeeeieeaeeeeseseeseeeeeesesaeeeessesraeeeeeeeeeseeeeeereeeeeeeeee 82
7.7.2 Options for Selection @ Set Of ELEIMEILS.coceouviieeieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerseeessseeiseeeesesesesseeesseereeeeens 84

(1) EXPIICIE SYIEAX. ..veureuieieeiieiteiteit ettt ettt ettt et et b e a et besb et e e bt sb e et e e bt s bt eb e ebeeb e e bt ebeebe e bt ebeebtebteateatebbe e bt e eateeneaeenbeeas 84

(1) SHOTE SYIEAX. .eutettenteenteeuiesttettetesttestteteesteeutesteesteeatesstesseenseestesseanseenseessesseenseensessbeseenbeanteeaeanseenseensesseeseenbeesnsbeaeansaeannn 84

(iii) Selecting by Textual Content (Only for eXPICIt SYIEAX).eeverurerteerteeieritenteeteetesitente et eiee st e seeebesitesbeesbeestesaeesaeessneees 85

(iv) Parametrizing SEAICH SHIAEZY.ueueieuieieieieiet ettt et et e et et et et et et e te b e s b e ebebesb e senbeabeaseabeabeseebeesmneenneeenneens 85

T.7.3 PACR A CHIONS. «.evveeeeeeeeeee et e et e e e e et e e e e e et eeeeeeeeeaaeeesseeaaeeeesesesaeeeesseaseeeessaesaeeeeesassaeeeeeeereeeereeeeeenees 85
7.7.4 ReturNing LIStS 10 The Caller......cciieeereieeeiieeieeeee ettt e e eeeeeeeeeeeeeeeeeeeeeaeeeeeseseeaeeeeseseaateesesesseeeseeseeeereeseeanees 87
7.8 ProgmanGroUPS SECHIOMNS.ccuirrerrietertietestieteestesteestesseeseessesssessesssessesssessesssessesssesseensesssessesssessesssessesssessesssesseenn 88
7.9 WINBAtC SECLIOMS.eeiuvieieeieeeiee et e e e e et e e e et e e e eat e e e e seeeeeaeeeeeaseeeenseeeeseeeensseeennseeeenseesanseeeennnnes 88
7.10 DOSBAtCh/SREIIBALCI SECTIONS. ettt e e e e eeeeeeeeeeeseeaaaeae s e e e eeeeeeeeeeeeeeeeeannaaanes &9
ToLO. T WINAOWS. .ceeeeeeeeeee et et et eeeeeeeeeeeeeeseseaaaeaaaa s aaseaeaeeeeeeeeeesennnaeeeeeranans &9
TL0.2 LUAIUX ettt ettt e e e e e e e e e e e e e e e e e e s e s e aaaaes e e e e e eeaaeeeseseesesesaaae s saaaaaasaa e e e et e eeeaaeeeeeeeeseseseea e naaaneeeeeaaaans 90
7.11 DOSINANICON/ShEllINANICON SECHIOMS. .. uvvveeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeereeeesesesraseeessesesseessesesseeseesesseseennee 90
T 111 WINAOWS. coeieeeiieee ettt ettt ettt e e e et e e e se s et e e seseaaaeeeeesasasaeeesesansaseesesaasasseessesassseesssaasaeeseeseeessessesssees 90
R B O 51105, <O OOPPPPRRPPPPRN 91
R A a1 8 AN 1T 10 4 1SRRI 91
R 2 W 5.1 11) (< OO PRROTR 91

T 12.2 CAll PATAINELETS. ...veeeeeeeieeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeseeaeeeeseseaeeeeseseanateeessaeeseeeeessasaseeessanasseeesesanaeereeeeeeeseeenee 91

T 12.3 COMUMANGS. ...coneeeeieeeeeeeieee et e e e e et e e e e e et eeeeeeeaateeeseaaaaeeesssasaseeessasesseeesesaensseeessaansseaeseseeseeeeeeesseeereeeeees 92
7.12.4 Registry Sections to Patch "ALl NTUSEI.AAL"........ccooveuiiiieiieiieieee ettt eeeeeseeeeeeeeseeaeeeseeeesessssesseeesens 96
7.12.5 Registry Sections in REGEdit FOIMAL...........coiiviiuiiiiiiiieiiiee ettt et ee e e e eetae e e e e sesaaeeeesessaaaeeeeesnnnnnes 96
7.12.6 Registry Sections in AAAREE FOIMAL........ccuieiiiiiiieiiiieieee ettt ettt sne e 97
7.13 OpPSiSeIVICECAIL SECHIOMS. ... e ueeueeruieteeiieteeiieite e et e e et e e et et e etee bt saeesbeestesbeeseesbeeseeabeensesbeenteeseenteeseenseeneeneeenseean 98
T 13,1 CAll PATAINELETS. ..vveeeeeeeeeeeeeeeeeeeeeee e e e et eeeeeeee e e eeseeaeeeesese e eeeeesaanaeeeeesaeaseeeeesaasaseeessanansseeesesasaeeseeeeeeeeeensees 98
T.13.2 SECHION FOTINAL ...evviiiiieeieee ettt ettt e e e e e ettt e e e eeeaeeeeeeseaaeeeeseseasaeeeessesaaeeessasansseeesesasasesssssssannnans 99

7.14 ExecPython Sections

7.14.1 Example...................

7.14.2 Interweaving a Python Script with the winst Script
7.15 ExecWith Sections

7.15.1 Call Syntax

7.15.2 More Examples
7.16 LDAPsearch Sections

7.16.1 LDAP — Protocol, ServiCe, DITECIOIY....ccccuvvvieeiieieeeeeeeeiieeeeeeeeeeteeeeeeeeseteeesseestereeessesaseeessssssssessessssssssssseees

7.16.2 Example of a LDAP response
7.16.3 LDAPsearch Call Parameters

7.16.4 How to Narrow the Search

7.16.5 LDAPsearch Section Syntax

7.16.6 Another Example

8 64 Bit Support

L (S
o ©
— O

—_
=
\S]

—_
=
|\S]

—
=
98]

—
=
[US]

—
=g
(98]

._‘
(]
=

—_
=
3

—_
=
N

—
(e
[*e]

—
S
2]

(o=,
(=
=

9 Cook Book

[
it
|5

9.1 Delete a File in all Subdirectories

9.2 Check if a Specific Service i8S RUNMING.........ccuevuieieriieieiieieceeie sttt ettt et e steeaesteesaesseessessaessesssesseessensseenes
9.3 Script for Installations in the Context of a Local AdMINIStEALOL..........ccerverierieriieierieereseeseeeeeessesee e eresaesseenns
9.4 XML File Patching: Setting Template Path for OpenOffice.0rg 2........ccevuvrieriirierieecieeseeeee e

9.5 Retrieving Values From a XML File

9.6 Inserting a Name Space Definition Into @ XIML File........cceeiiiiriiiiiiinieie et

10 Special Error Messages

10.1 No Connection with the opsi Service

The wilnst manual

—
—
|98

_
—
o~

—
—
N

—_
NS
\S}

—
I\
(O8]

—
[\
N

-,
g
N

—_
[\
(o)}

Revison history of this manual

wlnst

wlnst

wlnst

wlnst

wlnst

wlnst

wlnst

wlnst

wlnst

wlnst

version 4.9.3 (opsi version 3.5)

New command in PatchTextFile: AddStringListElement_To_Mozilla_Pref (cf. section 7.5.3)
New command line option usercontext (cf. chapter 2)

New String function GetUserSID (cf. section 6.3.6)

version 4.9.2 (opsi version 3.5)

New command in PatchTextFile: set_mozilla_pref (cf. section 7.5.3)
version 4.9.0 (opsi version 3.5)

New String function GetProductProperty to replace IniVar (cf. section 6.3.8)

New StringList function GetSectionNames (cf. section 6.4.3)
version 4.8.8 (opsi version 3.4)
New command line option /silent

version 4.8.7 (opsi version 3.4)

New section type LDAPsearch (cf. section 7.16)

New StringList function count (cf. section 6.4.4)

New constant %opsiServer% (cf. section 5.2.3)

version 4.8.6 (opsi version 3.4)

New Boolean function opsiLicenseManagementEnabled (cf. section 6.7.3)
New String functions DemandLicenseKey, FreelLicenseKey (section 6.3.12),
getLastServiceErrorClass, getLastServiceErrorMessage (section 6.3.13)
version 4.8.4 (opsi version 3.3.1)

New version check option -V for copy actions, meaning version check only with regard to files
in the target directory (cf. section 7.1.2)

version 4.8.1 (opsi version 3.3.1)

New constant %installingProduct% (section 5.2.3 (iv)).

For licence management: new String functions demandLicenseKey, freeLicenseKey

version 4.7.4 (opsi version 3.3.1)

New OS version functions GetMSVersionlInfo (major + minor version info as given by the
WinApi)

GetSystemType (for XP and Vista, possible values '64 Bit System' or 'x86 System'

version 4.6.0 (opsi version 3.3)

The winst manual -6 -

wlnst

wlnst

winst got a new skin which is editable (cf. section 3.2)

version 4.5.9 (opsi version 3.2 updated)

New StringList functions getLocalelnfoMap and getFileVersionMap (section 6.4.1)

New String function getValue($key, $map) for a String $key and Stringlist $map (section
6.4.4)

New copy modifier -c (cf. section 7.1.3)
New constants %ipAddress%, %ipName% (cf. section 5.2.3).

New String function getLastExitCode. It returns the ExitCode — or ErrorLevel — of the last
winbatch call. (sections6.3.6)

New String function trim.
New commands for primary sections: sleepSeconds, markTime, diffTime (cf. section 6.6)

New section type ExecWith (cf. section 7.15)

version 4.5.6 (opsi version 3.2 updated)

New variant of the ExitWindows command (/ShutdownWanted, cf. section 6.9).

wInst version 4.5 (packed with opsi version 3.2)

New section type execPython (section 7.14). If python is installed on the system, python.exe
is called and the section interpreted as a python script. For interweaving the python script with
the winst script there are new constants %opsiserviceURL%, %opsiserviceUser%,
%opsiservicePassword%, %hostiD%, %logfile% (cf. 5.2.3) and a new String function
getLoglevel (shortly loglevel; cf. 6.3.11).

wInst version 4.4 (packed with opsi version 3.1)

New section type opsiServiceCall (section 7.13) for connecting directly - or with an
interactively supplied password - to and communicating with an opsi service.

New functions XMLaddNamespace and XMLRemoveNamespace (cf. section 6.7.3 and
cookbook 8.6)

wInst version 4.3 (required for opsi version 3.0)

New appendix (section 9.1) on error messages in the situation that the connect to the opsi
service fails.

Corrected description for the WaitForProcess Ending option for the winbatch section.

The opsi service (opsi Version 3.0) can inform on the PC configuration (Section 2 of this
manual)

By the new function required WinstVersion (cf. section 6.3.3) a wInst script can check if the
installed wInst meets its requirements.

wInst version 4.2 (packed with opsi version 2.5)

Supports the state description "failed" (section 6.10)

The wilnst manual -7 -

New RandomStr function (cf. sections 6.2.9, 8.3)

Pseudo function EscapeString (section 6.3.2)

For Files sections with Option /allNtUserProfiles the new variable %UserProfileDir% can be
used (section 7.1.2)

wInst constants can now be used in sub sections (section 6.1)

A new LogLevel syntax can be used (section 6.1.2)

wInst version 4.1

New parameter /WaitForProcessEnding for winBatch calls (section 7.9)
Parameter /ImmediateLogout for ExitWindows-Kommando integrate (section 6.9, 8.3)

Syntaxvariante /regedit fuer Registry-Sektionen (section 7.12)
New string list function loadUnicodeTextFile (section 6.4.1, 7.12.4)

A sub section can be called with a string list expression as parameter (section 6.8.1)

wInst version 4.0

Introduces a kind of string list processing (sections 5.4, 6.4, 8.2 ,...)

Capturing of the output of DosBatch/Shell calls as string lists (section 6.4.4)
Patches of XML files (section 7.7)

The winst manual -8-

1 Windows Installer

The open source program wInst (or windows Installer) serves in the context of opsi
— open pc server integration (cf. www.opsi.org) — as the central function for initiating and
performing the automatic software installation. It may also be used stand alone as a tool
for setup programs for any piece of software.

wInst is basically an interpreter for a specific, rather simple script language which can be
used to express all relevant elements of a software installation.

A software installation that is described by a wInst script and performed by executing
the script has several advantages compared with installations that are managed by a
bunch of shell commands (e. g. copy etc.):

- wInst offers to log very thoroughly all operations of the installation process.
The support team can check the log files, and can easily detect when errors
occured or other problematic circumstances are evolving.

- Copy actions can be configured with a great variety of options if existing files
shall be overwritten

- Especially, it may be configured that files are copied depending on their internal
version.

- There are different modi for writing to the Windows registry (overwrite existing
values/ write only when no value exists/ append a value to an existing value).

- The Windows registry can be patched for all users which exist on a work station
(including the default user, who is used as prototype for further users).

- There is a sophisticated syntax for an integrated patching of XML configuration
files.

The wilnst manual -9-

file:///../bonifax/n/bsz/4all/hupsidoc/winst-handbuch/www.opsi.org

winst: Windows-Installation-Program

Installing Firefox...

wInst, surface in Batch mode

The winst manual -10 -

2 Command Line Parameters

wInst can be started with different sets of parameters depending on context and
purpose of use.

There are the following syntactical schemata:
(1) Show usage:
wInst /?

wInst /h[elp]

(2) Execute a script (without the parameter “/batch” resp. “/silent” wInststarts into an
interacive mode):

winst scriptfile [[/logfile] logfile]
[/batch | /silent | /histolist winstconfigfilepath]
[/parameter parameterstring]

(3) Execute a list of scripts (separated by semicolons) one by one:
wInst scriptfile[,scriptfile]*

[/logfile logfile]

[/batch | /silent]

[/usercontext [domain\]username]
[/parameter parameterstring]

(4) Read the PC configuration from the opsi service and act accordingly, since wInst
4.3

winst /opsiservice [opsiserviceurl]
[/clientid clientname]
[/username username]
[/password password]
[[/logfile] logfile]
[/parameter parameterstring]]

The winst manual -11 -

(5) Read the PC profile file and act accordingly (deprecated, opsi classic)

wInst /pcprofil
[PC_configuration file [[/logfile] logfile]]
[/parameter parameterstring]

Some explanations:

The parameterstring, which is marked by the option "/parameter", is accessible
for every called wInst script (via the string function ParamStr).

Explanations to (2) and (3) :

If option /batch is used, then wInst shows only its "batch surface" offering no user
dialogs. By option /silent event the batch surface is suppressed. Without using
option /batch we get into the interactive mode where script file and log file can be
chosen interactively (mainly for testing purposes).

When called with option /usercontext wInst can do configurations for a specified
logged in user (particularly in a Windows terminal server context).

The winstconfigfilepath parameter which is designated by /histofile refers
to a file in ini file format that holds the (in interactive mode) last used script file names.
The dialogue surface presents a list box that presents these file names for choosing the
next file to interpret. If winstconfigfilepath ends with "\" it is assumed to be a
directory name and WINST. INI serves as file name.

Explanations to (3):
If a opsiserviceurl is missing the following URL is used:
https://DEPOTSERVER: 4447

where DEPOTSERVER is the server name derived from the value of depoturl in the
Windows Registry.

Default value for clientid is the computer name.

Explanations to (4):

In opsi classic, wInst reads the PC specific data directly from the PC configuration file
- the so called PC profile file or "ini file" since it has ini file format. If an explicit file

The winst manual -12 -

name is missing the "classic" default P:\PCPatch\%$PCNAME%.ini is used where
$PCNAMES is an appropriately set environment variable.

In particular, the PC configuration file informs which applications shall be installed. The
paths of the wInst scripts that control the installations are read from the file
pathnams.ini that has as default location p:\pcpatch .

The not interactive mode is implied.

2.1 Log Pathes

By default log files are written into the directory c: \tmp which wInst tries to create. If
wInst has no access to this directory it uses the user-TEMP directory.

The default log file name is instlog.txt. The log file name and location will be
overwritten via the specific command line option.

In the case, that wInst executes a script in /batch mode and with a specified (and
working) usercontext, the default logging path is the opsi/tmp in the appdata
directory of the user. This will be overwritten by an explicit given log path.

In addition, wInstuses the logging directory for saving certain temporary files.

The winst manual -13 -

3 Additional Configurations

3.1 Central Logging of Error Messages

If wanted, wInst writes the error data to a second file on a network drive or sends them
to a syslog demon.

The feature can be configured in the Windows registry: :

In HKEY LOCAL MACHINE, we have in a standard installation the key
\SOFTWARE\opsi.org. We can create a subkey syslogd with a variable
remoteerrorlogging. Its value determines if and, if yes, by which method a central
logging shall take place.

Furthermore, in HKEY LOCAL MACHINE\SOFTWARE\opsi.org\syslogd we have to
observe three up to three variables:

If remoteerrorlogging has value 0, no extra central logging takes place (default).

If remoteerrorlogging has value 1, wInst tries to open a $pcname$.err in the
configshare, subdirectory pcpatch\pclog, and write the data to it.

If remoteerrorlogging has value 2, the error reports are sent to syslog demon. The
demon host name is read from the variable sysloghost (default localhost), the
syslog channel number can be set from the value of the variable syslogfacility
(default 18, that is local2) .

The following table shows the possible values for the facility:

The winst manual -14 -

ID SYSLOG FACILITY KERNEL
ID SYSLOG FACILITY USER

ID SYSLOG FACILITY MAIL

ID SYSLOG_FACILITY SYS DAEMON
ID SYSLOG FACILITY SECURITY1
ID SYSLOG FACILITY INTERNAL
ID SYSLOG FACILITY LPR

ID SYSLOG FACILITY NNTP

ID SYSLOG_FACILITY UUCP

ID SYSLOG FACILITY CLOCKL
ID SYSLOG_FACILITY SECURITY2
ID SYSLOG FACILITY FTP

ID SYSLOG_FACILITY NTP

ID SYSLOG_FACILITY AUDIT

ID SYSLOG_FACILITY ALERT

ID SYSLOG_FACILITY CLOCK2
ID SYSLOG_FACILITY LOCALO
ID SYSLOG_FACILITY LOCALL
ID SYSLOG FACILITY LOCAL2
ID SYSLOG_FACILITY LOCAL3
ID SYSLOG_FACILITY LOCAL4
ID SYSLOG_FACILITY LOCALS

ID SYSLOG_FACILITY LOCAL6

ID SYSLOG FACILITY LOCAL7

3.2 Skinnable wInst

o Ne Ne N

Ne Ne Ne No

OO Jo Ul W O
~. ~e N
o~

N
N RO
3

~.

13;

e
IS
o o

16;

[y
~J
~.

18;
19;
20;
21;
22;
23;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//

kernel messages

user-level messages

mail system

system daemons

security/authorization messages (1)
messages generated internally by syslogd
line printer subsystem

network news subsystem

UUCP subsystem

clock daemon (1)

security/authorization messages (2)
FTP daemon

NTP subsystem

log audit

log alert

clock daemon (2)
local use O (localO)
local use 1 (locall)
local use 2 (local2)
local use 3 (local3)
local use 4 (locald)
local use 5 (localb)
local use 6 (localo)
local use 7 (local?)

Since version 3.6 wInst has an adaptable skin. Its elements are located in a
subdirectory winstskin of the directory of the executed wInst. The definition file which

you may editis skin.ini.

The wilnst manual

-15 -

4 The wInst Script

On principle: wInst is an interpreter for a specific, easy to use scripting language which
is tailored for the requirements of software installations. A script should be an integrated
description, and a means of control, for the installation of one piece of software.

The following section sketches the structure of a wInst script. The purpose is to identify
the book marks of a script: in which way we to have to look into it to understand its
processing.

All elements shall be described more in detail in the further section. The purpose then will
be to show how scripts can be modified or developed.

4.1 An Example

wInst scripts are roughly derived from . INT files. They are composed of sections,
which are marked by a title (the section name) which is written in brackets [].

Schematically a wInst script looks like this one (here with a check which operating
system is installed):

[Initial]
Message "lnstallation of Mzilla"
LogLevel =2

[Akt i onen]

; Determine the OS

Def Var $0S$

Set $0s8$ = GetCS

; Wndows NT famly (including Wn2k, W nXP)
; or Wn95 (including Wn98, W nME)

; or Linux

: Whi ch NT- Ver si on?
Def Var $NTVer si on$

if OS = "W ndows_95"
Sub_install_w n95

el se
Set $NTVersion$ = Get NTVersion
has val ues "NT4" or "Wn2k" or "WnXpP"
;o or "Wn NT " + majorVersion + "." + minorVersion

The winst manual -16 -

if ($NTVersion$ = "NT4") or ($NTVersion$ = "Wn2k")
sub_install_w nnt
el se
if ($NTVersion$ = "WnXxP")
sub_i nstal | _wi nXP
el se
stop "OS not supported"
endi f
endi f

el se
stop "OS not supported"

endi f
[sub_install_w n95]

Fi | es_Kopi eren_95
W nBat ch_Set up

[sub_install _w nNT]
Fi | es_Kopi eren_NT
W nBat ch_Set up

[sub_install _w nXP]
Fi | es_Kopi eren_XP
W nBat ch_Set upXP

[Fil es_Kopi eren_95]
copy "%criptpath%files win9s*. *" "c:\tenp\installation"

[Fil es_Kopi eren_NT]
copy "Ucriptpath%files_ winnt*.*" "c:\tenp\installation"

[WnBat ch_Set up]
c:\tenp\installation\setup. exe

[WnBat ch_Set upXpP]
c:\tenp\installation\install.exe

How can we read the sections of this script?

The winst manual -17 -

4.2 Primary and Secondary Subprograms of a wInst

script

The script as a whole serves as a program, an instruction for an installation process.
Therefore each of its sections can be seen as a a subprogram (or "procedure" or
"method"). The script is a collection of subprograms.

The human reader as well as an interpreting software has to know at which element in this
collection reading must start.

Execution of a wInst script begins with working on the sections [Initial] and
[Aktionen] (in this order). All other sections are called as subroutines from these two
sections. This process is only recursive for Sub sections: Sub sections have the same
syntax as Initial and Aktionen sections and may contain calls for further
subroutines.

This gives reason to make the distinction between primary and secondary subprograms:
The primary or general control sections COMprise

- the Initial section (by convention the beginning of the script),

- the Aktionen section (should follow to Initial section), and

- Sub sections (0 to n subroutines called by the Aktionen section which are
syntactical and logical extensions of the calling section).

The procedural logic of the script is determined by the sequence of calls in these
sections.

The secondary or specific sections can be called from any primary section but have a
different syntax. The syntax is derived from the functional requirements and library
conditions and conventions for the specific purposes. Therefore no further section can be
called from a secondary section.

At this moment there are the following types of secondary sections:
- Files sections,

- WinBatch sections,

- DosBatch/ShellBatch sections,

- DosInAnIcon/ShellInAnIcon sections,

- Registry sections,

- Patches sections,

The winst manual -18 -

- PatchHosts sections,

- PatchTextFile sections,

- StartMenu sections,

- ProgmanGroups sections (deprecated),
- IdapiConfig sections,

- XMLPatch sections,

- LinkFolder sections,

- opsiServiceCall sections,
- ExecPython sections,

- ExecWith sections,

- LDAPsearch sections.

Meaning and syntax of the different section types are treated in chapters 6 and 7.

4.3 String Expressions in a wInst Script
Textual values (string values) in the primary sections can be given in different ways:

- Avalue can be directly cited, mostly by writing in into (double) citation marks.
Examples:

"Installation of Mzilla"
"n:\ honme\ user nane"

- Avalue can be given by a String variable or a String constant , that "contains” the
value:

The variable
$NtVersion$
may stand for "Windows NT" — if it has been assigned beforedhand with this value.

- A function retrieves or calculates a value by some internal procedure. E. g.

EnvVar ("Username")

The winst manual -19 -

fetches a value from the system environment, in this case the value of the
environment variable Username. Functions may have any number of parameters,
including zero:

Get Gs

On a NT system, this function call yields the value "Windows NT" (not as with a
variable this values has to be produced at every call again).

- Avalue can be constructed by an «dditive expression, where string values and partial
expressions are concatenated - theoretically "plus" can be seen as a function of two
parameters:

$Home$ + "\mail"
(More on this in section 6.3)

There is no analogous way of using string expressions in the secondary sections. They
follow there domain specific syntax. e.g. for copying commands similar to the windows
command line copy command. Up to this moment it is no escape syntax implemented for
transporting primary section logic into secondary sections.

The only way to transport string values into secondary sections is the use of the names of
variables and constants as value container in these sections. Lets have a closer look at
the variables and constants of a wInst script:

The winst manual -20 -

5 Definition and Use of Variables and

Constants 1n a wInst Script

5.1 Overview

InawInst script, variables and constants appear as "words", that are interpreted by
wInst and "contain" values. "Words" are sequences of characters consisting of letters,
numbers and some special characters (in particular ".", "-", " ", "$", "%"), but not blanks,
but no brackets, parentheses, or operator signs ("+") .

wInst variables and constants are not case-sensitive.
There exist the following types of variables or constants:

Global text constants, shortly constants,

contain values which are present by the wInst program and cannot be changed in a
script. Before interpreting the script wInst replaces each occurrence of the pure
constant name With its value in the whole script (textual substitution).

An example will make this clear: The constant $ScriptPath% is the predefined name
of the location where wInst found and read the script that it just executes. This
location may be, e.g., p:\install\product. Then we have to write

"$ScriptPath%"

in the script when we want do get the value
"p:\install\product"

- observe the citations marks which include the constant delimiter.

Text or String variables, shortly variables,

have an appearance very much like any (String) variables in a common programming
language. They must be declared by a DefVvar statement before they can be used. In
primary sections, Values can be assigned to variables (once ore more times). They can
be used as elements in composed expressions (like addition of strings) or as function
arguments.

But they freeze in @ secondary section to a phenomenon that behaves like a constant.
There, they appear as a non-syntactical foreign element. Their value is fixed and is
inserted by textual substitution for their pure names (when a section is called, whereas
the textual substitution for real constants take place before starting the execution of the
whole script).

The winst manual -21 -

Stringlist variables
are declared by a DefStringList statement. In primary sections they can be used for
many purposes, e.g. collecting strings, manipulating strings, building sections.

In detail:

5.2 Global Text Constants

Scripts shall work in a different contexts without manual changes. The contexts can be
characterized by system values as OS version or certain paths. wInst introduces such
values as constants into the script.

5.2.1 Usage

The fundamental characteristics of a text constant is the way how the values which it
represents come intro the script interpretation process:

The name of the constant, that is the pure sequences of chars, is substituted by its fixed
value in the whole Script before starting the script executio N.

The replacement does not take into account any syntactical context in which the name
possibly occur (exactly like with variables in secondary sections).

5.2.2 Example

wInst implements constants $ScriptPath% for the location of the momentarily
interpreted script and $System% for the name of the windows system directory. The
following (Files) subsection defines a command that copies all files from the script
directory to the windows system directory:

[files_do_ny_copyi ng]
copy "%oscri pt Pat h% system *. *" "UByst entt

5.2.3 List of Existing Constants

At this moment the following constants are implemented:

(i) System Paths

- S%AppdataDir$%

The winst manual -22 -

The default value for Windows 2000 and Windows XP e.g. in a German context for
the current logged in user is:

C:\Dokumente und Einstellungen\%USERNAME%\Anwendungsdaten

Please, observe that this constant has meaning if called in the opsi preloginloader
environment where no real user is logged in.

- %UsercontextAppdataDir$%

gives the appdata directory for a user context which is specified on the command line
(cf. section 2) (in fact, it retrieves the directory from the registry by the SID of the user)

- %AllUsersProfileDir$%
E.g.
C:\Dokumente und Einstellungen\All Users
- %CommonStartMenuPath$%
Default:
C:\Dokumente und Einstellungen\All Users\Startmeni
- %ProfileDir%
For Windows 2000 and Windows XP in a German context:
C:\Dokumente und Einstellungen
Hint:

In Files sections that are called with option /A11NtUserProfiles there is a pseudo
variable

$UserProfileDir%

When the section is executed for each user that exists on a work station this variable
represents the name of the profile directory of the user just treated.

- %ProgramFilesDir%

By default:
C:\Programme

- %Systemroot%

The winst manual -23 -

Denotes the root directory for Windows on the work station (without closing
backslash) - e.g.

c:\wi ndows
c:\w nnt

%System%

Name of the Windows system directory (without backslash) e.g.

c:\wi ndows\ syst em
c:\wi nnt\systenB2

%Systemdrive$%

Denotes the drive on which the operating system is installed.

(i) wlinst Paths

(iii)

%ScriptPath$%

represents the path of the current wInst script (without closing backslash). Using this
variable we can build path and file names in scripts that are relative to the location of
the script. So, everything can be copied, called from the new place, and all works as
before.

%ScriptDrive%

The drive where the just executed wInst script is located (including the colon).
SWinstDir$%

The location (without closing backslash) of the running wInst.

SLogfile%

The name of the logfile which wInst is using.

Network Information

%Host%

(Deprecated) The value of a environmental variable host (traditionally meaning the
opsi server name, not to confuse with $HostID% (meaning the client network
name).

$PCName$%

The winst manual -24 -

(iv)

The value of the environmental variable PCName, when existing. Otherwise the value
of the environmental variable computername. (Should be the netbios name of the
PC)

$IPName$%
The dns name of the pc. Usually identical with the netbios name and therefore with
$PCName$% besides that the netbios names uses to be uppercase.

$IPAddress$%
The network IP address.

%Username$%
Name of the logged in user.

Data for and from opsi service

$HostID$%

Should be the fully qualified domain name of the opsi client as it is supplied from the
command line or otherwise.

sopsiserviceURLS%

The (usually https://) URL of the opsi service.
SopsiServer$

The server name derived from the $opsiserviceURL%.
opsiserviceUser$

The user ID for which there is a connection to the opsi service.
%opsiservicePassword$

The user password used for the connection to the opsi service. The password is
eliminated when logging by the standard wInst logging functions.

%installingProduct$%

The name (productld) of the product for which the service has called the running
script. In case that there the script is not run via the service the String is empty.

The winst manual -25-

5.3 String (or Text) Variables

5.3.1 Declaration

String variables must be declared before they can be used. The syntax for the declaration
reads

DefVar <variable name>

e.g.
Def Var $NTVer si on$

Explanation:

- Variable names do not necessarily start or end with a dollar sign, but this is
recommended as a convention to understand their functioning in secondary sections.

- Variables can only be declared in primary sections (Initial section, Aktionen
section and sub sections).

- The declaration should not depend on a condition. That is it should not placed into a
branch of an if - else statement. Otherwise, it could happen that the DefVar
statement is not executed for a variable, but an evaluation of the variable is tried in
some if clause (such producing a syntax error).

- The variables are initialized with an empty string (") .
Recommendation
The first and last letter of the name should be '$'

Define all variables at the beginning of the script

5.3.2 Value Assignment

- As itis appropriate for a variable, it can take on one value resp. a series of values
while a script is progressing. The values are assigned by statements with syntax

Set <Variablenname> = <Value>
<Value> means any (String valued) expression.

Examples (cf. section 6.3):

Set $0S$ = Get Os
Set $NTVersion$ = "not deterni ned"

The winst manual -26 -

if $0S$ = "W ndows_NT"
Set $NTVersi on$ = Get NTVersi on
endi f
Def Var $Honme$
Set $Home$ = "n:\hone\user nane"

Def Var $Mai | Locati on$
Set $Mail Location$ = $Honme$ + "\mail "

5.3.3 Use of variables in String expressions

- In primary sections of a wInst script, a variable "holds" a value. When it is declared
it is initialized with the empty String ". When a new value is assigned to it via the set
command, it represents this value.

- In a primary section a variable can replace any String expression resp. can be a
component of a String expression, e.g.

Set $Mail Location$ = $Honme$ + "\mail "

In a primary section the variable name denotes an object that represents a string, If we
add the variable we mean that the underlying string shall be added somehow.

This representational chain is shortcut in a secondary section. Just the variable name now
stands for the string.

5.3.4 Secondary vs. primary sections

When a secondary section is loaded and wInst starts its interpretation the sequence of
chars of a variable name is directly replaced by the value of the variable.

Example:
A copy command in a £iles section shall copy a file to
"n:\ hone\ user nane\ mail \ backup”

We first set $Maillocation$ to the directory above it:

Def Var $Honme$

DevVar $Mail Locati on$

Set $Honme$ = "n:\hone\user nane"

Set $Mail Location$ = $Honme$ + "\nmail "

$MailLocation$ is now holding

"n:\home\user name\mail"

In a primary section we may now express the directory

The winst manual - 27 -

"n:\home\user name\mail\backup"
by
$Mai | Locati on$ + "\ backup"
The same directory has to be designated in a secondary section as:

"$Mai | Locat i on$\ backup"

A fundamental difference between the thinking of variables in primary vs. secondary
sections is that, in a primary section, we can form an assignment expression like

$Mai | Locati on$ = $Mail Locati on$ + "\ backup"
As usual, this means that $MailLocations$ first has some initial value and takes on a
new value by adding some string to the initial value. The reference from the variable is
dynamic, and may have a history. In a secondary section any such expression would be

worthless (and eventually wrong), since $MailLocation$ is bound to be replaced by
some fixed string (at all occurrences virtually in the same moment).

5.4 Stringlist Variables
Variables for string lists must be declared in a DefStringList statement, e.g.
Def Stri ngLi st SMBMbunt s

A string list can serve e.g. as container for the captured output of a shell program. The
collected strings can be manipulated in a lot of ways. In detail this will be treated in the
section on string list processing (section 6.3).

The winst manual -28 -

6 Syntax and Meaning of Primary Sections
of a wInst Script

As shortly presented in chapter 4 the Aktionen section of a script can be regarded as a
the main method of the wInst script and describes the global processing sequence. It
may call subroutines - the Sub sections which may then recursively call Sub sections
themselves.

The following sections explain syntax and use of the primary sections of a wInst script.

6.1 Primary Sections

There are possibly three kinds of primary sections in a script
- an Initial section,

- anAction section,

- any number of Sub sections

Initial and Action section are syntactically equivalent (but Initial has to keep the
first place). By convention, inthe Initial section some parametrizations of the script
execution (e.g. the loglevel) are made. The Action section can be regarded as the main
program in a wInst script. It contains the sequence of actions that are controlled by the
script.

Sub sections are as well syntactically equivalent. But they are a called from the Action
section. Then, they can call themselves sub sections.

A Sub section is determined by creating a name that begins with "sub", e.g.

Sub InstallBrowser. By writingits name inthe Action section we produce a call
to the sub section. The meaning of this call is defined by the content of the section in
the script that begins with the bracketed name, in the example [Sub InstallBrowser]

Please note : Subsections of second and higher order cannot host internal sections.
Instead, their procedure calls must refer to sections defined in the main script file or
defined as external sections (cf. 6.8.1).

The winst manual -29 -

6.2 Parametrizing wInst

Typical entries of an ITnitial section set some the wInst execution attributes. The
following example shows how error responses may be configured:

6.2.1 Example
[Initial]
Set LogLevel =5
Exi t OnError=fal se

Scri pt Er r or Messages=on
Tr aceMbde=of f

This means that:
logging level is set to 5,
when an error occurs wInst shall try to continue script execution,

if a script syntax error occurs it shall be communicated (this will be in a special window),
and

we don't want to activate the trace mode for script execution (which would mean that
we are asked after each program step if we want to continue).

The above values are the default values, wInst will assume them if these statements are
missing.

To the details of syntax and meaning:

6.2.2 Specification of Logging Level
There are two syntactical variants for specifying the logging level:

SetLogLevel = <number>
SetLoglevel = <String expression>

I.e. the number can be given as an integer value or as a string expression (cf. section 6.3).
In the second case, wInst tries to evaluate the string expression as a number.

There exist ten levels from O up to 9.
0 = nothing (absolute nothing)
1 = essential ("essential information")

2 = critical (unexpected errors that my cause a program abort)

The winst manual - 30 -

3 = error (Errors that don't will abort the running program)
4 = warning (you should have a look at this)

5 = notice (Important statements to the program flow)

6 = info (Additional Infos)

7 = debug (important debug messages)

8 = debug?2 (a lot more debug informations and data)

9 = confidential (passwords and other security relevant data)

6.2.3 Required wInst Version

The statement

- requiredWinstVersion <RELATIONSSYMBOL> <ZAHLENSTRING>

e.g.

requi redW nst Versi on >= "4, 3"

makes wInst check if the desired version state is given. Otherwise an error message
windows pops up.

This feature exists since wInst version 4.3. For an earlier version, the statement is
unknown, and the statement itsself is a syntactical error which will be indicated by syntax
error window (cf. the following section). Therefore the statement can be used
independently of the currently used wInst version as long as the required version is at
least version 4.3.

6.2.4 Reacting on Errors
There are two kinds of errors which are treated in different ways:
1. illegal statements which cannot be interpreted by wInst (syntactical errors),

2. failing statements which cannot be executed because of external, objective reasons
(execution errors).

In principal, syntactical errors are indicated by a pop up window for immediate correction,
execution errors are logged in a log file to be analysed later.

The winst manual -31-

The behaviour of wInst when it recognizes a syntactical error is defined by the
configuration statement

ScriptErrorMessages = <boolean value>

If the value is true (default), syntactical errors trigger a pop up window with some
informations on the error. This kind of errors is not recorded in the log file. The log file
shall keep informations on the real execution of a syntactical correct script.

The boolean value may be true or false. Delimiters on or of£f can be used as
well .

There two configuration options for execution errors .

6.2.

ExitOnError = <boolean value>

This statement defines if the script execution shall terminate when an error occurs. If
the value is true or yes the program will stop execution, otherwise errors are just
logged (default).

TraceMode = <boolean value>

In TraceMode (default false) every log file entry will additionally be shown in
message window with an O.K. button.

5 Staying On Top

StayOnTop = <boolean value>

With StayOnTop = true (or = on)we request, that -in batch mode - the wInst
window be on top on the windows which share the screen. That means it should be
visible in the "foreground" as long as no other window having the same status wins.

Observe: According to the system manual the value cannot be changed while the
program is running. But it seems that we can give a new value to it once .

StayOnTop has default £alse in order to avoid that some other process raises an error
message which eventually can not be seen if wInst keeps staying on top.

The winst manual -32 -

6.3 String Expressions, String Values, and String

Functions

A String expression can be

an elementary String value

- anested String value

- a String variable

- the concatenation of other String expressions

- a String valued function call

6.3.1 Elementary String Values

An elementary String value is any sequence of characters that is enclosed in double or
single citations marks, formally:

"<sequence of characters>"
or
'<sequence of characters>:

We have e.g.

Def Var $Exanpl eStri ng$
Set $ExanpleString$ = "ny text"

6.3.2 Strings in Strings (Nested String Values)

If the sequence of chars itself contains citation marks we have to use the other kind of
citation marks to enclose it:

Def Var $citation$
Set $citation$ = 'he said "Yes"'

If the sequence of chars is containing both kinds of citation marks we must use the
following special expression:

- EscapeString: <sequence of characters>

E.g. we can write:

Def Var $Meta_citation$
Set $Meta_citation$ = EscapeString: Set $citation$ = 'he said "Yes"'

The wilnst manual -33-

Then the variable $Meta_citation$ will exactly contain the complete sequence of
chars that follows the colon after "EscapeString" (including the blank). Such,
$Meta citation$ will contain the complete statement

Set $citation$ = 'he said "Yes"'

6.3.3 String Concatenation
String concatenation is written using the addition sign ("+")
<String expression> + <String expression>

Example:

Def Var $Stringl$
Def Var $String2$
Def Var $String3$
Def Var $String4$

Set $Stringl$ = "y text"

Set $String2$ = "and"

Set $String3%$ = "your text"

Set $String4$ = $Stringl$ + " " + $String2$% + " " + $String3$

$String4$ then has value "my text and your text".

6.3.4 String Variables

A String variable in a primary section "contains" a String value. In an String expression, it
can always substitute an elementary string. For how to define and set String variables cf.

section 5.3.

The following sections present the variety of string functions.

6.3.5 String Functions which Return the OS Type

- GetOS
The function tells which type of operating system is running. It returns one of the
following values:
"Windows_16"
"Windows_95" (including Windows 98 and ME)
"Windows NT" (including Windows 2000 and XP)

"Linux"

- GetNtVersion

A Windows NT operating system is characterized by a the Windows type number and

a subtype number. GetNtVersion returns the precise subtype name. Possible
values are

The wilnst manual -34 -

"NT3 "
"NT4 "

"Win2k" (Windows 5.0)
"WinXP" (Windows 5.1)

"Windows Vista" (Windows 6)

If the NT operating system has higher versions as 6 or there are version not explicitly
known the function returns "Win NT" and the complete version number (5.2, ... resp.
6.0 ..) . E.g. for Windows Server 2003 R2 Enterprise Edition, we get

"Win NT 5.2"
If the operating system is no Windows NT system the function returns the error value
"No OS of Windows NT type"

- GetMsVersionInfo
returns for systems of type Windows NT the Microsoft version info as indicated by the
API, e.g. a Windows XP system produces the result

"5.1"
GetMsVersionInfo Windows Version
5.0 Windows 2000
5.1 Windows XP (Home, Prof)
5.2 XP 64 Bit, 2003, Home Server, 2003 R2
6.0 Vista, 2008
6.1 Windows 7, 2008 R2

see also for 'GetMsVersionMap'
- GetSystemType

checks for a Windows NT System if it can be assumed that the system is 64 Bit. In
this case the value is "64 Bit System" otherwise "x86 System".

6.3.6 String Functions for Retrieving Environment or Command Line

Data

- EnvVar (<String expression>)
The function reads and returns the momentary value of a system environment
variable.

The wilnst manual -35-

E.g., we can retrieve which user is logged in by Envvar ("Username").

ParamStr

The function passes the the parameter string of the wInst command line i.e. the
command line parameter which is indicated by /parameter. If there is no such
parameter ParamStr returns the empty string.

GetLastExitCode
returns the exit code (also called ErroLevel) of the last Winbatch call.

GetUserSID (K<Windows Username>)
returns the SID for a given user (possibly with domain prefix in the form
DOMAIN\USER).

.7 Reading Values from the Windows Registry and Transforming

Values into Registry Format

GetRegistryStringValue (<String expression>)
tries to interpret the passed String value as an expression of format

[KEY] X

Then, the function tries to open the registry key KEY , and, in case it succeeds, to
read and return the String value that belongs to the registry variable name X .
E.g.

GetRegistryStringValue (" [HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] Shell")

usually yields "Explorer.exe", the default Windows shell program.

If there is no registry key KEY or the variable X does not exist the function produces
a warning message in the log file and returns the empty string.

GetRegistryStringValue64 (STRINGWERT)
reads on a 64 bit system from the regitries 64 bit branch At a 32 bit system it reads
from the 32 bit registry. (See Chapter 64 Bit Support)

The function

The wilnst manual - 36 -

- RegString (<String expression>)
is useful for transforming path names into the format which is used in the Windows
registry. That is, any backslash is duplicated.

E. g,

RegString ("c:\windows\system\")
yields

"c:\\windows\\system\\"

6.3.8 Reading Property Values

For historical reasons, there are three functions for reading values from configuration files
which have ini file format . Since opsi 3.0 the specific product properties are retrieved from
the opsi configuration demon (that may fetch it from a configuration file or from any other
backend data container).

In detail:

Ini file format means that the file is a text file and is composed of "sections" each
containing key value pairs:

[sectionl]

Varnamel=Valuel

Varname2=Value2

[section2]
The most general function reads the value belonging to some key in some section of
some ini file. Any parameter can be given as an arbitrary String expression:

- GetValueFromInifile (FILE, SECTION, KEY, DEFAULTVALUE)

The function tries to open the ini file FILE, retrieve the requested SECTION and find
the value belonging to the specified KEY which the function will return. If any of these
operations fail DEFAULTVALUE is returned.

The second function borrows its syntax from the ini file format itself, and may sometimes
be easier to use. But since this syntax turns complicated in more general circumstances it
is deprecated. The syntax reads:

- GetIni (<String expression> [<character sequence>] <character sequence>)

The <String expression> is interpreted as file name, the first <character
sequence> as section name, the second as key name. l.e.,

GetIni ("MYINIFILE" [mysection] mykey)

The wilnst manual - 37 -

returns the same value as

GetValueFromInifile ("MYINIFILE", "mysection", "mykey", "")
E.g.

GetIni ("%Systemroot%\win.ini" [Interbase] RootDirectory)

yields the entry of section [Interbase] of the Windows main inifile.

The third function returns a PC specific property of the product which is just being installed

(wInst running in pcprofile mode). Its syntax reads
- GetProductProperty ($PropertyName$, $DefaultValue$)
where $PropertyName$ and $DefaultValue$ are String expressions.

If wInst is connected to the opsi configuration service (since opsi 3.0) the product

property is retrieved from the service (no matter if it is permanently saved in an ini file,

via LDAP or via a SQL backend).
The product properties can be used to configure variants of an installation.

E.g. the opsi UltraVNC network viewer installation may be configured using the
options

vi ewer = <yes> | <no>
policy = <factory default> |

The installation script branches according to the chosen values for these options
which can be retrieved by

Get Product Property("viewer", "yes")
resp.

Get Product Property("policy", "factory default")

The deprecated variant of this function is
- IniVar ($PropertyName$)
(without a default value).

In "opsi classic" — with default configuration paths and if the product just being
installed is named PRODUCT - short for

GetValueFromIniFile ("p:\pcpatch\%PCNAME%.ini", "PRODUCT-install",

The winst manual - 38 -

6.3.

$PropertyName$, "")

9 Retrieving Data from etc/hosts

GetHostsName (<String expression>)

returns the host name to a given IP address as it is declared in the local hosts file. If
the operating system is "Windows_NT" (according to environment variable OS)
"$systemroot%\system32\drivers\etc\" is assumed as host file location
otherwise "C:\Windows\".

Inversely, backed by the same files,

GetHostsAddr (<String expression>)
tells the IP address to a given host or alias name.

.3.10 Shﬁng processing

ExtractFilePath (<String expression>)
interprets the passed String value as file or path name and returns the path part (the
string up to the last "\", including it).

StringSplit (Stringl, String2, index)

is deprecated. The expression is equivalent to
takeString(I NDEX, splitString (Stringl, String2)

(cf. the section String list processing, section 6.4).

The result is produced by slicing Stringl where each slice is delimited by an
occurrence of String2, and then taking the slice with index index (where
counting starts with 0).

E.g.,

takeString (3, splitString ("\\server\share\directory", "\"))
produces the String value

"share"
For, numbering the parts of the string sliced by "\" we get

index 0: "™ (empty string before the first occurrence of "\"
index 1: " (empty string between the first and second "\")

The winst manual -39 -

index 2: "server"
index 3: "share"

takestring counts downward, if the index is negative, starting with the number of
elements. Therefore,

takestring(-1, listl)
denotes the last element of String list 1ist1.

- SubstringBefore (stringValuel, stringValue2)
yields the sequence of characters of stringValue1 up to the beginning of
stringValue2 ,

E. g.

SubstringBefore ("C:.\programe\staroffice\program soffice.exe",
"\ program sof fi ce. exe")

returns

"C:\programme\staroffice"

- Trim(stringValue)
cuts leading and trailing white space from stringValue.

- HexStrToDecStr (stringValue)
returns the decimal representation of the input string if this was the hexadecimal
representation of an integer. Leading chars like '0x' or '$' will be ignored.

- DecStrToHexStr (stringValue)
returns the hexadecimal representation of the input string if this was the decimal
representation of an integer

6.3.11 Additional String Functions

- RandomStr
returns a random String of length 10 where upper case letters, lower case letters and
digits are mixed (for creating passwords).

The winst manual -40 -

6.3.12 (String-) Functions for Licence Management

- DemandLicenseKey (poolId [, productId [,windowsSoftwareId]])
asks the opsi service via the function getAndAssignSoftwareLicenseKey for a
reservation of a licence for the client.

The pool from which the licences is taken may be explicitly given by its ID or is
identified via an associated product ID or Windows Software Id (possible, if these
associations are defined in the licences configuration).

poolld, productId, windowsSoftwareld are Strings (resp. String
expressions).

If no 1icensePoollId is explicitly given the first parameter has to be an empty String
"". The same procedure is done with other not explicit given Ids.

The function returns the licence key that is taken from the pool.

Examples:
set $nykey$ = DemandLi censeKey ("pool _office2007")
set $nykey$ = DemandLi censeKey ("", "office2007")
set $nykey$ = DemandLicenseKey ("", "", "{3248F0A8-6813-11D6-A77B}")

- Freelicense (poolId [, productld [,windowsSoftwareId]])
asks the opsi service via the function freeSoftwareLicenseKey to release the
current licence reservation.

The syntax is analogous to the syntax for DemandLicenseKey:
Example:

DefVar $opsiresult$
set $opsiresult$ = FreelLicenseKey ("pool office2007")

$Sopsiresult$ becomes the empty String, if no error occurred, and, if an error
occurred, the error info text.

6.3.13 Retrieving Error Infos from Service Calls
The String function

getLastServiceErrorClass

The winst manual -41 -

returns, as its name says, the class name of the error information of the last service call. If
the last service call did not produce an error the function returns the value "None".

Similarly the function
getLastServiceErrorMessage

returns the message String of the last error information resp. "None". Since the message
String is more likely to be changed, it is recommended to base script logic on the class
name.

Example:
i f getlLastServiceErrorC ass = "None"
comrent "kein Fehler aufgetreten"
endi f

6.4 String List Functions and String List Processing

A String list (or a String list value) is a sequence of String values. For this kind of values
we have the variable of type String list. They are defined by the statement

- DefsStringlList <VarName>
A String list value may be assigned to String list variable:
- Set <VarName> = <StringListValue>

String list values can be given only as results of String expressions. There are many ways
to create or capture String lists, and many options for processing them, often yielding new
String lists. They are presented in the following subsections.

For the following examples we declare a String list variable:
Def StringList $listl$

If we refer to variables named like String0, StringVal, .. itis meantthatthese
represent any String expressions.

We start with a special and rather useful kind of String lists: maps — also called hashes or
associative arrays — which consist of a lines of the form KEY=VALUE. In fact, each map
should establish a function which associates a VALUE to a KEY, and any KEY should
occur at most once as the first part of a line (whereas different KEYs may be associated
with identical VALUE parts).

The winst manual -42 -

6.4.1 Info Maps
- getMSVersionMap
get OS informations and wrties them to hash map string list

There are the folowinging keys:

— mj or_version

— mnor_version

— build_nunber

- platformid

— c¢sd_version

— service_pack_nmjor
— service_pack_m nor
- suite_nmask

— product_type nr

- 2003r2

- The Results from suite mask and product type nr are integers that can be
build by 'or' operations of the following values.

- product_type_nr

- 0x0000001 (VER_NT_WORKSTATION)
- 0x0000002 (VER_NT_DOMAIN_CONTROLLER)
- 0x0000003 (VER_NT_SERVER)

- SuiteMask

- 0x00000001 (VER_SUITE_SMALLBUSINESS)

- 0x00000002 (VER_SUITE_ENTERPRISE)

- 0x00000004 (VER_SUITE_BACKOFFICE)

- 0x00000008 (VER_SUITE_COMMUNICATIONS)
- 0x00000010 (VER_SUITE_TERMINAL)

- 0x00000020 (VER_SUITE_SMALLBUSINESS_RESTRICTED)
- 0x00000040 (VER_SUITE_EMBEDDEDNT)

- 0x00000080 (VER_SUITE_DATACENTER)

- 0x00000100 (VER_SUITE_SINGLEUSERTS)

- 0x00000200 (VER_SUITE_PERSONAL)

- 0x00000400 (VER_SUITE_SERVERAPPLIANCE)

- Example

— DefStringList $INST Resultlist$
- Def StringLi st $INST_Resul tlist2$

— message "get MsVer si onMap"

- conment "get value by w nst function"
— set $INST_Resultlist$ = get MSVersi onivap

The wilnst manual -43 -

- set $ConpVal ue$ = get Val ue(" product _type _nr", $INST Resultlist$)

- conment "get value by alternate way"

- set $I NST_Resul tlist2$ = get Qut StreanfronSecti on(' Dosl nAnl con_get _wm _producttype')
— set $ConstTest$ = TrimtakeString(2, $I NST Resultlist2%$))

- comment "conpare val ues"

— if ($ConstTest$ = $ConpVal ue$)

- coment "passed"

- endi f

- [Dosl nAnl con_get _wmi _productt ype]
- @cho of f
- wr ¢ 0os get producttype

— Background infos for getMSVersionMap

— * http://msdn.microsoft.com/en-us/library/ms724385%28VS.85%29.aspx
— * http://msdn.microsoft.com/en-us/library/dd419805.aspx

— ¥ http://msdn.microsoft.com/en-us/library/ms724833%28VS.85%29.aspx

- getFileInfoMap (FILENAME)

retrieves the version infos built into the file FILENAME and writes it to a Stringlist
map.

At this moment, there exist the keys,

Coment s
ConpanyNane

Fi | eDescription
Fi | eVersion

I nt er nal Nane
Legal Copyri ght
Legal Tr ademar ks
Ori gi nal Fi |l enane
PrivateBuild

Pr oduct Name

Pr oduct Ver si on
Speci al Bui I d

Usage: If we define and call

Def StringList Filelnfo

Def Var $lnterestingFile$

Set $InterestingFile$ = "c:\programfiles\my program exe"
set Filelnfo = getFilelnfoMap($lnterestingFile$)

we get the value associated with key "FileVersion" from the call

Def Var $result$
set $result$ = getValue("FileVersion", FileInfo)

(for the function getvalue cf. section 6.4.4).

The winst manual -44 -

file:///C:/program

- getLocaleInfoMap
retrieves the system informations on the locale and writes it to a Stringlist map.

At this moment, there exist the keys

| anguage_id 2chars (two-letter version of the systemdefault |anguage nane)
| anguage_id (three-letter version of it, including subtype of |anguage)
| ocal i zed_nane_of | anguage

Engl i sh_nane_of | anguage

abbrevi at ed_I| anguage_nane

nati ve_nanme_of | anguage

country_code

| ocal i zed_nane_of country

Engl i sh_nanme_of country

abbrevi ated_country_nane

nati ve_name_of country

default | anguage_id

default _country_code

defaul t _oem code_page

default _ansi _code_page

defaul t _nmac_code_page

Usage: If we define and call

Def Stri ngLi st | anguagel nfo
set | anguagel nfo = getLocal el nf oMap

we get the value associated with key "language id 2chars" from the call

DefVar $result$
set $result$ = getValue("language i d 2chars", languageInfo)

(for the function getVvalue cf. section 6.4.4). We may now write scripts using a construct
like

i f getValue("language_id_2chars", languageInfo) = "DE"
install German version
el se
i f getValue("language_id_2chars", languageInfo) = "EN'
install English version
endi f
endi f

The function GetLocaleInfoMap is meant to replace the older GetLocaleInfo is
where the delivered values were difficult to interpret:

- GetLocalelInfo (DEPRECATED)

retrieves the (supposedly) most interesting data from the locale data, namely (at this
moment)

- the two-letter version of the system default language name

The wilnst manual -45 -

- the three-letter version of it (including subtypes of language)
- the English language name
- the English country name

- the language code (hexadecimal value as String)

Usage: If we define and call

Def Stri ngLi st $l anguagel nf 0$
set $l anguagel nf 0o$ = get Local el nfo

we have a 5 elements String list. In the log file, with the appropriate log level, we get

retrieving strings from getLocal el nfo:
(string 0) DE
(string 1) DEU
(string 2) Ger man
(string 3) Ger many
(string 4) 0407

We may now construct scripts for conditional statements (cf. section 6.7) like

if takeString(0, $languagelnfo$) = "DE"
install German version
el se
if takeString(0, $languagelnfo$) = "EN'
install English version
endi f
endi f

6.4.2 Producing String Lists from Strings

- createStringList (String0, Stringl ,...)

forms a String list from the values of the listed String expressions. For example, by

set listl = createStringList (‘a','b'", 'c', '"d)
we get a list of the first four letters of the alphabet.
The following two functions produce a String list by splitting some string:

- splitString (Stringl, String2)

generates the list of partial strings of Stringl (including empty strings) before resp.

between the occurences of String2. E.g,,

set listl = splitString ("\\server\share\directory", "\")

defines the list

The wilnst manual -46 -

6.4.

nnomwno o wgerver", "share", "directory"
splitStringOnWhiteSpace (StringVal)
slices StringVval by the "white spots" init. E. g.

set listl = splitString ("Status Lokal Renot e Net zwer k™)
produces the list

"Status", "Lokal", "Remote", "Netzwerk"

no matter how many blanks or tabs constitute the white space between the words.

.4.3 Loading Lines of a Text File into a String List

loadTextFile (filename)

reads the file £ilename and generates the String list that contains all lines of the file.
If the file has unicode format the function

loadUnicodeTextFile (filename)

should be used. By this call, the strings are converted into the system default 8 bit
code.

getSectionNames (filename)
interprets the specified file as an inifile, looks for list of all lines of form
[<SectionName>]

and returns the pure section names (without brackets).

4 Simple String Values generated from String Lists

The elements of any String list can be glued to one another, mediated by a "glue string",
by the function

composeString (stringList, linkString)
E.g.if 1istl represents thelist 'a', 'b', 'c', 'd', 'e' by
set line = conposeString (listl, " | ™)

we assign the value "a|b|c|d|e"to line.

The wilnst manual -47 -

A String value can be retrieved from a list by

takeString (index, listl)

E. g., if 1ist1 represents the list of the first five letters of the alphabet by
takeString (2, listl)

we get string "c" (since linst counting starts with 0).

Negative values of index go downwards from the list count value. E.g.,
takeString (-1, listl)

return the last list element, that is "e".

takeFirstStringContaining (<list>,<search string>)
returns the first string of the list which contains the <search string>.
Returns an empty string if no matching string was found.

The following function tries to interpret a String list 1ist1 as list of lines of the form

key=val ue
getValue (key, listl)

looks for the first line, where the String key is followed by the equality sign, and
returns the remainder of the line (the String that starts after the equality sign). If there
is no fitting line, it returns the String 'NULL".

The function is required for using the getLocaleInfoMap and getFileVersionMap
String list functions (cf. Section 6.4.1 and 6.4.2).

The pseudo-Integer function

count (listl)

returns the number of elements of the String list 1ist1 as String, that is, e.g. for list1
composed as

count (listl) has value "5"

The winst manual -48 -

6.4.5 Producing String Lists from wInst Sections

- retrieveSection (sectionName)
gives the lines of the specified section as String list.

- getOutStreamFromSection (sectionName)
invokes the section and — at this moment implemented only for DosInAnicon
(ShellinAnlcon) and ExecPython calls — captures the output to standard out and
standard error of the invoked commands writing them into a String list. For example:

We declare

[DosInAnIcon_netuse]
net use

Then the result of

getOutStreamFromSection ('DosInAnIcon netuse')
contains among some surrounding stuff the list of all mounted shares of a PC.
For restrictions produced by the conditions of the capturing cf. section 7.10.1.

- getReturnlistFromSection (sectionName)
For some section types - at this moment implemented only for XMLPatch sections and
opsiServiceCall sections - there is a specific return statement which yields some
result of the execution of the section (assumed to be of String list type). E.g. we may
use the statement

set listl = getReturnListFronSection (' XM_Patch_mne "c:\m metypes.rdf"")

to get a specific knot list of the XML file mimetypes.rdf (where XMLPatch mime is
defined as in section 7.7 in this manual).

Or the list of opsi clients is produced by the reference to the following opsi service call
(cf. Section 7.13)

Def StringList $result$
Set $resul t $=get Ret ur nLi st FronmBecti on(" opsi servi cecal | _clientldsList")

where

[opsiservicecal |l _clientldsList]
"method":"getClientlds_|ist"
"parans":[]

The winst manual -49 -

6.4.6 Transforming String Lists
A partial list of a given list is produced by the function:
- getSublist (startIndex, endIndex, list)

E.g., if List represents the list of letters 'a', 'b', 'c', 'd', 'e', bythe
statement:

set listl = getSubList(l : 3, list)

we get the partial list 'b', 'c', 'd'.Beginindex as well as end index have to be
interpreted as the index of the first and last included list elements. The counting starts
with O.

Default start index is 0, default end index is the index of the last element of the list.
Therefore, (for the above defined 1istl) the command

set listl = getSubList(l : , list)
yields the list 'b', 'c', 'd', 'e'.

set listl = getSubList(:, list)

produces a copy of the original list. It is possible to count backwards in order to
determine the last index:

set listl = getSubList(l : -1, list)

defines the list of elements starting with the first and ending with the second to last
element of the list — in the above example we again get list 'b', 'c', 'd’.

- getListContaining(<list>,<search string>)

returns a sub list with all strings that contain the pattern <search string>.
- reverse (list)

produces the inverted list, if 1istlis 'a', 'b', 'c', 'd', 'e', by

set listl = reverse (list)

we getthe list 'e', 'd', 'c¢', 'b', 'a'.
6.4.7 Iterating through String Lists
An important application of String lists is based on the device that the script runs through

all elements of a list executing some operation on each.

The winst manual -50 -

The syntax to define this repetition is:
- for %s% in list do statement

This expression locally defines a String variable $s% that takes one by one the values of
the 1ist elements.

statement can be any single statement that can exist in a primary section type. In
particular (and most interestingly) it may be a subsection call. The locally defined iteration
index %s% exists in the whole context of statement, in particular in the subsection if
statement is a subsection call.

The replacement mechanism for %$s% always works like that for constants: The name of
the variable is replaced by the element values. If we iterate through alist 'a', 'b', 'c'
and the iteration index is named %s%, we get for $s% onebyone a, b, c — not the
String values . TO reproduce the original list elements we have to enclose $s% in citation
marks.

Example: Let 1istl bethelist 'a', 'b', 'c', 'd', 'e',andline a String
variable. The statement

for %% in listl do set line =1line + "'%%

iterates through the list elements internally executing

set line =1line + 'a'
set line =1line +'b'
set line =1line + 'c'
set line =1line + 'd'
set line =1line + "¢

Such, finally 1ine has value 'abcde' . If we omitted the citation marks around $s% we
would get a syntax error for each iteration step.

Please note: The note variable is only valid in the directly called procedure. If it is needed
in sub programs of it its value must be transferred to a global variable.

For further examples cf. the cook book chapter, e.g. section 8.2,

6.5 Special Commands
- Killtask <String expression>
tries to stop all processes that execute the program named by the String expression.

E.g.

The winst manual -51 -

killtask "w nword. exe"

6.6 Commands for User Information and User

Interaction
- Message <String expression>
or

- Message = <sequence of characters>

lets wInst display the value of the String expression resp. the sequence of chars in
the batch window in the top information line. The text is kept as long as no new
message is set.

Example:

Message "lInstalling Mzilla Firefox"
On the other hand, the command
- ShowMessageFile <String expression>

interprets the String expression as text file name, tries to read the text und show it in
a user information window. Execution stops until the user confirms reading. E.g. by a
command like

ShowMessageFil e "p:\ I ogi n\ day. nsg"”
one can realize a "Message of the Day" mechanism.
The statement
- ShowBitMap [<image name>] [<inscription>]

places the image denoted by the image name (in BMP or PNG format, size 160x160
pixel) at the position denoted by the location index and subtitled by the

inscription .
<image name> and <inscription> are String expressions.
E.g. we may call
ShowBi t map "%scri ptpath% " + $Product Nane$ + ".bnp" "$Product Nane$"

for producing a product specific image.

The winst manual -52 -

If the name parameter is missing the image at the referred position is
cleared.

- comment <String expression>
or
- comment = <sequence of characters>

writes the value of the String expression resp. the sequence of characters into the log
file.

Additional error messages or warnings can be written to the log file by the statements
- LogError <String expression>

or
- LogError = <sequence of characters>

resp.
- LogWarning <String expression>

or

- LogWarning = <sequence of characters>

The following statements are mainly intended for debugging purposes:
- Pause <String expression>

or
- Pause = <sequence of characters>

display the text given as a String expression or as a sequence of chars in a
information window waiting until the user confirms the continuation.

On the contrary, the statements
- Stop <String expression>
resp.
- Stop = <sequence of characters>

halt program execution if the user confirms it. The String expression resp. the

The wilnst manual -53 -

(possibly empty) sequence of chars explain to the user what is supposed to be
stopped.

- sleepSeconds <Integer>

breaks the program execution for <Integer> seconds
- markTime

sets a time stamp for the current system time and logs it.
- diffTime

logs the time passed since the last marked time.

6.7 Conditional Statements (if Statements)

In primary sections, the execution of a statement or a sequence of statements can be
made dependent on some condition.

6.7.1 Example

Recall the example where the script branches dependent on the OS running:

Def Var $0S$
Set $0S$ = Get OGS
Def Var $NTVer si on$

if $0S$ = "W ndows_NT"
Set $NTVersi on$ = Get NTVer si on

if ($NTVersion$ = "NT4") or ($NTVersion$ = "Wn2k")
sub_i nstal | _wi nnt
el se
if ($NTVersion$ = "WnXP")
sub_instal | _wi nXP
el se
stop "OS version not supported"
endi f
endi f

endi f

6.7.2 General Syntax

The syntax of the complete i£ statement reads

The wilnst manual -54 -

if <condition>

<sequence of statements>
else

<sequence of statements>
endif

The else part may be omitted.

if statements may be nested . That is, in the sequence of statements that depend on an
if clause (no matter if inside the if or the else part) another if statement may occur.

<condition> is a <Boolean expression>. A Boolean (or logical) expression can be
constructed as a (String) value comparison, by Boolean operators, or by certain function
calls which evaluate to true or false. Up to now these Boolean values cannot be explicitly
represented in a wInst script).

6.7.3 Boolean Expressions
The String comparison (which is a Boolean expression) has the form
<String expression> <comparison sign> <String expression>
where <comparison sign> is one of the signs
< <= = >= >
String comparisons in wInst are case independent.
Inequality must be expressed by a NOT () expression which is presented below.

There is as well a comparison expression for comparing Strings as (integer) numbers . If
any of them cannot be converted to a number an error will be indicated.

This number comparison expression has the same form as the String comparison but for
an INT prefix of the comparison sign:

<String expression> INT<comparison sign> <String expression>

Such, we can build expressions as

if $Nanel$ | NT<= $Nanme2$

or

i f $Nunber 1$ | NT>= $Nunber 2$

For additional examples and some special comparison functions cf. section 6.3.12.

The wilnst manual -55 -

Boolean operators are AND, OR, and NOT () (case does not matter). If b1, b2 and b3 are
Boolean expressions the combined expressions

bl AND b2
bl OR b2
NOT (b3)

are Boolean expressions as well denoting respectively the conjunction (AND), the
disjunction (OR) and the negation (NOT).

A Boolean expression can be enclosed in parentheses (such producing a new Boolean
expression with the same value).

The common rules of Boolean operator priority ("and" before "or") are at this moment no:
implemented. An expression with more than one operator is interpreted from left to right.
For clarity, in a Boolean expression that combines AND and OR operators parentheses
should be employed , €.9. We should explicitly write

bl OR (b2 AND b3)
or

(bl OR b2) AND b3

The second example describes what would be executed if there were no parentheses -
whereas the common interpretation would run as the other line indicates.

Boolean operators can be conceived as special Boolean valued functions (the negation
operator demonstrates this very clearly).

There are some more Boolean functions implemented. Every call of such a function
constitutes a Boolean expression as well:

- FileExists (<String expression>)
returns true if the denoted file or directory exists otherwise false.

- LineExistsIn (line, filename)
returns wrue if the text file denoted by £ilename contains a line as specified in the
first parameter where each parameter is a String expression. Otherwise (or if the file
does not exist) it returns false.

- LineBeginning ExistsIn (stringval, filename)
returns wrue if there is line that begins with stringval in the text file denoted by
filename (each parameter being a String expression). Otherwise (or if the file does
not exist) it returns false.

The wilnst manual -56 -

- XMLAddNamespace (XMLfilename, XMLelementname, XMLnamespace)
inserts a XML namespace definition into the first XML element with the given name (if
not existing). It gives back if an insertion took place. (The winst XML patch section
need the definitions of namespace.)
The file must be formatted that an element tag has no line breaks in it

For an example, cf. cookbook section 8.6.

- XMLRemoveNamespace (XMLfilename, XMLelementname, XMLnamespace)
removes the XML namespace definition from the XML element. It gives back if an
removal took place. We need this to simulate that an original file is unchanged. For an
example, cf. cookbook section 8.6.

- HasMinimumSpace (drivename, capacity)
returns wrue if at least a capacity capacity is left on drive drivename. capacity
as well as drivename syntactically are String expressions. The capacity may be
given as a number without unit specification (then interpreted as bytes) or with unit
specifications "kB", "MB", or "GB" (case independent).

Example of use:

i f not (HasM ni munfSpace (" %SYSTEMDRI VE%, "500 MB"))
LogError "Not enough Space on drive ¥SYSTEMDRI VE% required 500 MB'
i sFatal Error

endi f

Helpful for the implementation of the delivery of license keys is the function
- opsilicenseManagementEnabled

It may be used to branch a script depending on the source of a licence key:

i f opsiLicenseManagementEnabled

set $nykey$ = DenmandLi censeKey ("pool _office2007")
el se

set $nykey$ = Get Product Property("productkey","")

6.8 Subprogram Calls

Statements in primary sections which refer to instructions declared elsewhere are
subprogram calls.,

E.g., the statement

The wilnst manual - 57 -

sub_instal | _wi nXP

"calls" the section titled [sub_install_winXP] which is placed somewhere else in the script.
E.g. we may have

[sub_install_w nXP]
Fil es_copy_ XP
W nBat ch_Set upXP
Generally, there are three ways to place the referred instructions:

(1) The most common target of a sub program call is some other internal section inthe
very script file where the calling statement is placed (as in the example).

(2) We may put the referred instructions into another file Which serves as an external

section.
(3) Any String Iist can be used as list of instructions for a sub program call.

We describe the syntax of sub program calls in detail:

6.8.1 Syntax of Procedure Calling

Formally, the syntax can be given by

<proc. type>(<proc. name> | <External proc. file> | <String list function>)

This expression may supplemented by one ore ore parameters (procedure type
dependent).

That means: A procedure call consists of three main parts.
- The first partis the subprogram type specifier .

Examples of type names are Sub (we call a procedure of type sub that is a again a
primary section) or Files and WinBatch (calls of special secondary sections).
The complete overview of the existing sub program types is given in chapter 6.

- Thesecond part determines where and how the lines of sub program are to be found.

Case (1): The subprogram is a sequence of lines situated in the executed wInst
script as another internal section. Then a name (constituted from letters, digits, and
some special characters) has to be appended to the type specifier (without space) in
order to form an unique section name.

sub_install_w nXP
or

files_copy_w nXP

The winst manual - 58 -

Section names are case independent as any other string.

Case (2): If the type specifier stands alone a String list expression or a String
expression is expected. If the expression following the type specifier cannot be
resolved as a String list expression (cf. case (3)) it is assumed to be a String
expression. The string is then interpreted as a file name. wInst tries to open the file
as a text file and interprets its lines as an external section of the specified type.

E.g.
sub "p:\install\opsiutils\mainroutine.ins"
tries to execute the lines of mainroutine.ins as statements of a sub section.

Case (3): If the expression following a pure section type specifier is resolvable as a
String list expression the lines of the list are interpreted as the statements of the
section.

This mechanism can e.g. be used to load a file that has unicode format and then treat
it by the usual mechanisms

regi stry loadUnicodeTextFile ("%scri pt pat h% opsi orgkey.reg") /regedit
Syntactically, this line is composed of three main parts:

registry, the core statement specifying the section type,
loadUnicodeTextFile (...), a String list expression specifying how to get the
lines of a registry section resp. its surrogate.

/regedit, parametrizing the registry call.

In this example, the call parameter already gives an example for the third part of a
subsection call:

The ¢hird part of a procedure call comprises type specific call options.

For a reference of the call options cf. the descriptions of the section calls in chapter 7.

6.9 Controlling Reboot

The statement ExitWindows offers to apply the whole diversity of the underlying
system command in a wInst script.

On principle, ExitWindows triggers a reboot (resp. an automatic log out or shutdown)
after the end of script execution. In the interactive mode the user is asked if she or he
agrees with rebooting (at once). If wInst works in pcprofil mode then the specific

The winst manual -59 -

ExitWindows request is written to the registry. In an opsi environment, with installed
preloginloader, the wInst process is a subprocess of the execution of pcptch.exe.
When wInst execution is finished, pcptch.exe reads the registry entry and calls the
system function ExitWindows. This call does not succeed in Windows XP, therefore the
opsi service process checks the registry again, and enforces the call to ExitWindows. In
batch mode, wInst calls the system ExitWindows command itself.

There are variants of the ExitWindows command which trigger a reboot, a logout or a
shutdown.

There are two types of a reboot request plus a deprecated one. We list them in the order
of increasing urgency of the request:

- ExitWindows /RebootWanted
DEPRECATED: a reboot request is registered which should be executed when all
installations requests are treated, and the last script has finished.

In fact, this command is now treated as an ExitWindows /Reboot (since
otherwise an installation could fail because a required product is not yet completely
installed).

- ExitWindows /Reboot
triggers the reboot after wInst has finished the currently treated script.

- ExitWindows /ImmediateReboot
breaks the normal execution of a script anywhere inside it. When this command is
called wInst runs as directly as possible to its end entailing the system
ExitWindows call. In the context of an installed preloginloader it is guaranteed that
after rebooting wInst runs again into the script that was aborted. Therefore, the
script has to take provisions that the execution continues after the point where it was
left the turn before (Otherwise we may get an infinite loop ...) Cf. the example in this
section.

Logging out instead of rebooting is started — analogously to an "ImmediateReboot" -
by the command

- ExitWindows /ImmediateLogout
The normal execution of a script breaks at the point of the call, entailing a system log
out call.

This behaviour is needed if an automated user log in for some other user shall take
place (cf. cookbook, section 8.3).

Finally, we may demand a shut down at the end of all script executions. For this purpose
there is the /ShutdownWanted parameter:

The wilnst manual - 60 -

- ExitWindows /ShutdownWanted
sets a flag in the registry that the PC shuts down when all installations requests are
treated, and the last script has finished.

How flags may be set to ensure that the script does not run into an infinite loop when
ExitWindows /ImmediateReboot is called we demonstrate by the following code
fragment:

Def Var $0S$

Def Var $Fl ag$

Def Var $W nst RegKey$
Def Var $Reboot RegVar $

set $0S$=EnvVar (" 0S")
i f OS="W ndows_ NT"

Set $W nst Regkey$ = "HKLM SOFTWARE\ opsi . or g\ wi nst "
Set $Fl ag$ = Get Regi stryStringVal ue("["+$W nst RegKey$+"] " +"Reboot Fl ag")

if not ($Flag$ = "1")

St at enent s BEFORE Reboot
Fi | es_doSonet hi ng
; initialize reboot
Set $Fl ag$ = "1"

Regi st ry_SaveReboot Fl ag
Exi t Wndows /| mredi at eReboot

St at ement s AFTER Reboot
; set back reboot flag
Set $Fl ag$ = "0O"
Regi st ry_SaveReboot Fl ag
the work part after reboot:
Fil es_doMore
endi f
endi f
[Regi stry_SaveReboot Fl ag]
openKey [$W nst RegKey$]
set "Reboot Fl ag" = "$Fl ag$"

[Fi | es_doSomet hi ng]
a section executed before reboot

[Fil es_doMore]

The winst manual -61 -

; a section executed after reboot

6.10 Keeping Track of Failed Installations

If a product installation fails since errors occur, or if some circumstances prevent the
installation script from being successfully executed the script execution should not, as
usually in an opsi environment, lead to the product state installed butthe product
state failed.

To indicate in a wInst script that regarding he circumstances the current installation is not
successful there is the statement

- isFatalError

If this statement is called wInst stops the normal execution of the script and sets the
product state to failed.

E. g., a "fatal error" shall be triggered if there is as much space left as it is needed for an
installation:

Def Var $SpaceNeeded"
Set $SpaceNeeded" = "200 MB"

Def Var $LogErr or Message$
Set $LogError Message$ = "Not enough space on drive . Required "
Set $LogError Message$ = $LogError Message$ + $SpaceNeeded”

i f not (HasM ni nunBpace (" %SYSTEMDRI VEY% , $SpaceNeeded$))
LogError $LogError Message$
i sFatal Error
finish execution and set ProductState to failed
el se
we start the installation

endi f

It is also possible to state isFatalError depending on the number of errors which
occured in some critical part of an installation script. In order to do this we initialize the
error counting by the command

— markErrorNumber

The number of execution errors which occur after setting the counter can be queried by
the the number valued function

The winst manual -62 -

- errorsOccuredSinceMark
We can evaluate the result in @ numerical comparison condition (that as yet is only
implemented for this expression). E. g. we may state

if errorsQCccuredSi nceMark > 0

and may, if this seems to make sense, then state
isFatalError
For increasing the number of counted errors depending on certain circumstances (that do
not directly produce an error) we may use the logError statement.
We may test this device by the following script example:

mar KEr r or Nunber
; Erors occuring after this mark are counted and
; Will possibly be regarded as fata

| ogError "test error”

; we wite "test error” into the log file
; and increase the nunber of errors by 1
; for testing, comrent out this line

if errorsQccuredSinceMark > 0
; we finish script execution as quick as possible
; and set the product state to "failed"

i sFat al Error
; but comrent witing is not stopped

comment "error occured"

el se
; no error occured, lets log this:

comment "no error occured"
endi f

The winst manual -63 -

7 Secondary Sections

The secondary or specific sections can be called from any primary section but have a
different syntax. The syntax is derived from the functional requirements and library
conditions and conventions for the specific purposes. Therefore from a secondary
section, no further section can be called.

Secondary sections are specific each for a certain functional area. This refers to the object
of the functionality, e.g. file system in general, the Windows registry, or XML files. But it
refers even more to the apparatus that is internally applied. This may be demonstrated by
the the variants of the batch sections (which call external programs or scripts).

The functional context is mirrored in the specific syntax of the particular section type.

In detail:

7.1 Files Sections

A Files section mainly offers functions which correspond to copy commands of the
underlying operating system. The surplus value when using the wInst commands is the
detailed logging and checking of all operations when necessary. If wanted overwriting of
files can be forbidden if newer versions of a file (e.g. an newer dll-file) are already installed
on the system.

7.1.1 Example

A simple Files section could read:

[Files_do_sone_copyi ng]
copy -sv "p:\install\instnsc\netscape*.*" "C:.\netscape"
copy -sv "p:\install\instnsc\w ndows*.*" " %EYSTEMROOT%

These commands cause that all files of the directory

p:\install\instnsc\netscape are copied to the directory C:\netscape, and then
all files from p:\install\instnsc\windows to the windows system directory (its
value is automatically inserted into the constant name $SYSTEMROOTS) .

Option -s means that all subdirectories are copied as well, -v activates the version
control for library files.

The winst manual - 64 -

file:///C:/r/4uib/delphi32/winst32/winst_release_3-3-alpha/winstdoc.sdw
file:///C:/r/4uib/delphi32/winst32/winst_release_3-3-alpha/winstdoc.sdw
file:///C:/r/4uib/delphi32/winst32/winst_release_3-3-alpha/winstdoc.sdw

7.1.2 Call Parameters
In most cases a Files section will be called without parameters.

There are only some special uses of Files sections where the target of copy actions is
set or changed in a certain specified way. We have got the two optional parameters

/A11NTUserProfiles resp.
/Al1NTUserSendTo
Both variants mean:
- The called Files section is executed once for each local Windows NT user.

- Every copy command in the section is associated with an user specific target
directory.

- In case other we need to build other user specific path names we can use the
automatically set variable $UserProfileDir%.

With option /A11NTUserProfiles the user specific target directory for copy actions is
the user profile directory (that is usually denoted by the user name and is by default
situated as a subdirectory of the userappdata directory. In case of option
/Al1NTUserSendTo the target directory is the path of the user specific SendTo folder
(for links of the windows explorer context menu).

The exact rule for determining the target path for a copy command has three parts:

1. If only the source of a copy action is specified the files are copied directly into the user
target directory. We have syntax

copy sourcepath
It be equivalent as
copy sourcepath "%Jser Profil eDir%"

2. If some targetdir is specified and targetdir is a relative path description (starting
neither with a drive name nor a backslash) then targetdir is regard as the name of a
subdirectory of the user specific directory. |.e.

copy sourcepath targetdir

is interpreted like:

copy sourcepath "%JserProfileDir%targetdir"

3. If targetdir is an absolute path it is used as the static target path of the copy action.

The winst manual - 65 -

7.1.3 Commands

In a Files section the following commands are defined:

Copy

Delete
SourcePath
CheckTargetPath

zip

Copy and Delete roughly correspond the the Windows shell commands xcopy resp.
del.

SourcePath and CheckTargetPath set origin and destination of the forthcoming copy
actions (as if we would open two explorer windows for copy actions between them). If the
target path does not exist it will be created.

zip is used to create an archive.

The syntax definitions are:

Copy [-svdunxwnr] <source (mask)> <target path>

The source files can be denoted explicitly, using the wild card sign (™ ”) or by a
directory name. The target path is always understood as a directory name.
Renaming by copying is not possible. If the target path does not exist it will be created
(if needed a hierarchy of directories).

The optional modifiers of the Copy command mean (the ordering is insignificant):

- S

We recursive into subdirectories.

- (&
If there are empty subdirectories in the source path they will be created in
the target directory as well.

- A%
With version checking:
A newer version of a windows library file is not overwritten by an older one
(according primarily to the internal version counting of the file). If there are
any doubts regarding the priority of the files a warning is added to the log
file.

It is checked if a newer version exists in the target directory as well as in

The wilnst manual - 66 -

the windows and the window system directory.
-V
With version checking, but only with regard to a file the target directory.

- d
With date check:
A newer .exe file is not overwritten by an older one.

- u
We are only updating files:
A file is not copied if there is a newer or equally old file of the same name.

- X
If a file is a zip archive it will be unpacked (Xtracted) on copying.
Caution: Zip archives are not characterized by its name but by an internal
definition. E.g. a java jar file is a zip file. If it is unpacked the application
call will not work.

- w
We respect any write protection of a file such proceeding "weakly" (in
opposite to the default behaviour which is to try to use administrator
privileges and overwrite a write protected file).

- n

Existing files are not overwritten.

- C
If a system file is in use, then it can be overwritten only after a reboot. The
wInst default behaviour is therefore that a file in use will be marked for
overwriting after the next reboot, AND the wInst reboot flag is set.
Setting the copy modifier "-c" turns the automatic reboot off. Instead
normal processing continues, the copying will be completed only when a
reboot is otherwise triggered.

- r
If a copied file has a read-only attribute it is set again (in opposite to the
default behaviour which is to eliminate read-only attributs).

- Delete [-sfd[n]] <path>
- Delete [-sfd[n]] <source (mask)>

deletes files and directories. Possible options are (with arbitrary ordering)

- S
We recurse into subdirectories. Everything that matches the path name
or the source mask is deleted.

The wilnst manual - 67 -

N
forces to delete read only files

- d|[n]
Only files of age n days or older are deleted. n defaults to 1.

- SourcePath = <source directory>
Sets <source directory> as default directory for the following Copy and (!)
Delete commands.

- CheckTargetPath = <Zieldirectory>
Sets <Zieldirectory> as default directory for Copy command . If the specified
path does not exist it will be created.

- zip [-s] <archive directory> <source mask>
The command produces a zip archive file for every file that corresponds to the source
mask and puts it in the archive directory. Option -s lets recurse into the source
subdirectories. (This command was used to produce a special sort of archives when
server space was scarce.)

7.2 Patches- Sections

A Patches section modifies a property file in ini file format. I. e. a file that consists of
sections Which are a sequence of entries constructed as settings <variable> =
<value>. where sections are characterized by headings which are bracketed names like

[sectionname].

(Since a patched .ini file is similarly built from sections like the wInst script we have to
be careful to avoid a denotational mess.)

7.2.1 Example

In times when not everything was written to the registry a file named win.ini played a
central role. It can be edited via a Patches call: In a primary section, we write

Patches_WN. I Nl " %SYSTEMROOT%A W N. | NI

and the called section may be defined e.g. for Acrobat Writer:

[Pat ches W N. | NI']

set [Devices] Acrobat Distiller=w nspool, Ne0O:

set [Devices] Acrobat PDFWIiter=w nspool, LPT1:

set [PrinterPorts] Acrobat Distiller=w nspool, Ne0O:, 15, 45
set [PrinterPorts] Acrobat PDFWIiter=w nspool, LPT1:, 15, 45
set [Wndows] Device=Acrobat PDFWiter, w nspool, LPTL1:

The winst manual - 68 -

7.2.2 Call Parameter

As shown in the example the name of the property file to be patched is specified as
parameter of the sub program call.

7.2.3 Commands

For a Patches section, we have commands
- add

- set

- addnew

- change

- del

- delsec

replace

Each command refers to some section of the file which is to be patched. The name of this
section is specified in brackets (which do here not mean "syntactically optional"!!).

In detail:

- add [<section name>] <variablel> = <valuel>
This command «dds an entry of kind <variablel> = <valuel> to section
<section name> ifthere is yet no entry fOor <variablel> in this section.
Otherwise nothing is written. If the section does not exist it will be created.

- set [<section name>] <variablel> = <valuel>
If there is no entry for <variablel> in section <section name> the setting
<variablel> = <valuel> is added. Otherwise, the first entry <variablel> =
<valueX> is changed to <variablel> = <valuel>.

- addnew [<section name>] <variablel> = <valuel>
No matter if there is an entry for <variablel> in section <section name> the
setting <variablel> = <valuel> is added.

- change [<section name>] <variablel> = <valuel>
Only if there is any entry for <variablel> in
section <section name> itis changed to <variablel> = <valuel>.

- del [<section name>] <variablel> = <valuel>

The winst manual - 69 -

resp.

- del <section name>] <variablel>
removes all entries <variablel> = <valuel> resp. all entries for <variablel>
in section <section name>

- delsec [<Sektionsname>]
removes the section <section name>.

- Replace <variablel>=<valuel> <variable2>=<value2>
means that <variablel> = <valuel> will be replaced by <variable2> =
<value2> in all sections of the ini file. There must be no spaces in the value or
around the equal signs.

7.3 PatchHosts Sections

By virtue of a PatchHosts section we are able to modify a hosts file which is to
understand as any file with lines having format

IPadress hostName aliases # comment

Aliases and comment (and the comment separator #) are optional. A line may also be a
comment line starting with # .

The file which is to be modified can be given as parameter of a PatchHosts call. If
there is no parameter a file named HOSTS is searched in the directories c:\nfs,
c:\windows and $systemroot%\system32\drivers\etc. If no such file is found
the PatchHosts call terminates with an error.

In a PatchHosts section there are defined commands
- setAddr

- setName

- setAlias

- delAlias

- delHost

- setComment

E.g. by

[Pat chHost s_MyHost sPat ch]
setAddr ServerNol 111.111.111.111
setAlias ServerNol myServer

The wilnst manual -70 -

we decide that the name ServerNol is resolved as 111.111.111.111, and that any call
to the alias myServer is directed to the same address.

In detail:

setaddr <hostname> <IPaddress>
sets the IP address for host <hostname> to <IPaddress>. If there is no entry for
host name as yet it will be created.

- setname <IPaddress> <hostname>
sets the host name for the given IP address. If there is no entry for the IP address as
yet it will be created.

- setalias <hostname> <alias>
adds an alias for the host named <hostname>.

- setalias <IPadresse> <alias>
adds an alias name for the host with IP address <IPadress>.

- delalias <hostname> <alias>
removes the alias name <alias> for the host named <hostname> .

- delalias <IPaddress> <alias>
removes the alias name <alias> for the host with IP address <IPadress>.

- delhost <hostname>
removes the complete entry for the host with name <hostname>.

- delhost <IPadresse>
removes the complete entry for the host with IP address <IPadress>.

- setComment <ident> <comment>
writes <comment> after the comment sign for the host with host name, IP address or
alias name <ident>.

7.4 IdapiConfig Sections

A IdapiConfig section writes parameters in idapi*.cfg files which are used by the
Borland Database Engine.

This section type is only available for windows.

The name of the file which is to be treated is given as call parameter, e.g.

| dapi Confi g_resynesa "c:\idapi\idapi.cfg"

The winst manual -71 -

An example for a section may be:

[I dapi Confi g _resymesa]

al i as: resabw

driver: dbase

; par anet er nanme=par amet er wert
TYPE=St andar d
PATH=C: \ ReSyMeSa\ Dat en
DEFAULT DRI VER=dbase
setalias

Generally we have:

- alias:<alias name>
defines an alias name,

- driver:<driver name>
specifies the driver name.

- setalias
finally writes the data to the configuration file.

Depending on the specific driver there can be any number of settings of form

<parameter name>=<parameter wvalue>

7.5 PatchTextFile Sections

A PatchTextFile section offers a variety of options to patch arbitrary configuration files
which are given as common text files (i.e. they can be treated line by line).

An essential tool for working on text files is the check if a specific line is contained in a
given file. For this purpose we have got the Boolean functions Line ExistsIn and
LineBeginning ExistsIn (cf. Section 6.7.3).

7.5.1 Example

E.g., for a Mozilla preference file we may set the start page of the browser by a call to the
following PatchTextFile section:

[PatchTextFile NetscapePref]

GoToTop

FindLine_StartingWith 'user pref ("browser.startup.homepage"'

DeleteTheline
AddLine 'user_pref ("browser.startup.homepage", "http://myhomepage.org") ;'

We can get the same effect more easily since especially for patching the mozilla
preference files there is a special command. Using it the example reduces to

The winst manual -72 -

[PatchTextFile NetscapePref]
Set _Net scape_User Pref ("browser.startup.honepage", "http://myhomepage.org")
7.5.2 Call Parameter

The text file which is to be treated is given as parameter of the PatchTextFile call, e.g.

Pat chText Fil e_prefsjs $nail hone$ + "prefs.js”

7.5.3 Commands

We have got two commands especially for patching Mozilla preferences files plus the two
deprecated and more restricted older versions of these commands:

- Set_Mozilla Pref ("<preference type>", "<preference variable>",
"<preference value>")
sets for <xpreference type> the value associated with "<preference
variable>" {0 "<preference value>".

In current Mozilla preference files there are expressions like

user _pref("<key>", "<val ue>")
pref ("<key>", "<val ue>")
| ock_pref("<key>", "<val ue>")

Each of them, in fact, any (javascript) function call of the form
functionname (Stringl, String2)

can be patched with this command by setting the appropriate string for <preference
type> (thatis, resp. for functionname),

If an entry starting with "functionname (Stringl" exists in the treated file, it will
be patched (and left at its place). Otherwise a new line will be appended.

Unusually in wInst, all strings are not case independent.

The more restricted, older version of this command is:

- Set_Netscape User_ Pref ("<preference variable>", "<value>")
sets the line of the given user preference file for the variable <preference
variable> to value <value>. The ASCII ordering of the file will be rebuilt.
(Deprecated!)

- AddStringListElement To Mozilla Pref ("<preference type>",
"<preference variable>", "<add wvalue>")
appends an element to a list entry in the given preference file. It is checked if the

The wilnst manual -73 -

value that should be added is already contained in the list (then it will not be added).
The more restricted, older version of this command is:

- AddStringListElement To Netscape User Pref ("<preference
variable>", "<add values list>")

(Deprecated!)

The other commands of PatchTextFile sections are not file type specific. All
operations are based on the concept that a line pointer exists which can be moved from
top of the file i.e. above the top line down to the bottom (line).

There are three search commands:

- FindLine <search string>

- FindLine_StartingWith <search string>
- FindLine_Containing <search string>

Each command starts searching at the current position of the line pointer . If they find a
matching line the line pointer is moved to it. Otherwise the line pointer keeps its position.

<search string> - as all other String references in the following commands - are
String surrounded by single or double citation marks.

If searching shall certainly start at the top line we have to move the line pointer
beforehand. This is done by the command

- GoToTop

(when we count lines it has to be noted that this commands move the line pointer above
the top line).

We step any - positive or negative - number of lines through the file by
- Advanceline [line count]

Advancing to the bottom line is done by

- GoToBottom

By the following command we delete the line at which the line pointer is directed if there is
such a line (if the line pointer has position top, nothing is deleted):

- DeleteTheline

The wilnst manual -74 -

There is also a command for deleting all lines which begin with a certain String:
- DeleteAlllLines_StartingWith <search string>
The lines of the file may be augmented by the following commands:

- AddLine <line>
or Add Line <line>
The line is appended to the file.

- InsertlLine <line>
or Insert_Line <line>

<line> is inserted ar the position Of the line pointer.

- AppendLine <line>
or Append Line <line>

<line> is appended dfter the line at which the pointer is directed.
We connect to the file system by some other commands:

- Append File <file name>
reads the file and appends its lines to the edited file.

- Subtract File <file name>
removes the beginning lines of the edited file as long as they are identical with the
lines of file <file name>.

- SaveToFile <file name>
writes the edited lines as a file <file name>.

- Sorted
causes that the edited lines are (ASCII) ordered.

7.6 LinkFolder Sections

7.6.1 Windows

In a LinkFolder section start menus entries as well as desktop links are managed.

The wilnst manual -75 -

E.g. the following section creates a folder named "acrobat® in the common start menu
(shared by all users):

[Li nkFol der _Acr obat]
set basef ol der conmon_pr ogr ans

set subfol der "acrobat™

set _link
nane: Acrobat Reader
target: C:.\Progranmme\ adobe\ Acrobat\reader\acrord32. exe
par anmet ers:
wor ki ng_dir: C:.\Progranme\ adobe\ Acr obat\ r eader
icon_file:
i con_i ndex:

end_| i nk

As can be seen in the example, in a LinkFolder section the first thing to set is the
virtual system folder on which the following statements shall operate:
- set basefolder <system folder>

The predefined virtual system folders which can be used are

deskt op, sendto, startnenu, startup, prograns, desktopdirectory,
common_st art nenu, conmon_pr ogr ans, conmon_startup,
comon_deskt opdi rectory

The folders are 'virtual' since the operating system (resp. registry entries) determine
the real places of them in the file system.

Second, we have to open a subfolder of the selected virtual folder:
- set_subfolder <folder path>

The subfolder name is to be interpreted as a path name with the selected virtual
system folder as root. If some link shall be directly placed into the system folder we
have to write

set _subfol der ""

In the third step, we can start setting links. The command is a multi line expression
starting with

- set link
and finished by
- end_link

Between these lines the link parameters are defined in the following format:

The wilnst manual -76 -

set _link

name: [link nane]

target: <conpl ete program pat h>

paraneters: [comrand |ine paranmeters of the prograni

wor ki ng_dir: [working directory]

icon_file: [icon file path]

icon_index: [position of the icon in the icon file]
end_I| i nk

The target name is the only essential entry. The other entries have default values:

name defaults to the program name.

- parameters has the empty string as default.
- Ifnoicon_file is specified the program file is selected.
- The default icon_indexis 0.

Caution: If the referenced target does not lie on an mounted share at the moment
of link creation windows shortens its name to the 8.3 format.

Workaround:

- Create a correct link when the share is connected.

- Copy the ready link file to a location which exists at script runtime.
- Let this file be the target.

By

- delete_element <link name>

we remove a link from the open folder.

A complete folder is removed from the base virtual folder by

- delete_subfolder <folder path>

7.6.2 Linux
There are some minor differences to the windows version:

Possible virtual folders are:

desktop, startmenu, startup, desktopdirectory, conmon_startnenu
conmon_startup, comon_desktopdirectory

set_link has the following parameters:

name: /1 name of link
target: /1 path and nanme of program
par amet er s: /1 call parameters of the program

The wilnst manual -77 -

wor ki ng_dir: /1 working directory of the program

icon_file: /1 path and nane of icon file

filenane /1 name of the desktop file (with ext)

type /1 link type (explanation cf. bel ow)

cat egori es /1 (opt.) ; separated |list of categories

generi cNane /1 (opt.) description (name=nozill a->generic=browser)

There is no parameter icon_index.

The parameter type is required and shall have one of the following values:
Application, Link, FSDevice, MimeType,

categories may be empty or may contain a semicolon separated list of categories from
the following table:

Cat egory Description

Devel opnent An application for devel opnent
Bui | di ng A tool to build applications
Debugger A tool to debug applications

| DE | DE application

GUI Desi gner A QU designer application
Profiling A profiling tool

Revi si onCont r ol Applications |like cvs or subversion
Transl ati on A transl ation tool

Ofice An office type application

Cal endar Cal endar application

Cont act Managenent E.g. an address book

Dat abase Application to manage a dat abase
Di ctionary A dictionary

Chart Chart application

Enai | Emai | application

Fi nance Application to nmanage your finance
FI owChar t A flowchart application

PDA Tool to manage your PDA

Pr oj ect Managenent Proj ect managenent application
Present ati on Presentation software

Spr eadsheet A spreadsheet

Wor dPr ocessor A word processor

G aphi cs Graphi cal application

2DGr aphi cs 2D based graphi cal application
Vect or Gr aphi cs Vect or based graphical application

The winst manual -78 -

Cat egory Descri ption

Rast er Graphi cs Rast er based graphi cal application
3DG aphi cs 3D based graphical application
Scanni ng Tool to scan a file/text

COCR Optical character recognition

Phot ogr aphy

Vi ewer

Settings
Deskt opSetti ngs

application
Canera tools, etc.

Tool to view e.g. a graphic or pdf
file

Settings applications

Configuration tool for the GUJ

Har dwar eSet ti ngs

A tool to manage hardware
conmponents, |ike sound cards, video
cards or printers

PackageManager A package manager application

Net wor k Net wor k application such as a web
br owser

Di al up A dial -up program

| nst ant Messagi ng
| RCd i ent

Fi | eTr ansfer

An instant nessaging client
An I RC client
Tool s |i ke FTP or P2P prograns

HanmRadi o HAM r adi o sof t war e
News A news reader or a news ticker
P2P A P2P program

Renot eAccess

A tool to renotely nanage your PC

Tel ephony Tel ephony via PC

\ebBr owser A web browser

WebDevel opnent A tool for web devel opers

Audi oVi deo A mul timedi a (audi o/ vi deo)
application

Audi o An audi o application

M di An app related to M DI

M xer Just a mi xer

Sequencer A sequencer

Tuner A tuner

Vi deo A video application

TV A TV application

Audi oVi deoEdi ti ng

Pl ayer

Application to edit audi o/video
files

Application to play audio/video
files

The wilnst manual

-79 -

Cat egory

Descri ption

Recor der

Di scBur ni ng

Application to record audi o/ video
files

Application to burn a disc

Gane
Act i onGane

Advent ur eGane

A gane
An action game

Adventure style gane

Ar cadeGane Arcade style gane

Boar dGane A board gane

Bl ocksGane Fal i ng bl ocks gane

Car dGane A card gane

Ki dsGame A game for kids

Logi cGane Logi ¢ ganes like puzzles, etc
Rol ePl ayi ng A rol e playing ganme

Si mul ation
Sport sGane
St rat egyGane

Educati on

A sinmul ati on gane
A sports gane
A strategy gane

Educati onal software

Art

Construction

Musi ¢
Languages
Sci ence
Ast ronony
Bi ol ogy
Chemi stry
Geol ogy
Mat h

Medi cal Sof t war e

Physi cs
Teachi ng
Amusenent

Appl et

Ar chi vi ng

El ectronics

Emul at or

The wilnst manual

-80 -

Software to teach arts

Musi cal software

Software to learn foreign | anguages
Scientific software

Astronony software

Bi ol ogy software

Chemi stry software

Ceol ogy software

Mat h sof t war e

Medi cal software

Physi cs software

An education program for teachers
A sinpl e anusenent

An applet that will run inside a
panel or another such application
likely desktop specific

A tool to archive/backup data

El ectronics software, e.g. a circuit
desi gner

Emul at or of another platform such
as a DOS enul at or

Cat egory

Descri ption

Engi neeri ng

Fi | eManager

Engi neering software, e.g. CAD
pr ogr ans

A fil e manager

Shel |

Scr eensaver

Ter m nal Enul at or

Trayl con

System

Fil esystem

A shell (an actual specific shel
such as bash or tcsh, not a
Ter m nal Enul at or)

A screen saver (launching this
desktop entry should activate the
screen saver)

A terminal enulator application

An application that is primarily an
icon for the "systemtray" or
"notification area" (apps that open
a nornmal wi ndow and just happen to
have a tray icon as well shoul d not
list this category)

System appl i cation, "System Tool s"
such as say a | og viewer or network
noni t or

A file systemtoo

Moni t or Moni t or application/appl et that
noni tors some resource or activity

Security A security too

Uility Smal | utility application

Accessibility

"Accessories"

Accessibility

Cal cul at or A cal cul at or

Cl ock A cl ock application/appl et

Text Edi t or A text editor

KDE Application based on KDE libraries

GNOVE Application based on GNOVE libraries

GTK Application based on GIK+ libraries

Q Application based on Q@ libraries

Mot i f Application based on Mtif libraries

Java Application based on Java GU
libraries, such as AWI or Sw ng

Consol eOnl y Application that only works inside a

The wilnst manual

-81-

term nal (text-based or command |ine
application)

7.7 XMLPatch Sections

Today, the most popular way to keep configuration data or data at all is a file in XML
document format. Its syntax follows the conventions as defined in the XML (or "Extended
Markup Language") specification (http://www.w3.org/TR/xml/).

wInst offers XMLPatch sections for editing XML documents. When calling an XMLPatch
section the document path name is given as parameter, e.g.

XMLPatch mozilla mimetypes $mozillaprofilepath$ + "\mi netypes.rdf”

With the actions defined for this section type wInst can

- select (and optionally create) sets of elements of a XML document according to a path
description

- patch all elements of a selected element set
- return the names and/or attributes of the selected elements to the calling section

To clarify the working of the section commands some concepts shall be sketched:

7.7.1 Structure of a XML Document

A XML document logically describes a "tree" which starting from a "root" - therefore
named document root-— grows into branches. Every branch is labelled a node. The
sub nodes of some node are called children OF child nodes Of their parent node .

In XML, the tree is constructed from ciements . The beginning of any element description
is marked by a tag (similarly as in HTML) i.e. a specific piece of text which is set into a pair
of angle brackets ("<“ ">, The end of the element description is defined by the the same
tag text but now bracket by "</“ and ,>“ If an element has no subordinated elements then
there is no space needed between start tag and end tag. In this case the two tags can be
combined to one with end bracket "/>“.

This sketch shows a simple "V"-tree - just one branching at the root level, rotated so that
the root is top:

| root node (Il evel 0)
[\ node 1 and node 2 both on level 1
implicitly given end nodes bel ow | evel 1

This tree could be described in XML in the following way:

<?xm version="1.0"?>

<r oot >
<node_| evel _1_no_1>
</ node_l evel _1_no_1>
<node_| evel _1_no_2>

The winst manual -82 -

</ node_l evel _1_no_2>
</root >

The first line has to declare the XML version used. The rest of lines describe the tree.

So long the structure seems to be simple. But yet we have only "main nodes" each
defining an element of the tree and marked by a pair of tags. But each main node may
have subnodes of several kinds.

- Of course, an element may have subordered ¢lements , €.g. we may have subnodes
A to C of node 1:

<node_level 1 no 1>
<node_l evel 2 A>
</ node_| evel 2 A>
<node_l evel 2 B>
</ node_| evel 2 B>
<node_level 2 C
</ node_| evel 2 c>

</ node |l evel 1 no 1>

- If there are no subordinated elements an element can have subordinated tex:. Then it
is said that the element has a subordinated text node . Example

<node_l evel 1 no _2>hello world
</ node_l| evel _1 no_2>

- Aline break placed in the text node is now interpreted as part of the text where
otherwise it is only a means of displaying XML structure. To avoid a line break
belonging to "hello world" we have to write

<node_l evel _1 no_2>hell o worl d</node_l evel 1 no 2>

- Every element (no matter if it has subordinated elements or subordinated text) is
constituted as a main node with specific tags. It can be further specified by attributes,
so called attribute nodes. For example, there may be attributes "colour" or "angle"
that distinguish different nodes of level 1.

<node_l evel _1 no_1 col our="green" angl e="65"
</ node_l evel _1_no_1>

For selecting a set of elements any kind of information can be used:
(1) the element level,
(2) the element names that are traversed when descending the tree (the "XML path"),

(3) names and values of the used attributes,

The winst manual -83 -

(4) the ordering of attributes,

(5) the ordering of elements,

(6) other relationships of elements,

(7) the textual content of elements (resp. their subordinated text nodes).

In wInst, selection based on criteria (1) to (3) and (7) is implemented:

7.7.2 Options for Selection a Set of Elements

Before any operation on the contents of a XML file the precise set of elements has to be
determined on which it will be operated. The set is constructed step by step by defining
the allowed paths through the XML tree. The finally remaining end points of the paths
define the selected set.

The basic wInst command is
- OpenNodeSet

There two formats for defining the allowed paths a short and a long format .

(i) Explicit Syntax

The more explicit syntax may be seen in the following example (for a more complex
example cf. the cook book, section 8.4):

openNodeSet

document r oot
all _childelenents_with:
el enent nane: "defi ne"
all _childelenents_with:
el enent nane: "handl er "
attribute: "extension" val ue="doc"
all _childelenents_with:
el enment nane: "appl i cati on"
end

(i) Short Syntax

The same node set is given by the line

openNodeSet ' define /handl er extension="doc"/application /'

In this syntax, the slash separates the steps into to the tree structure which are denoted in
the more explicit syntax each by an own description.

The winst manual -84 -

(iii) Selecting by Textual Content (only for explicit syntax)

Given the explicit syntax we may select elements by the textual content of elements:

openNodeSet

document r oot

all _childelements_with

all _childelements_with
el enent nane: "descri pti on"
attribute:"type" val ue="browser"
attribute:"name" val ue="nozilla"

all _childelements_with
el enent nanme: "1 i nkurl "
text:"http://ww.nozilla.org"

end

(iv) Parametrizing Search Strateqy

In the exemplary descriptions of XML tree traversals there remain several questions.

- Shall an element be accepted if the element name and the listed attributes match but
other attributes exist?

- Is the search meant to give one single result value, that is should the resulting
element set have no more than one element (and otherwise, the XML file is to
considered as erroneous)?

- Conversely, is it meant that a traversal shall at any rate lead to some result, i.e. do
we have to create the element if no matching element exists?

To answer these questions explicitly there are parameters for the OpenNodeSet
command. The following lines show the default settings which can be varied by changing
the Boolean values:

- error_when_no_node_existing fal se

- warni ng_when_no_node_exi sting true

- error_when_nodecount _greater_1 fal se

- warni ng_when_nodecount _greater_1 fal se

- create_when_node_not _existing fal se
- attributes_strict false

With short syntax, parametrizing precedes the OpenNodeSet command and holds for all
levels of the XML tree. With the explicit syntax the parameters may be set directly after the
OpenNodeSet command or be newly set for each level. In particular the option ,create
when node not existing“ may be set for some levels but not for all.

7.7.3 Patch Actions

Their exists a bundle of commands which operate on a selected element set

The winst manual -85 -

- for setting and removing attributes

- for removing elements

- for text setting.

In detail:

- SetAttribute "attribute name" wvalue="attribute value"

sets the specified attribute for each element in the opened set to the specified value. In
the attribute does not exist it will be created. Example:

Set Attribute "name" value="OpenOffice Writer"

On the contrary, the command
- AddAttribute "attribute name" value="attribute wvalue"

sets the specified attribute only to the specified value if it does not exists beforehand. An
existing attribute keeps its value. E.g. the command

AddAttri bute "name" value="OpenOffice Writer"
would not overwrite the value if there was named another program before.
By
- DeleteAttribute "attribute name"

we remove the specified attribute from each element of the selected element set.

The command
— DeleteElement "element name"

removes all elements with main node name (tag name) element name from the opened
element set.

Finally there exist two commands for setting resp. adding text nodes.:
- SetText "text"
and

- AddText "text"

E.g.

Set Text "rtf"

The winst manual - 86 -

transforms the element

<fil eExt ensi ons>doc<fi | eExt ensi ons>
into

<fil eExt ensi ons>rtf<fil eExt ensi ons>
By

Set Text
we remote the text node completely.
The variant

AddText "rtf"

sets the text only if there war no text node given.

7.7.4 Returning Lists to the Caller

A XMLPatch section may return the retrieved informations to the calling primary section.
The result always is a String list, and to get it, the call must done via the String list function
getReturnListFromSection. E.g. we may have the following String list setting in an
Aktionen section where we use a XMLPatch mime section

Def StringList listl
set |istl=getReturnListFrontection (' XM.Patch_mne "c:\mnmetypes.rdf"")

Inside the XMLPatch section we have return commands that determine the content of
returned String list:

return elements

fills the selected elements completely (element name and attributes) into the return
list.

- return attributes

produces a list of the attributes.
- return elementnames

produces a list of the element names.
- return attributenames

gives a list only of the attribute names.

- return text

The winst manual - 87 -

list all textual content of the selected elements.
- return counting

gives a report with numerical informations: line 0 contains the number of selected
elements, line 1 the number of attributes.

7.8 ProgmanGroups Sections

This section type is deprecated.

7.9 WinBatch Sections

In a winBatch section any windows executable can be started. This includes that — as
from Windows explorer — a file of any type for which a program is registered can be
directly called.

E.g, we may start some existing setup program by the following line in a WinBatch
section

Y%syst endri ve% t enp\ set up. exe

There a several parameters of the WinBatch call which determine if (or how long)
wInst shall be wait for the started programs returning

Default is that wInst waits for every initiated process to come back. This behaviour
corresponds to the call parameter /WaitOnClose. On the contrary, if wInst shall
proceed while the started processes run in their own threads we have to apply the call
parameter /LetThemGo.

The are more sophisticated options for special circumstances.

If we do the call with parameter /WaitSeconds [number of seconds] then wInstis
waiting the specified time before proceeding. In the default configuration we additionally
wait for the started programs returning. If we combine the parameter with the option
/LetThemGo then wInst continues processing when the waiting time is finished.

Even more special conditions are given by the options
/WaitForWindowAppearing [window title]
resp.

/WaitForWindowVanish [window title]

The winst manual - 88 -

The first option means that wInst waits until any process lets pop up a window with title
window title. With the second option wInst is waiting as long as a certain window
(1) appeared on the desktop and (2) disappeared again.

If we know a process name whose ending we have to await we can use
/WaitForProcessEnding program

This can be combined with a timeout setting:
/WaitForProcessEnding program /TimeOutSeconds seconds

Example:

W nbat ch_uni nstal | /Wit ForProcessEndi ng "uni nstal|l.exe" /Ti neQut Seconds 20
[Wnbat ch_uni nstal |]
%Scri pt Pat h% uni nstal | _starter. exe

The String function getLastExitCode gives access to the ExitCode - or ErrorLevel — of
the last process call in the preceding WinBatch section.

7.10 DOSBatch/ShellBatch Sections

7.10.1 Windows

Via DOSBatch (also called ShellBatch) sections a wInst script uses Windows shell
scripts for tasks which cannot be fulfilled by internal commands or for which already a
batch script solution exists.

A DOSBatch section is simply processed by writing the lines of the sections into the file
_winst.batin c:\tmp and then calling this file in the context of a cmd.exe shell.
This explains that a DosBatch section may contain all Windows shell commands can be
used.

The shell process is created with the view set to normal. That has the consequence that a
command shell window appears which allows user interaction.

Parameters of a DosBatch section are directly passed as quasi command line
parameters to the Windows shell script. E. g. we may call DosBatch 1 in Aktionen
section to get a "Hello World" from the DOS echo command:

[Akt i onen]
DosBatch_1 today we say "Hello World"

[DosBat ch_1]
@cho of f

The winst manual - 89 -

echo %4 %@ 93 %l
pause

The output of the shell commands can be captured by using the String list function
getOutStreamFromSection () (cf. section 6.4.4).

If the return list shall be evaluated programmatically it is advised to use the '@' prefix of
commands. Such we suppress the repetition of the command line in the output which may
different formats dependent on system configurations.

7.10.2 Linux

Via DOSBatch sections, here better called ShellBatch sections do the same job in
Linux as in Windows with minor differences:

The temporary batch file is generated in /tmp and executed in a xterm environment
(xterm -e).

The output of the scripts is written to the log file.

7.11 DOSInAnlIcon/ShelllnAnlIcon Sections

7.11.1 Windows

The section type DOSInAnIcon or ShellInAnIcon is identical to DOSBatch regarding
syntax and execution method but has a different appearance:

For DOSInAnIcon, a shell process is created with view set to minimized. That has the
consequence that it is executed "in an icon". No command window appears, user
interaction is suppressed.

Instead, the output of the script is written to the log file.

Furthermore, the output of the script may be captured by the String List function
getOutStreamFromSection (cf. section 6.4.5) and then evaluated by the script.

Please observe:

There may be shell commands which are not truly restricted to the shell level but are
prepared to open a dialog. Therefore they seem to be blocked by the capture functionality.
In particular:

The xcopy command cannot be used in @ DosInAnIcon section.

The wilnst manual -90 -

7.11.2 Linux

In Linux, the only difference between a ShellBatch and a ShellInAnIcon section
call is that no xterm window is shown for the second.

7.12 Registry Sections

Of course, this section type is only available for Windows.

By a Registry section call we can create, patch and delete entries in the Windows
registry. As usual, wInst logs every operation in detail as long as logging is not turned
off.

7.12.1 Example

Let us set some registry variables by a call to the section Registry TestPatch where
the section is given by

[Regi stry_ Test Pat ch]

openkey [HKEY_ Current User\Environnment\ Test]

set "Testvarl" = "c:\rutils; %ystenroot % hey"
set "Testvar2" = REG DWORD: 0001

7.12.2 Call Parameters

The standard call of a Registry section has no parameters. This is sufficient as long as
the operations aim at the standard registry of a Windows system and all entries can be
defined using a globally defined registry path.

wInst also offers that the patch commands of a Registry section are automatically
executed "for all users" which are locally defined. l.e. the patches are made for all user
branches of the local registry. This interpretation of the section is evoked by the parameter
/Al1NTUserDats

Further parameters control which syntactical variant of the Registry section shall be
valid:

- The parameter /regedit declares that the syntax corresponds the export file syntax
of the Windows Registry Editor regedit. Such, the lines of a regedit export file
may directly be used as a Registry resp. the file itself can serve as an external
section (cf. section 5 in this chapter).

The winst manual -91 -

- Similarly, the parameter /addReg declares that the Registry section syntax is that
of an inf-file (as used e.g. for driver installations (cf. section 6 in this chapter).

These not wInst specific syntactical variants are not defined in this manual since they
usually will be generated programmatically.

7.12.3 Commands

The default syntax of a Registry section is oriented at the command syntax of other
patch operations in wInst.

There exist the following commands:

OpenKey

- Set

- Add

- Supp

- GetMultiSZFromFile
- SaveValueToFile
- DeleteVar

- DeleteKey

- ReconstructFrom
- Flushkey

In detail:

- OpenKey <registry key>
opens the specified key for reading and (if the user has the necessary privileges) for
writing. If the key does not exist it will be created.

The registry key is denoted by a registry path name. Under regular circumstances it
starts with one of the "high keys" which build the top level of the registry tree data
structure (above the "root"). These are:

HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,
HKEY_USERS, HKEY_CURRENT_CONFIG which may optionally be written as
HKCR, HKCU, HKLM. HKU.

The winst manual -92 -

In wInst syntax of the registry path name the elements of a path are separated by
single backslashs.

All other commands operate on an opened registry key.

- Set <varname> = <value>
sets the registry variable <varname> to value <value>.

<varname> as well as <value> are Strings and have to be enclosed in citations
marks.

A non-existing variable will be created.
The empty variable "" denotes the standard entry of a registry key.

If some registry variable shall be created or set which has not the default type
Registry-String (REG_SZ) we have to use the extended variant of the set
command:

- Set <varname> = <registry type>:<value>
sets the registry variable <varname> to value <value> of type <registry
type>. The following registry types are supported:

REG_SZ (String)

REG_EXPAND_SZ (a String containing substrings which the operating system shall
expand e.g.)

REG_DWORD (Integer values, decimal or hexadecimal notation possible:

set "testl"
set "test2"
set "test3"
set "test4"

REG_DWORD: 10
REG _DWORD: OxA
REG _DWORD: 0x0A
REG_DWORD: $0A

results in the decimal value 10)

REG_BINARY (binary values usually given as two-digit hex numbers 00 01 02
OF 10 ..,
they may be written without spaces)

REG_MULTI_Sz (String value arrays, in wInst we have to use "|" as separator):

An example for setting a REG_MULTI SZ:

The wilnst manual -93 -

set "myVariable" = REG MJLTI_SZ:"A| BC| de”

To construct a multistring we may put the strings as lines in a file and read it using
GetMultiSZFromFile (cf. below).

- Add <varname> = <value>

resp.
- Add <varname> = <registry type> <value>

are analogous to the Set commands with the difference that entries are only added
but values of existing variables not changed.

- Supp <varname> <list separator> <supplement>
This command interprets the String value of variable <varname> a list of values
separated by <1ist separator> and adds the String <supplement> to this list (if
it not already contained). If <supplement> contains the
<listset user Rhino.reg separator> itis splitinto single Strings, and the
procedure is applied to each single String.

A typical use is adding entries to a path variable (which is defined in the registry).
supp keeps the original String variant (REG_EXPAND SZ oOr REG_SZ).

Example:

The environment Path is determined by the value for the variable Path as defined
inside the registry key

HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Sessi on
Manager \ Envi r onnent

To add some entries to the path definition we have to get access to this key via an
OpenKey. Then we can apply e.g.

supp "Path" ; "C:\utils; %JAVABIN%"
in order to supplement the path by "C:\utils" and "$JAVABINS".

(Windows expands $JAVABIN% to the correct path name if $JAVABINS exists as
variable and the String is a REG_EXPAND SZ.)

In Win2k there is the phenomen observed that the path entry can only
beset_user_Rhino.reg read and set by a script if there was set some value before.
The following workaround makes things to:

The wilnst manual -94 -

Whom read the old value of Path from the environment variable , write this value to
the registry value - and are then able to work with the registry variable:

[Akt i onen]

Def Var $Pat h$

set $Path$ = EnvVar ("Path")
Regi st ry_Pat hPat ch

where RegistryPathPath looks like

[Regi stry_Pat hPat ch]

openkey [HKEY_LOCAL_MACHI NE\ SYSTEM Current Contr ol Set\ control \ Sessi on
Manager \ Envi ronnment]

set "Path"="$Pat h$"

supp "Path"; "c:\oraw n\bin"

Caution: The environment variable gets a changed value after a reboot.
- GetMultiSZFromFile <varname> <filename>

reads the lines of a file and puts them together building a Multistring.
- SaveValueToFile <varname> <filename>

exports the referred (String or MultiSZ) value as file £ilename lines (each String
forming a line).

- DeleteVar <varname>
removes the entry with variable <varname> from the opened key.

- DeleteKey <registry key>
deletes the registry key recursively including all subkeys and contained variables. The
registry key is defined as for OpenKey.

Example:

[Regi stry_KeyDel et €]
del et ekey [HKCW Envi r onnent \ subkey1]

- ReconstructFrom <file name>
(deprecated)

- FlushKey
ensures that all entries of a key are saved to the file backing the in memory registry (is
automatically done when closing a key, therefore in particular when a Registry
section is left).

The wilnst manual -95 -

7.12.4 Registry Sections to Patch "All NTUser.dat"

A Registry section called with parameter /A11NTUserdats is executed for every local

user .

To this end, for all local users (as permanent storage for the registry branch

HKEY Users) the files NTUser.dat are searched one by one and temporarily loaded into
a subkey of some registry branch. The commands of the Registry section are executed
for this subkey, then the subkey is unloaded. As result, the stored NTUser.dat is
changed.

The mechanism does not work for a logged in user . For, his NTUser.dat is already in
use, and the request to load it produces an error. To do the changes for him as well, the
commands of the Registry additionally are executed on HKEY Current User
(which is the HKEY Users branch for the logged in user).

There is a NTUser . dat for Default User which serves as template for newly created
users in the future. Therefore the patches are prepared for them as well.

The Registry section syntax remains unchanged. But the key pathes are interpreted
relatively:

In the following example the registry entry for variable FileTransferEnabled is de
facto setforall HKEY Users\XX\Software... successive for all XX (all users) on
the machine:

[Registry_All Users]
openkey [Sof t war e\ ORL\ W nVNC3]
set "Fil eTransfer Enabl ed"=reg_dwor d: 0x00000000

7.12.5 Registry Sections in Regedit Format

If a Registry section is called with parameter /regedit the section is not expected in
wInst standard format but in the format as produced by the Windows regedit tool.

The export files generated by regedit have - not regarding the head line - ini file format.
Example:

REGEDI T4

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . or g]

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . or g\ gener al |
"boot node" =" BKSTD"

"w ndomai n"=""

"opsi conf " =dwor d: 00000001

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . or g\ shar ei nf 0]

The wilnst manual -96 -

"user"="pcpatch"
"pcpat chpass"=""
“depoturl "="\\\\boni fax\\opt _pcbin\\install"
“configurl"="\\\\bonifax\\opt_pcbin\\pcpatch"
"utilsurl"="\\\\bonifax\\opt_ pcbin\\utils"
"utilsdrive"="p:"
"configdrive"="p:"
"depotdrive"="p:"
The sections denote registry keys to be opened. Each line describes some variable setting

like the set command in a wInst registry section.

But, we cannot really have an internal wInst section that is constructed from another
sections. Therefore Registry section with parameter /regedit can only be given as
external section or by the function call 1oadTextFile, e.g.

registry "%cript pat h% opsi orgkey.reg" /regedit

With Windows XP the registry editor regedit does not produce Regedit4-Format but a
new format that is indicated by the head line

"W ndows Registry Editor Version 5.00"

In this format, Windows offers some additional value types. But more important, the
export file is now generated in Unicode. wInst sections processing is based on Delphi
libraries which use 8 bit Strings. To work with a regedit 5 export the coding therefore
has to converted. This can be done manually, e.g. by a suitable editor. But we may also
feed the original file to wInst using the String list function 1oadUnicodeTextFile.
E.g., if printerconnections.reg be a unicode based export, we can call regedit
in the following form which does the necessary code conversion on the fly:

regi stry loadUnicodeTextFile ("%scri pt pat h% opsi orgkey.reg") /regedit

A registry patch using regedit format can as well be executed "for all NT users" similarly as
the common wInst registry section. That is, a path like
[HKEY_CURRENT_USER\Software\ORL] is to replaced by the relative [Software\ORL].

7.12.6 Registry Sections in AddReg Format

A Registry section can be called with parameter /addReg. Then its syntax follows the
principles of the AddReg sections in inf files as used e.g. for driver installations.

E.g.:
[Regi stry_ For Acr or ead]
HKCR, ".fdf","", 0, " Acr oExch. FDFDoc"
HKCR, ". pdf","", 0, "Acr oExch. Docunent "HKCR, " PDF. Pdf Ctrl . 1","", 0, "Acr"

The wilnst manual -97 -

7.13 OpsiServiceCall Sections
This type of section allows to retrieve information — or set data — via the opsi service.
There are three options for determining a connection to an opsi service:

- Per default it is assumed that the script is executed in the standard opsi installation
environment. |.e., we already have a connection to an opsi service and can use it

- We set the url of the service to which we want to connect as a section parameter and
supply as well the required username and password as section parameters.

- We demand an interactive login to the service (predefining only the service url and,
optionally, the user name).

Retrieved data may be returned as a String list and then used for scripting purposes.

7.13.1 Call Parameters

The call parameters determine which opsi service will be addressed and set the
connection parameters if needed.

Connection parameters can be defined via
- /serviceurl STRINGEXPRESSION
- /username STRINGEXPRESSION
- /password STRINGEXPRESSION

If these parameters, at least the serviceurl, are given wInst tries to open a connection
to an opsi service which has the url.

The additional option
- /interactive

raises an interactive connect. The user will be asked for confirming the connection data
and supplying the password. Of course, this option cannot be used in scripts which shall
be executed fully automatically.

If no connection parameters are supplied wInst assumes that an existing connection
shall be reused.

If no connection parameters are given and the interactive option is not specified (neither at
this call nor at a call earlier in the script) it is assumed that we are in a standard opsi boot
process and, already having a connection to an opsi service, we try to address it.

The winst manual -98 -

In the case that we had a connection to a secondary opsi service we may (re)set the
connection to the standard opsi service via the option

- /preloginservice

7.13.2 Section Format
An opsiServiceCall is defined by its method name and a list of parameters.

Both are defined in the section body. It has format

"nmet hod" : METHODNANME- STRI NG
"parans”: [
JSON PARANVETER ENTRI ES
]

JSON PARAMETER ENTRIES is a (possibly empty) list of Strings or more complicated
Json items (as required by the specified method).
E.g. we may have a section call

opsi servicecal |l _clientldsList

where the required methodname and the (empty) list of parameters is set by

[opsiservicecall clientldsList]
"method":"getClientlds_|ist"
"parans":[]

The section call produces the list of names (IDs) of all local opsi clients.

If the list shall be exploited for other than test purposes the section call can be used in a
String list expression:

Def StringList $resultList$
Set $resultList$=get ReturnListFronSection("opsiservicecall_clientldsList")

The usage of GetReturnListFromSection is documented in the String list function
chapter of this manual (section 6.4.5)

A hash —in this case a String list — where each item is a pair name=value - is produced
by the following opsi service call:

[opsi servicecal | _host Hash]

"“met hod": "getHost hash"

"paranms": |
"pcbon8. ui b. | ocal "

]

The winst manual -99 -

7.14 Exechthon Sections

ExecPython sections are basically Shell-Sections (like DosInAnIcon) which call the -
on the system installed — python script interpreter. It takes the section content as python
script, and the section call parameter as parameters for the script.

Python as a full grown programming language gives definitely more coding options than
any internal wInst commands, and is as well far more powerful than a command shell
program. Therefore it can be recommended to use python for complicated tasks.
Especially if data objects shall be communicated to the opsi service a python script is the
natural approach since the opsi service is written itself in python, and there has not to any
translation of data coding.

7.14.1 Example

The following example demonstrates a execPython call with a list of parameters for that
are printed by the python commands.

The call may look like

execpython_hello -a "option a" -b "option b" "there we are"

where the section shall be defined by:

[execpyt hon_hel | 0]
i mport sys
print "we are working in path: ", a
if len(sys.argv) > 1 :
for arg in sys.argv[1:]
print arg

el se:

print "no argunents"

print "hello"

The print command output will be caught and written to the log file. So we get in the log

option a

-b

option b
there we are
hel | o

Observe that the loglevel must be set at least to Info (that is 1) if these outputs shall really
find their way to the log file.

The winst manual -100 -

7.14.2 Interweaving a Python Script with the wlInst Script

An execPython section is integrated with the surrounding wInst script by four kinds of
shared data:

- A parameter list is transferred to the python script.
- Everything which is printed by the python script is written into the wInst log.

- The wInst script substitution mechanism for constants and variables when entering
a section does its expected work for the execPython section.

- The output of an execPython section can be caught into a StringList and then used
in the ongoing wInst script.

An example for the first two ways of interweaving the python script with the wInst script
is already given above. We extend it to retrieve the values of some wInst constants or
variables.

[execpyt hon_hel | 0]

i mport sys

a = "Y%criptpat h%

print "we are working in path: ", a
print "ny host IDis ", "%ostl|D%

if len(sys.argv) > 1 :
for arg in sys.argv[1:]
print arg
el se:
print "no argunents"

print "the current loglevel is ", "$loglevel $"

print "hello"

Of course, the $loglevel$ variable has to be set beforehand in the Aktionen section:

Def Var $LoglLevel $
set $l oglevel $ = getLogl evel

Finally, in order to being able to use of some results of the section output, we produce it
into a StringList variable by calling the execPython section in the following way:

Def Stri ngLi st pythonresult
Set pythonResult = Get Qut StreanfrontSecti on(' execpython_hello -a "opt a“')

The winst manual -101 -

7.15 ExecWith Sections

ExecWith sections are more general than ExecPython sections: Which program
interprets the section lines given is determined by a parameter of the section call.

E.g, if we have some call

execPython hello -a "hello" -b "world"

where

-a "hello" -b "world"

are parameters that are passed to the python script we get the following completely
equivalent ExecWith call:

execWth_hello "python" PASS -a "hello" -b "world* WNST /EscapeStrings

The option EscapeStrings is automatically used in an ExecPython section and means
that backslashes in String variables and constants are duplicated before interpretation by
the the called program.

7.15.1 Call Syntax

In general, we have the call syntax:

ExecW t h_SECTI ON PROGRAM PROGRAMPARAS pass PASSPARAS w nst W NSTOPTS

Each of the expressions PROGRAM, PROGRAMPARAS, PASSPARAS, WINSTOPTS may
be an arbitrary String expression, or just a String constant (without citation marks).

The key words PASS and WINST may be missing if the respective parts do not exist.
There are two wInst options recognized:

- /EscapeStrings

- /LetThemGo

Like with ExecPython sections, the output of an ExecWith section may be captured
into a String list via the function getOutStreamFromSection.

The first one declares that the backslash in wInst variables and constants is C-like
escaped. The second one has the effect (as for winBatch calls) that the called program
starts its work in new thread while wInst is continuing to interpret its script.

The winst manual -102 -

7.15.2 More Examples

The following call is meant to refer to a section which is an autoit3 script that waits for
some upcoming window (therefore the option /letThemGo is used) in order to close it:

ExecWth cl ose "%SCRI PTPATH% aut oi t 3. exe" W NST /1 et Thentzo
A simple
ExecWth_edit_nme "notepad. exe" WNST /| etTheno

calls notepad and opens the section lines in it (but without any line that is starting with a
semicolon since wlnst regards such lines as comments and eliminates them before
handle).

7.16 LDAPsearch Sections

A LDAPsearch section defines a search request to a LDAP directory, executes it and
receives (and possibly caches) the response.

Before dwelling on the winst commands we do some explanations.
In subsection we give an example of the most probable usage of a LDAPsearch.

The following subsections describe the syntax

7.16.1 LDAP - Protocol, Service, Directory

LDAP, the "Lightweight Directory Access Protocol", is, as the name indicates, a defined
way of communication to a directory. This directory is (or may be) hierarchically
organized. That is, the directory is a hierarchical data base, or a tree of content.

A LDAP service implements the protocol. A directory that can be accessed via a LDAP
service is called a LDAP directory .

For instance, let's have a look at some part of the LDAP directory tree of an opsi server
with LDAP backend (as shown by the Open Source tool JXplorer):

View of some part of an opsi LDAP tree

ALDAP search request isa query to a LDAP directory via a LDAP service. The
response returns some content from the directory.

The winst manual -103 -

Basically the search request has to describe the path in the directory tree which leads to
the interesting piece of information. The path is the distinguished name (dn),
composed of the names of the nodes (the "relative distinguished names"), which build the
path, for instance:

| ocal / ui b/ opsi / gener al Confi gs/ boni fax. ui b. | ocal

Since each node is conceived as an instance of some structural object class, the path
description is usually given in the following form: with indication of the classes (and
starting with the last path element) :

cn=boni f ax. ui b. | ocal , cn=gener al Confi gs, cn=opsi , dc=ui b, dc=I ocal

The path in a query is not necessarily "complete”, and not leading to a unique leaf of the
tree. On the contrary, partial paths are common.

But even if the path descends to a unique leaf, the leaf may contain several values. Each
node of the tree has one or more classes as attribute types. To each one or may values
may be associated.

For a given query path, we therefore may be interested

1.in the node set whose elements — the so called LDAP objects — match the given path,
2.the set of attributes that belong the nodes,

3.and the values that are associated to all of them.

Obviously, handling the amount of possibly returned response information is the main
challenge when dealing with LDAP searches.

The following section shows the documentation of a LDAPsearch roughly corresponding
to the screenshot above as executed by winst .

7.16.2 Example of a LDAP response

A wInst section | dapsear ch_general Confi gs be defined as follows:

[l dapsear ch_general Confi gs]
target host: boni fax
dn: cn=general Confi gs, cn=opsi, dc=ui b, dc=l ocal

The call of this section produces a LDAP response that looks like this:

Result: O
nj ect: cn=general Confi gs, chn=opsi, dc=ui b, dc=Il ocal
Attribute: cn
gener al Confi gs
Attribute: objectd ass

The winst manual -104 -

organi zati onal Rol e
Result: 1
oj ect: cn=pcbon4. ui b. | ocal , cn=gener al Confi gs, cn=opsi, dc=ui b, dc=l oca
Attribute: cn
pcbon4. ui b. 1 oca
Attribute: objectd ass
opsi Gener al Config
Attribute: opsiKeyVal uePair
t est 2=t est
test=a b c d
Result: 2
oj ect: cn=boni fax. ui b.l ocal , cn=gener al Confi gs, cn=opsi, dc=ui b, dc=I oca
Attribute: objectd ass
opsi Gener al Config
Attribute: cn
boni f ax. ui b. | oca
Attribute: opsiKeyVal uePair
opsi cl i ent si deconfi gcachi ng=FALSE
pcpt chl abel 1=opsi . org
pcpt chl abel 2=ui b gnbh
butt on_st opnet wor ki ng=
pcpt chbi t mapl=wi nst 1. bnp
pcpt chbi t map2=wi nst 2. brp
debug=on
secsuntil connecti onti meout =280
opsiclientd. gl obal.log_|evel =

There are several wInst options to manage and reduce the complexity of the evaluation
of such responses.

7.16.3 LDAPsearch Call Parameters

Two kinds of LDAPsearch parameters, cache options and output options, are
defined for the call of LDAPsearch section.

The cache options are:

- /cache

- /cached

- /free

- (no cache option)

If there is no cache option specified, the response of the LDAP search request is not
saved for further usages.

The winst manual -105 -

By the cache option, the response is cached for further evaluations, the cached option
refers to the last cached response which is reused instead of starting a new search, the
free option clears the cache explicitly (may only be useful for searches with extreme
large responses).

The output options are:

- /objects

- /attributes

- /values

- (no output option)

The output options determine the String list that is produced when a LDAPsearch section
is called via getReturnlistFromSection:

If no output option is specified the returned list is the complete LDAP response.

The options objects, attributes and values restrict the output to object, attribute
or value lines of the LDAP response respectively.

Observe that in the produced lists the object an attribute belongs to is only identifiable if
only one object is returned in the object list, and likewise the object and the attribute to
which a value is subsumed are only identifiable if there is only attribute remaining in the
attributes list.

Such the proceeding is, that the LDAPsearch is specified up to that degree, that at most
one object and one attribute is returned. This can be checked by a count call on the
objects and the attributes return list. Then any value found belongs to the dn and the
attribute specified.

The repeated utilization of the same LDAP response can be done without relevant time
costs by using the cache/cached options.

7.16.4 How to Narrow the Search

An example may show how we can narrow the search to pin down a specific result from a
LDAP directory.

We start with the call of | dapsear ch_gener al Conf i gs as above, only adding the
cache parameter.

| dapsear ch_general configs /cache

executes the query and caches the response for further utilization.

The winst manual - 106 -

Then, the call

get ReturnlistFrontBection("| dapsearch_general configs /cached /objects")

produces the list

cn=gener al confi gs, cn=opsi, dc=ui b, dc=I oca
cn=pcbon4. ui b. | ocal , cn=gener al confi gs, cn=opsi, dc=ui b, dc=l oca
cn=boni f ax. ui b. | ocal , cn=gener al confi gs, cn=opsi, dc=ui b, dc=I oca

If we narrow the tree selection by

[l dapsear ch_general Confi gs]
target host: bonifax
dn: cn=boni f ax. ubi .| ocal , cn=gener al Confi gs, cn=opsi, dc=ui b, dc=l oca

and start again, then in the objects 1ist, we indeed retain just

cn=boni f ax. ui b. | ocal , cn=gener al confi gs, cn=opsi, dc=ui b, dc=I oca

The corresponding attributes 1ist contains three elements:

obj ect cl ass
cn
opsi keyval uepai r

In order to get the values associated to a single attribute we have to confine the query
once more:

[1 dapsear ch_general Confi gs]

target host: boni fax

dn: cn=boni f ax. ubi . | ocal , cn=gener al Confi gs, cn=opsi, dc=ui b, dc=l oca
attribute: opsiKeyVal uePair

The result now produced is an attributes 1ist containing only one element. The
corresponding values list looks like

opsi cl i entsi deconfi gcachi ng=f al se
pcpt chl abel 1=opsi . org

pcpt chl abel 2=ui b gnbh

but t on_st opnet wor ki ng=

pcpt chbi t mapl=wi nst 1. bnp

pcpt chbi t map2=wi nst 2. bnp

debug=on

secsunti | connecti onti neout =280
opsi clientd. gl obal .l og_|evel =6

There are no LDAP means to reduce this result furthermore!

The winst manual -107 -

(But the wInst function getvValue (key, list) (cf. section 6.4.4) may help in this
case: E.g. getValue ("secsuntilconnectiontimeout", list) would produces
the requested number).

By the function count (list) we can check if we succeeded with the narrowing of the
search request. In most circumstances, we would like that its result be "1".

7.16.5 LDAPsearch Section Syntax
A LDAPsearch section comprises the specifications:
- targethost:
The server hosting the LDAP directory (service) must be named.
- targetport:

If the port of the LDAP service is not the default (389), it can be declared at this place.
If the specification is missing, the default port is used.

- dn:

Here, the distinguished name, the "search path", for the search request can be given.
- typesonly:

Default "false", that is, values are retrieved.
- filter:

A filter for LDAP search has a LDAP specific syntax that is not checked by wInst.
Default is " (objectclass=")"

- attributes:

A comma separated list of attribute names may be given. The default is to take any
attribute.

7.16.6 Another Example
A short and rather realistic example shall end this section:

founditems be a StringList variable and $opsiClient$ a String variable. The call

set $opsiCient$ = "test.uib.local"
set founditens = getReturnlistFronSection("ldapsearch_hosts /val ues")

The winst manual - 108 -

where the section 1dapsearch_host is defined by

[1 dapsear ch_host s]

t arget host: opsi server

targetport:

dn: cn=$opsiclient$, cn=hosts, cn=opsi, dc=ui b, dc=l oca
typesOnly: false

filter: (objectclass=*)

attributes: opsiDescription

The following code fragment returns the unique result for $opsiDescriptions$ if it
exists. It reports an error if the search produces an unexpected result:

Def Var $opsi Descri pti on$
set $opsi Description$ = ""

i f count(founditens) = "1"
set $opsi Description$ = takeString(0, founditens)
el se
i f count(founditens) = "0"
comrent "No result found")
el se
|l ogError "No unique result for LdAPsearch for client " + $opsiclient$
endi f
endi f

The winst manual -109 -

8 64 Bit Support

The opsi Winst is a 32 bit program. In order to make it easy for 32 bit programs to run on
64 bit systems there are special 32 bit areas in the registry as well in the file system.
Some accesses from 32 bit programs will be redirected to these special areas to avoid
access to areas that reserved for 64 bit programs..

A access to c: \windows\system32 will be redirected to c: \windows\syswow64
A access to c: \program files will be redirected to c: \program files (x86)

A registry access to [HKLM\software\opsi.org] will be redirected to
[HKLM\software\wow6432node\opsi.org]

Therefore opsi-winst installs as 32 bit program scripts, that run on 32 bit system fine, on
64 bit system correct without any change.

For the installation of 64 bit programs some constants like $ProgramFilesDir% returns
the wrong values. Also operations of Registry sections and Files-sections will be
redirected normally.

For the access to the 64 bit reserved areas there some special functions:
GetRegistrystringvalue64
FileExists64

Both functions are reading on 64 bit systems without any redirection. On 32 bit systems
there working like the 32 bit versions of these functions.

There is the Parameter /64Bit for Registry and Files sections, which turns the
redirection off.

In addition to these winst functions at the installation of the opsi-client agent the (64 bit)
file c: \windows\system32\cmd. exe will be copied to c: \windows\cmdé4 . exe.
Using this cmd64 . exe with ExecWith sections you may call any 64 bit operations on the
command line.

Examples:

File handling:

if $INST_SystenType$ = "64 Bit Systenf
comment ""
comment M-------------ooo- oo "
coment "Testing: "
message "64 Bit redirection”
Fil es_copy_test_to_systenB2
if FileExists("%ystentAdumy.txt")
comment "passed"”
el se

The winst manual -110 -

LogWarning "fail ed"
set $TestResult$ = "not o.k."
endi f
ExecWth_remove _test fromsystenB2 'cnd. exe' /C
Files_copy_test to_systenB2 /64Bit
if FileExists64("¥BystenPa dunmy.txt")
conment "passed"”
el se
LogWarning "fail ed"
set $TestResult$ = "not o.k."
endi f

ExecWth_renmove test _fromsystenB2 ' %Syst enRoot % cnd64. exe' /C
endi f

Registry Handling:

nmessage "Wite to 64 Bit Registry”
if ($INST_SystenType$ = "64 Bit Systent)
set $ConstTest$ = ""
set $regWiteVal ue$ = "64"
set $CompVal ue$ = $regWiteVal ue$
Regi stry_opsi _org_test /64Bit
ExecWth_opsi _org_test "%ystenroot% cnd64. exe" /c
set $Const Test$ =
Get Regi stryStringVal ue64(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . org\test] bitByWnst")
if ($ConstTest$ = $ConpVal ue$)
coment "passed"
el se
set $TestResult$ = "not o.k."
coment "failed"
endi f
set $Const Test$ =
Get Regi stryStri ngVal ue64(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . org\test] bitByReg")
if ($ConstTest$ = $ConpVal ue$)
coment "passed"
el se
set $TestResult$ = "not o.k."
coment "fail ed"
endi f
set $regWiteVal ue$ = "32"
set $CompVal ue$ = $regWiteVal ue$
Regi stry_opsi _org_test
ExecWth_opsi _org_test "cnd.exe" /c
set $Const Test$ =
Get Regi stryStringVal ue(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . org\test] bitByWnst")
if ($Const Test$ = $ConpVal ue$)
coment "passed”
el se
set $TestResult$ = "not o.k."
coment "fail ed"
endi f
set $Const Test$ =
Get Regi stryStringVal ue(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . org\test] bitByReg")
if ($ConstTest$ = $ConmpVal ue$)
coment "passed"
el se
set $TestResult$ = "not o.k."
coment "failed"
endi f
el se
set $regWiteVal ue$ = "32"
set $ConpVal ue$ = $regWiteval ue$
Regi stry_opsi _org_test /64Bit
ExecWth_opsi _org_test "cnd.exe" /c
set $ConstTest$ =
Cet Regi stryStringVal ue64("[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . org\test] bitByWnst")
if ($ConstTest$ = $ConpVal ue$)
conment "passed"

The winst manual -111 -

The winst manual -112 -

9 Cook Book

This chapter contains a growing collection of examples showing real world problems that
can be mastered by simple or sophisticated pieces wInst scripting.

9.1 Delete a File in all Subdirectories

Since wInst 4.2 there is an easy solution for this task: To remove a file alt.txt from
all subdirectories of the user profile directory the following Files call can be used:

files delete Al't /all NtUserProfiles

where we have got

[files delete Alt]
del ete "%JserProfileDir%alt.txt"

Neverthelesse we document a workaround which could be used in older wInst versions.
It demonstrates some techniques which may be helpful for other purposes.

The following ingredients are needed:
- A DosInAnIcon section which produces a list of all directory names.
- A TFiles section which deletes the file alt.txt in some directory.
- A String list processing that puts the parts together.
The complete script should look like:

; here we are in AKtionen section:

; variable for file nanme
Def Var $del eteFile$ = "alt.txt"

; String list declarations
Def StringList listO
Def StringList listl

; capture the lines produced by the dos dir command
Set 1ist0 = getQutStreanfronBection (' dosbatch_profiledir')

; Loop through the lines. Call a files section for each line.
for x in list0 do files_delete x

; Here are the two special sections
[dosbat ch_profil edir]
@ir "% rofileDir% /b

[files_del ete_x]
delete "%rofil eDir % x\ $del et eFi | e$"

The winst manual -113 -

9.2 Check if a Specific Service 1s Running

If we want to check if a specific service (exemplified with "preloginloader") is running, and,

e.g., if it is not running, start it, we may use the following script.

In order to get the list of running services we launch the command

net start

in a DosBatch section, capturing its output in 1ist0. We trim the list, and iterate through

its elements, thus seeing if the specified service is in it. If not, we do something for it.

[Akti onen]

Def StringList listO

Def StringList listl

Def StringLi st result

Set |ist0=get Qut StreanfrontSecti on(' DosBatch_netcal | ')
Set |istl=getSublist(2:-3, listO0)

Def Var $nyservi ce$
Def Var $conpar eS$
Def Var $splitS$

Def Var $f ound$

Set $found$ ="fal se"

set $nyservice$ = "prel ogi nl oader”

conmment

comment "search the list"

; for devel opping |oglevel =3

; loglevel =3

; in nornmal use we dont want to | og the | ooping
| oglevel = -1

for %%in listl do sub find_nyservice

| ogl evel =2

conment

if $found$ = "fal se"
set result = getQutStreanfrontSection ("dosinanicon_start_myservice")
endi f

[sub_find _nyservice]
set $splitS$ = takeString (1, splitStringOnWiteSpace(" %%))
Set $conpareS$ = $splitS$ + takeString(1l, splitString("%%w, $splitS$))
i f $conpareS$ = $nyservice$
set $found$ = "true"
endi f

[dosi nani con_start _rmyservi ce]
net start "$nyservice$"

[dosbat ch_netcal |]
@cho off

The winst manual -114 -

net start

9.3 Script for Installations in the Context of a Local

Administrator

Sometimes it is necessary to run an installation script as an ordinary local user and not in
the context of the opsi service. For example, there are installations that require a user
context or use other services that are started after a user login.

MSI installations which seem to need a local user can sometimes be configured by the
option ALLUSERS=2 to proceed without such a user:

[Akti onen]
Def Var $LOG_LOCATI ON$
Set $LOG LOCATION$ = "c:\tnp\nmyproduct. | og"
wi nbat ch_i nstal | _mypr oduct

[w nbat ch_instal |l _nyproduct]
nmsi exec /qb ALLUSERS=2 /I* $LOG LOCATI ON$ /i %SCRI PTPATHY
\fil es\nyproduct. nsi

In other case it is necessary to create a temporary administrative user in whose context
the installation takes place. This can be done as follows:

Create a directory 1ocalsetup in the product directory (i.e. in
install\productname).

Move all installation files into this directory.

Rename the installation script from <productname>.ins to

local <productname>.ins

Create anew <produktname>.insin install\productname and write the
statements as below documented (with variables values adapted to your situation) into
it .

Make sure that the script that is now named local <produktname>.ins finishes
with a reboot call: The last executed command in the Aktionen section has to be the
line

ExitWindows /Reboot

Insert a call at the beginning of the script 1ocal <produktname>.ins that removes
the password of the temporary local administrator:

[Akt i onen]

The winst manual -115 -

Regi stry_del _autol ogin

[Regi stry_del _autol ogi n]
openkey [HKLM SOFTWARE\ M cr osof t\ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Nane" =""
set "Defaul t Password"=""

The wInst script template temporarily generates a user context, executes an installation
in it, then removes it. Before using the template the following values are to be set
adequately:

- the value for the variable $Productnames
- the value of the variable $ProductsSize$
+ S$LockKeyboard$ to "true".
The script proceeds as follows:
- It creates a local administrator opsiSetupAdmin,;
- saves the autologon state;
- inserts opsiSetupAdmin as autologon user;

- copies the installation files to the client (as defined in $1ocalFilesPath$); among
them the installation script that is to be executed in the local user context;

- creates a RunOnce entry in the registry that calls wInst with the local script as
argument;

- reboots in order to make the registry change work;

- when wInst runs again, itcalls an ExitWindows /ImmediateLogout, and the
second scripting level begins to work:

- By autologon , opsiSetupAdmin is logged on without user interaction.
- Windows calls the RunOnce command, that is the wInst call.

- The wInst script should now regularly proceed. But at its end, there
must be a ExitWindows /ImmediateReboot command. Otherwise the
desktop would of the administratrive user opsiSetupAdmin who is
already logged at the moment would be accessible.

The winst manual -116 -

after the reboot, the main script works again cleaning everything (writing back the old
autologon state, deleting the local setup files, removing the opsiSetupAdmin
profile)

We call the two involved wInst Scripts master script and local scripe . The first one runs
in a system service context, the second which does the specific software installation runs
in the context of a local administrator.

To observe:

If the local script requires internal reboots then the master script must be adapted to
produce them. As long as the local script is not finished the master script hands over
control to the local script by an ExitWindows /ImmediateLogout. Of course the
RunOnce entry has to be created for each run. Since username and password for the
autologon are removed at the beginning of the local script they have to be reset each
time as well.

There is no direct access from the local script to the product properties (usually via the
String function GetProductProperty) . If there are values needed the master script
must retrieve them and e.g. save them temporarily in the registry.

There may be product installations by external setup program calls which change
registry entries which are saved by the master script and usually written back at the
end of the installation. In this case the master script must be adapted to avoid writing
back.

The local script runs with an administrator logged in. You have to lock the keyboard
when testing is done. Otherwise anybody sitting at the client could stop script
execution and take over the session.

In the following example, the password of the tempory opsiSetupAdmin user is set
via the function RandomStr, which is strongly recommended.

In order to avoid logging of passwords the loglevel is temporarily set to -2.

(Maybe a newer version of the following example can be found under

http://www.opsi.org/opsi wiki TemplateForInstallationsAsTemporarvLocalAdmin)

Copyright (c) uib gmbh (www uib. de)
; This sourcecode is owned by uib
and published under the Terns of the General Public License.

[Initial]

LogLevel =2

Exi t OnError =fal se

Scri pt Err or Messages=on
TraceMode=of f

The winst manual -117 -

http://www.opsi.org/opsi_wiki/TemplateForInstallationsAsTemporaryLocalAdmin

[Akti onen]

Def Var $Product Narme$

Set $Product Nane$ = "soft prod"

Def Var $Product Si zeMB$

Set $Product Si zeMB$ = " 20"

Def Var $Local Set upScri pt$

Set $Local SetupScript$ = "local _"+$Product Nane$+".ins /batch"

Def Var $LockKeyboar d$

; set $LockKeyboard$ to "true" to prevent user hacks while admn is logged in
Set $LockKeyboar d$="true"

; Set PasswdLoglLevel to -2 to prevent passwords to | ogged (not working yet)
Def Var $PasswdLogLevel $

Set $PasswdlLoglLevel $="-2"

Def Var $QOpsi Admi nPass$

Def Stringlist $outlist$

; some variables for the sub sections
Def Var $SYSTEMROOT$

Def Var $SYSTEMDRI VE$

Def Var $Scri pt Pat h$

Def Var $ProgranfilesDir$

Def Var $HOST$

Def Var $AppDat aDi r $

Set $SYSTEMDRI VE$ = " USYSTENMDRI VE%
Set $SYSTEMROOT$ = " USYSTEMROOTY

set $Script Pat h$="%Scri pt Pat h%

set $Progranfil esDi r $="9%°r ogranti | esDi r %
set $Host $="%Host %

set $AppDat aDi r $=" %AppDat aDi r %

; tenmp is always useful

Def Var $TEMPS$

Set $TEMP$= EnvVar (" TEMP")

Def Var Tnp

set $Tnmp$ = EnvVar ("TMP")

; Vari abl es for version of the operating system (QOS)- Test
Def Var $0S$

Def Var $M nor OS$

set $0S$ = Get OS

set $M nor OS$ = Get NTVersi on

Def Var $Reboot Fl ag$

Def Var $W nst RegKey$
Def Var $Reboot RegVar $
Def Var $Aut oNarme$

Def Var $Aut oPass$

Def Var $Aut oDons

Def Var $Aut oLogon$

Def Var $Aut oBackupKey$
Def Var $Local Fi | esPat h$
Def Var $Local Wnst $

Set $W nst Regkey$ = " HKLM SOFTWARE\ opsi . or g\ wi nst "

Set $Reboot Fl ag$ = Get Regi stryStringVal ue("["+$W nst RegKey$+"]
"+" Reboot Fl ag")

Set $Aut oBackupKey$ = $W nst RegKey$+"\ Aut oLogonBackup"

Set $Local Fil esPath$ = "C:\opsi_l ocal _inst"

Set $Local Wnst$ = "c:\opsi\util s\winst32. exe"

The winst manual -118 -

if (CS = "W ndows_NT")

if not (($RebootFlag$ = "1") or ($RebootFlag$ = "2"))

; statements before reboot

i f not(HasM ni nunSpace ("%SYSTEMDRI VE% , $Product SizeMB$ +" MB"))

LogError "Not enough space left on C. . "+$ProductSi zeMB$+" MB on C
required for "+$Product Nane$+"."
el se

; show product picture

ShowBi t map /3 "%scri pt pat h% | ocal set up\ " +$Pr oduct Nane$+". bnp"
" $Pr oduct Narme$"

Message "Preparing "+$Product Nane$+" install "
sub_Prepar e_Aut oLogon

; we need to reboot now to be sure that the autol ogon work

: Reboot initialisieren ..
Set $Reboot Fl ag$ = "1"

Regi st ry_SaveReboot Fl ag

Exi t Wndows /| mmedi at eReboot

endi f ; enough space
endif ; Rebootflag = not (1 or 2)
if ($RebootFlag$ = "1")

; Statenments after Reboot
; Set new Rebootfl ag
Set $Reboot Fl ag$ = "2"
Regi st ry_SaveReboot Fl ag
; the work statenents
Message "Preparing "+$Product Nane$+" install "
Regi st ry_enabl e_keyboard
Exi t Wndows /| mmedi at eLogout
; now | et the autol ogon work
; it will stop with a reboot
endif ; Rebootflag =1
i f ($RebootFlag$ = "2")

; Sstatenments after second reboot

Set $Reboot Fl ag$ = "0"

Regi st ry_SaveReboot Fl ag

; This part nmust be here even if nothing is done

; possibly we do sone cl eanup

Message "C eanup "+$Product Name$+" i nst al

sub_Rest ore_Aut oLogon

; This is the clean end of the installation
endif ; Rebootflag = 2
el se

LogError "W need W ndows 2000/ XP for installing with tenmporary |ocal user"
endi f

The winst manual -119 -

[sub_Prepare_Aut oLogon]

; copy the setup script and files

Files_copy_Setup_files_| oca

; read Autol ogon val ues for backup
set $Aut oName$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t User Nane")

; i f AutolLogonNane is our setup adm n user, sonething bad happend

; then let us cleanup

i f ($Aut oName$="opsi Set upAdmi n")

set $Aut oNanme$=""

set $Aut oPass$=""

set $Aut oDonts=""

set $Aut oLogon$="0"
el se

set $Aut oPass$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t Password")

set $Aut oDons = Get Regi stryStringVval ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t Donmai nNane")

set $AutoLogon$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Aut oAdmi nLogon")
endi f

; backup Aut oLogon val ues

Regi st ry_save_aut ol ogon

; prepare the adnmi n Aut oLogon

; LogLevel =" $PasswdLoglLevel $"

LogLevel =-2
set $Opsi Adm nPass$= Randonttr

Regi st ry_aut ol ogon

; Create our setup admi n user

Dosl| nAnl con_nakeadnmi n

LogLevel =2

; remove c:\tnp\wi nst.bat with password

Fil es_renove w nst_bat

; store our setup script as run once

Regi stry_runOnce

; di sabl e keyboard and nouse while the autol ogi n admi n wor ks

i f ($LockKeyboard$="true")

Regi stry_di sabl e_keyboard
endi f

[sub_Rest ore_Aut oLogon]

; read AutoLogon val ues from backup

set $Aut oName$ = Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Def aul t User Nane")

set $Aut oPass$ = Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Def aul t Passwor d")

set $Aut oDonB= Get Regi stryStringVal ue("[" +$Aut oBackupKey$+"]
Def aul t Dormrai nNane")

set $Aut oLogon$= Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Aut oAdmi nLogon")

; restore the val ues

; LogLevel =" $PasswdLoglLevel $"

LogLevel =-2
Regi stry_restore_aut ol ogon
LogLevel =2

; del ete our setup adm n user
Dosl nAnl con_del et eadmi n
; cleanup setup script, files and profiledir

The winst manual -120 -

Files_delete Setup_files_|ocal
; delete profiledir
Dosl nAnl con_del eteprofile

[Regi stry_save_aut ol ogon]

openkey [$Aut oBackupKey$]

set "Defaul t User Name" =" $Aut oNane$"
set "Defaul t Password"="$Aut oPass$"
set "Def aul t Domai nNanme" =" $Aut oDons"
set " Aut oAdm nLogon" ="$Aut oLogon$"

[Regi stry_restore_autol ogon]

openkey [HKLM SOFTWARE\ M cr osof t\ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Name" =" $Aut oNane$"

set "Defaul t Password"="$Aut oPass$"

set "Def aul t Domai nNanme" =" $Aut oDons"

set " Aut oAdm nLogon" ="$Aut oLogon$"

[Dosl nAnl con_del et eadmi n]
NET USER opsi Set upAdnmi n / DELETE

[Regi stry_SaveReboot Fl ag]
openKey [$W nst RegKey$]
set "Reboot Fl ag" = "$Reboot Fl ag$"

[Files _copy_Setup files_|ocal]
copy -s %ScriptPath%]| ocal setup*.* $Local Fil esPat h$

[Files delete Setup files_local]

del ete -sf $Local Fil esPat h$

; folgender Befehl funktioniert nicht vollstéandig, deshalb ist er zur Zeit
auskommrenti er

; der Befehl wird durch die Sektion "DoslnAnlcon_del eteprofile" ersetzt
(P.Onhler)

;del ete -sf "9Profil eDir% opsi Set upAdni n"

[Dosl nAnl con_del et eprofi | e]
rdir /S /Q"%rofil eDir% opsi Set upAdmi n"

[Dosl nAnl con_makeadmi n]
NET USER opsi Set upAdni n $Opsi Adnmi nPass$ / ADD
NET LOCALGROUP Admi ni stratoren /ADD opsi Set upAdm n

[Regi stry_aut ol ogon]

openkey [HKLM SOFTWARE\ M cr osof t\ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Nanme" =" opsi Set upAdmi n"

set "Defaul t Password"="$0psi Adnmi nPass$"

set " Defaul t Domai nNanme" =" %pcnane%

set "Aut oAdm nLogon"="1"

[Regi stry_runonce]
openkey [HKLM SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ RunOnce]
set "opsi_autol ogon_setup"="$Local Wnst$ $Local Fi | esPat h$\ $Local Set upScri pt $"

[Regi stry_di sabl e_keyboar d]

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Kbdcl ass]
; disable

The winst manual -121 -

set "Start"=REG DWORD: Ox4

; enabl e

;set "Start"=REG_DWORD: 0x1

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Moucl ass]
; disable

set "Start"=REG DWORD: Ox4

; enabl e

;set "Start"=REG_DWORD: 0x1

[Regi stry_enabl e_keyboar d]

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Ser vi ces\ Kbdcl ass]
; disable

;set "Start"=REG_DWORD: 0x4

; enabl e

set "Start"=REG DWORD: 0x1

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Moucl ass]
; disable

;set "Start"=REG_DWORD: 0x4

; enabl e

set "Start"=REG DWORD: 0x1

[Files_renove_w nst_bat]
delete -f c:\tnp_w nst. bat

9.4 XML File Patching: Setting Template Path for
OpenOffice.org 2

Setting the template path can be done by the following script extracts

[Akt i onen]

Def Var $oooTenpl ateDirectory$

;set path here:

Set $oooTenpl ateDirectory$ = "file://server/share/verzeichnis"

Def Var $sof fi cePat h$

Set $sof ficePat h$= Get Regi stryStri ngVval ue

(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ OpenOF fi ce. or g\ OpenOf fice. org\ 2. 0] Path")
Def Var $oooDirectory$

Set $oooDirectory$= SubstringBefore ($sofficePath$, "\program soffice.exe")
Def Var $oooShareDirectory$

Set $oooShareDirectory$ = $oooDirectory$ + "\share"

XM.Pat ch_pat hs_xcu $oooShareDi rectory$
+"\regi stry\data\org\openoffice\Office\Paths. xcu"

The winst manual -122 -

[XMLPat ch_pat hs_xcu]

OpenNodeSet

- error_when_no_node_exi sting fal se

- war ni ng_when_no_node_exi sting true

- error_when_nodecount _greater_1 fal se
- war ni ng_when_nodecount _greater_1 true
- create_when_node_not_existing true

- attributes_strict false

document r oot

all _childel ements_with:

el enent nane: "node"
attribute:"oor:nanme" val ue="Pat hs"

all _childel ements_with:

el enent nane: "node"

attribute: "oor:name" val ue="Tenpl ate"
all _childel ements_with:

el enent nane: "node"

attribute: "oor:nanme" val ue="Internal Pat hs"
all _childel ements_with:

el enent nane: "node"

end

Set Attri bute "oor:name" val ue="$oooTenpl at eDi rect ory$"

9.5 Retrieving Values From a XML File

As treated in chapter 7.7 , wInst can evaluate and modify XML files.

An example shall demonstrate how a value can be retrieved from a XML file. We assume
that the following XML file is read:

<?xm version="1.0" encoding="utf-16" ?>
<Col | ector xm ns="http://schemas. m crosoft.com appx/ 2004/ 04/ Col | ect or"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"
xs: schemaLocati on="Col | ect or. xsd" Ut cDat e="04/06/ 2006 12:28:17"
Logl d="{693B0A32- 76A2- 4FA0- 979C- 611DEE852C2C} " Versi on="4. 1. 3790. 1641" >
<Opti ons>
<Depart nent ></ Depart nent >
<I ni Pat h></| ni Pat h>
<Cust onval ues>
</ Cust onVal ues>
</ Opti ons>
<SystenLi st >
<Chassi sl nfo Vendor =" Chassi s Manuf acture" Asset Tag="System Encl osure 0"
Seri al Nunmber =" EVAL"/ >
<Di rectxI nfo Major="9" M nor="0"/>
</ Syst enii st >
<Sof t war eLi st >
<Appl i cati on Nane="W ndows XP-Hotfix - KB873333" Conponent Type="Hot fi x"
Evi dencel d="256" Root Di r Pat h="C: \ W NDOAB\ $Nt Uni nst al | KB873333%$\ spuni nst "

The winst manual -123 -

GsConponent ="true" Vendor="M crosoft Corporation" Crc32="0x4235b909" >
<Evi dence>
<AddRernovePr ogram Di spl ayNarme="W ndows XP-Hotfix - KB873333"
ConpanyNane="M crosoft Corporation" Path="C:\ W NDOAS\
$Nt Uni nst al | KB873333$\ spuni nst "
Regi st ryPat h="HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Un
i nstal I\ KB873333" Uninstall String="C:\W NDOAS\
$Nt Uni nst al | KB873333%\ spuni nst\ spuni nst. exe" OsConponent ="true"
Uni quel d="256"/ >
</ Bvi dence>
</ Appl i cation>
<Appli cati on Nane="W ndows XP-Hotfix - KB873339" Conponent Type="Hot fi x"
Evi dencel d="257" Root Di r Pat h="C: \ W NDOAB\ $Nt Uni nst al | KB873339%$\ spuni nst "
GsConponent ="true" Vendor="M crosoft Corporation" Crc32="0x9c550c9c">
<Evi dence>
<AddRernovePr ogram Di spl ayNarme="W ndows XP-Hotfix - KB873339"
ConpanyNane="M crosoft Corporation" Path="C:\ W NDOAS\
$Nt Uni nst al | KB873339%$\ spuni nst "
Regi st ryPat h="HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Un
i nstal I\ KB873339" Uninstall String="C:\ W NDOAS\
$Nt Uni nst al | KB873339%\ spuni nst\ spuni nst. exe" OsConponent ="true"
Uni quel d="257"/>
</ Bvi dence>
</ Appl i cation>
</ Sof t war eLi st >
</ Col | ect or>

To read the elements and get the values of all ,Application® nodes we may use these
extracts of code:

[Akt i onen]
Def StringList $list$

set $list$ = get ReturnListFronBection (' XM.Patch_findProducts ' +$TEMP$
+' \test.xm")
for %ine%in $list$ do Sub_doSoret hi ng

[XMLPat ch_fi ndProduct s]
openNodeSet
; Node ,Collector” is docunentroot
documnent r oot
all _childelenents_with:
el enent nane: " Sof t war eLi st "
all _childelenents_with:
el enment nane: " Appl i cati on"
end
return el enents

[Sub_doSonet hi ng]

set $esclLine$ = EscapeString: % i ne%
: now we can work on the content of $escLine$

The winst manual -124 -

We encapsulate the retrieved Strings by setting their values as a whole into an variable
via an EscapeString call. Since the loop variable $1ine% is nota common variable
but behaves like a constant all special characters init (as <> $ % “ ') may cause
difficulties.

9.6 Inserting a Name Space Definition Into a XML File

The wInst XMLPatch section requires fully declared XML name spaces (as is postulated
in the XML RFC). But there are XML configuration files which do not declare ,obvious*
elements (and the interpreting programs insist that the file looks this way). Especially
patching the lots of XML/XCU configuration files of OpenOffice.org proved to be a hard
job. For solving this task, A. Pohl (many thanks!) the functions XMLaddNamespace and
XMLremoveNamespace. Its usage is demonstrated by the following example:

Def Var $XMFi | e$
Def Var $XM_El enent $
Def Var $XM_NaneSpace$
set $XM.File$ = "D:\ Entw ckl ung\ OPSI \ wi nst\ Cormon. xcu3"
set $XMLEl ement$ = 'oor: conponent - dat a'
set $XM_NaneSpace$ = 'xm ns:xm ="http://ww. w3. org/ XM/ 1998/ nanespace"'
i f XMLAddNanespace($XM.Fi | e$, $XMLElI enent $, $XM_NaneSpace$)
set $NSMust Renpve$="1"
endi f

now t he XML Patch shoul d work
(commented out since not integrated in this exanple)

XM_Pat ch_Cormmon $XM.Fi | e$

; when finished we rebuild the original format
i f $NSMust Renove$="1"
i f not (XM_.RenpbveNanespace($XM.Fil e$, $XMElI enent $, $XM_NaneSpace$))
LogError "XM.-Datei konnte nicht korrekt wi ederhergestellt werden"
i sFatal Error
endi f
endi f

Please observe that the XML file must be formatted such that the element tags do not
contain line breaks.

The winst manual -125 -

http://www.w3.org/XML/1998/namespace

10 Special Error Messages

10.1 No Connection with the opsi Service
What the matter if wInst reports "... cannot connect to service"?
The information which is shown additionally may give a hint to the problem:

- Socket-Error #10061, Connection refused:

Perhaps the opsi service does not run.

- Socket-Error #10065, No route to host:
No network connection to server

- HTTP/1.1. 401 Unauthorized:
The service responds but the user/password combination is not accepted.

The winst manual -126 -

	1 Windows Installer
	2 Command Line Parameters
	2.1 Log Pathes

	3 Additional Configurations
	3.1 Central Logging of Error Messages
	3.2 Skinnable wInst

	4 The wInst Script
	4.1 An Example
	4.2 Primary and Secondary Subprograms of a wInst script
	4.3 String Expressions in a wInst Script

	5 Definition and Use of Variables and Constants in a wInst Script
	5.1 Overview
	5.2 Global Text Constants
	5.2.1 Usage
	5.2.2 Example
	5.2.3 List of Existing Constants
	(i) System Paths
	(ii) wInst Paths
	(iii) Network Information
	(iv) Data for and from opsi service

	5.3 String (or Text) Variables
	5.3.1 Declaration
	5.3.2 Value Assignment
	5.3.3 Use of variables in String expressions
	5.3.4 Secondary vs. primary sections

	5.4 Stringlist Variables

	6 Syntax and Meaning of Primary Sections of a wInst Script
	6.1 Primary Sections
	6.2 Parametrizing wInst
	6.2.1 Example
	6.2.2 Specification of Logging Level
	6.2.3 Required wInst Version
	6.2.4 Reacting on Errors
	6.2.5 Staying On Top

	6.3 String Expressions, String Values, and String Functions
	6.3.1 Elementary String Values
	6.3.2 Strings in Strings (Nested String Values)
	6.3.3 String Concatenation
	6.3.4 String Variables
	6.3.5 String Functions which Return the OS Type
	6.3.6 String Functions for Retrieving Environment or Command Line Data
	6.3.7 Reading Values from the Windows Registry and Transforming Values into Registry Format
	6.3.8 Reading Property Values
	6.3.9 Retrieving Data from etc/hosts
	6.3.10 String processing
	6.3.11 Additional String Functions
	6.3.12 (String-) Functions for Licence Management
	6.3.13 Retrieving Error Infos from Service Calls

	6.4 String List Functions and String List Processing
	6.4.1 Info Maps
	6.4.2 Producing String Lists from Strings
	6.4.3 Loading Lines of a Text File into a String List
	6.4.4 Simple String Values generated from String Lists
	6.4.5 Producing String Lists from wInst Sections
	6.4.6 Transforming String Lists
	6.4.7 Iterating through String Lists

	6.5 Special Commands
	6.6 Commands for User Information and User Interaction
	6.7 Conditional Statements (if Statements)
	6.7.1 Example
	6.7.2 General Syntax
	6.7.3 Boolean Expressions

	6.8 Subprogram Calls
	6.8.1 Syntax of Procedure Calling

	6.9 Controlling Reboot
	6.10 Keeping Track of Failed Installations

	7 Secondary Sections
	7.1 Files Sections
	7.1.1 Example
	7.1.2 Call Parameters
	7.1.3 Commands

	7.2 Patches-Sections
	7.2.1 Example
	7.2.2 Call Parameter
	7.2.3 Commands

	7.3 PatchHosts Sections
	7.4 IdapiConfig Sections
	7.5 PatchTextFile Sections
	7.5.1 Example
	7.5.2 Call Parameter
	7.5.3 Commands

	7.6 LinkFolder Sections
	7.6.1 Windows
	7.6.2 Linux

	7.7 XMLPatch Sections
	7.7.1 Structure of a XML Document
	7.7.2 Options for Selection a Set of Elements
	(i) Explicit Syntax
	(ii) Short Syntax
	(iii) Selecting by Textual Content (only for explicit syntax)
	(iv) Parametrizing Search Strategy

	7.7.3 Patch Actions
	7.7.4 Returning Lists to the Caller

	7.8 ProgmanGroups Sections
	7.9 WinBatch Sections
	7.10 DOSBatch/ShellBatch Sections
	7.10.1 Windows
	7.10.2 Linux

	7.11 DOSInAnIcon/ShellInAnIcon Sections
	7.11.1 Windows
	7.11.2 Linux

	7.12 Registry Sections
	7.12.1 Example
	7.12.2 Call Parameters
	7.12.3 Commands
	7.12.4 Registry Sections to Patch "All NTUser.dat"
	7.12.5 Registry Sections in Regedit Format
	7.12.6 Registry Sections in AddReg Format

	7.13 OpsiServiceCall Sections
	7.13.1 Call Parameters
	7.13.2 Section Format

	7.14 ExecPython Sections
	7.14.1 Example
	7.14.2 Interweaving a Python Script with the wInst Script

	7.15 ExecWith Sections
	7.15.1 Call Syntax
	7.15.2 More Examples

	7.16 LDAPsearch Sections
	7.16.1 LDAP – Protocol, Service, Directory
	7.16.2 Example of a LDAP response
	7.16.3 LDAPsearch Call Parameters
	7.16.4 How to Narrow the Search
	7.16.5 LDAPsearch Section Syntax
	7.16.6 Another Example

	8 64 Bit Support
	9 Cook Book
	9.1 Delete a File in all Subdirectories
	9.2 Check if a Specific Service is Running
	9.3 Script for Installations in the Context of a Local Administrator
	9.4 XML File Patching: Setting Template Path for OpenOffice.org 2
	9.5 Retrieving Values From a XML File
	9.6 Inserting a Name Space Definition Into a XML File

	10 Special Error Messages
	10.1 No Connection with the opsi Service

