Documentation
Q Q
-, R,

opsi

Version 3.4

open pc server integration

ub

uib gmbh

ub

Manual

Status: 6/29/10

uib gmbh
Bonifaziusplatz 1B
D - 55118 Mainz, Germany

phone: +49 - (0)6131-275610
www.uib.de

info@uib.de

1 2@9

http://www.uib.de/
mailto:info@uib.de?subject=Regarding%20the%20opsi%20documentation%20...

Table of Contents

U 1 I 10 1 s 1 10 12
1.1. Who should read this manual? 12
1.2. Notations 12

2. OVERVIEW OF OPSH....ciiiiiiicicimmrrrerrnssssssssssssss s ssssssssssssss s s s s s ssssssssssssssssssssssssssssss 13
2.1. Experience .13
2.2. opsi features 13
2.3. What's new at opsi 3.4 14
2.4. What you should read in case of a upgrade to opsi 3.4 A5

3. OPSI CONFIGURATION AND TOOLS.........cooiicmmmmrrrrrrrssssssmmsrss s 16
3.1. Overview 16
3.2. Tool: opsi V3 opsi-Configed 16

3.2.1. Requirements and OPCIAtION.cc.ecuiervierieriieierteetesteetessestesseessesseessesseessesseessesseessesssessesssessesssessesssessensses 16
T I | o B USSP 17
3.2.3. DEPOL SCIECHION.eeuvieietiieieie ettt ettt et e et e ete et e e teesaeeteesbeess e bessaesbeessesseessasseessasseessenssessesseensesseessesseenses 17
3.2.4. Single client selection and batch SEIECTION.cc.coeriririiiiririeecce e e 18
3.2.5. Client processing / WakeOnLan / Create a Client / Move a Client..........ccceoeeieriniinieneniieeniee e 19
3.2.6. ProdUuCt CONTIGUIALION.cveitieiieeieie et eee sttt ste et ste et et eebe st esbe st e esseeseesseeseensesseesessseseessessenssansanssensens 21
3.2.7. INEtDOOE PIOAUCES....c..eetieiietieie ettt ettt ettt ettt et e bt e st e bt e et e bt ene e e st et e eseeneeeseeeeeseenaeentenbeeneeenneeas 23
3.2.8. Hardware INFOIMAtION.cc.eeuiiuiiiiitiitiitietertet ettt sttt ettt et s e eb e e bt sbe st ebeebeenbeenaees 24
3.2.9. SOTEWAIE INVENLOTYeetietieiieeieteeeiete et e st e e ste e e st ete e st e e et eenteeseenseesee st enee st eneeeseensesseensesneensesnseennseesnnees 25
3.2.10. Logfiles: Logs from Client and SEIVET...........c.ccueiieriiiiierieiieiieieieeeesreee et ereesaeeseesreeseesreesaeesnseesesesssneeas 26
3.2.11. Server configuration: network and additional SEttINES........c.ccceeeuerrirrierieiienieie e 27
3.3. Tool: opsi V3 opsi-Webconfiged 27
3.4. Tool: opsi-package-manager: (de-)installs opsi-packages 28
3.5. Tool: opsi V3 opsi-admin 29
T T B 0 1<) o 4 1<) OO 30
3.5.2. TYPICAL USC CASCS...cuveeurerieereerieieriiesteeseetesseesseastessesssesseessesseessesaessesseessesssansesssessesssessesssessesssessesssessenssensses 31

ub

3.5.2.1. DEIELE PIOAUCT.......viiiieeiieeiieeieette ettt e ettt e ete et e s te e teessbeebaeesbeestaessseenseessseenseessseensaenssessnssneesannsns 31

3.5.2.2. Set a product to setup for all clients which have this product installed..............ccceocvrriiriniienciennnn. 31
3.5.2.3. CHENE dELELE....cueuenieiieiieiieiieieetee ettt ettt st sttt s s s s e 31
3.5.2.4. CLENE CTALE.c.veuiieeiteiieteeietct ettt ettt ettt ettt ettt ettt s bt s et a et a et eae bt et be e ennennes 31
3.5.2.5. Client DOOt IMAZE ACTIVALE.......ceuertieieetieie ettt ettt et st e e et e e see et e eaeente e st e seeeneeseeeneesneeenees 31
3.5.2.6. Attach Client AeSCIIPLION.eerviiieiieiieieeieteet ettt ettt et et esbeseeesbessbesbeesbeseessasseessesseesseeseensenens 31
3.5.2.7. Set PePatCh PASSWOIA. ...c..ccveieiiieiieieiteitetere sttt ettt ettt ettt st st s 31
3.5.3. LISt OF MIEthOAS......ceiiiiiiiicic ettt 31

4. ACTIVATION OF NON FREE MODULES:

OPSICLIENTD, LICENSE MANAGEMENT, VPN-SUPPORT............comvruerreeessenssenesnees 39
5. PRELOGINLOADER 3.4.........coiiiietiriinir s ssss s s ssss s s ssss s s s snsnns 41
5.1. Overview 41
5.2. Two modes: opsiclientd and prelogin 42
5.3. The new mode: opsiclientd 42
5.3, INSTALLATION. c..c.ntiiieeeierecicce ettt ettt stttk ettt e bttt et et ene e ens 44

R TR0 o1 (o] <3311« PO OSSPSR 45
5.3.3. OPSICHENEA NOLITICT......eetieiiiiieieetc ettt ettt et et esbeeseesseesaesseessesseensessseensseesnseeenssens 46
5.3.3.1. opsiclientd @Vent NOLIFICT...........cciiiiiiiiereee ettt ettt st eesre e e eeees 46
5.3.3.2. opsiclientd aCtion NOLIFICT.........ceeiiiiiiiiiieiecieei ettt ettt e e sa e be s e beessesseenbeeeeenens 46
5.3.4. OPSI-IOZINDIOCKETiiiiieieiecieeee ettt st et et e e e st et e e st e st eneeensae e nbeeenneeennaeas 47

R TR T 1071 Vi F4 31 15 o) s FO OO P PRI 48
5.3.5.1. Configuration via configuration file...........c.ccceecuerieiiiriieiirieieeeete et 48
5.3.5.2. Configuration via web service (general CONIZ)........covveiiririeiieieiieesee e 51
5.3.5.3. Configuration of different @VENTS..........cccecieriiiieriiiieieeieteeeete ettt sra e e eebeeenbaeeenees 53
5.300. LOZEING. .ttt ettt h bbbt b ettt et e h bbbttt eneetee 54
5.3.7. COMLIOL SBIVET.....vitiiiiititetet ettt ettt st sttt ettt et et e be bt et sae b b s b e e e s et e et e et e ebeenueenaees 56
5.3.8. Push Installation: OpSi-fIre-EVENT.PY.....cceccuirierieiierieiieie ettt ettt esaesteesaesseessesseesnsaeesseesnseesnsaens 57
5.4. The old mode: prelogin 57
5.5. Blocking the user login with the opsi-Loginblocker 58
5.5.1. opsi loginblocker under Windows 2000 to XP (prelogin and opsiclientd)..........cccecvreeririeninieneneeneen. 58
5.5.2. opsi loginblocker under Vista & Co (only opsiclientd)..........ccoccvevvirieriieiieniieieniceese e 58

‘jb 3 9,9

5.6. Subsequent installation of the opsi-preloginloaders 58

6. LOCALBOOT PRODUCTS: AUTOMATIC SOFTWARE DISTRIBUTION WITH OPSI.

59
6.1. opsi standard products 59
6.1.1. OPSI-PIEIOZINIOAUCT.ecueeiieeieiieieit ettt ettt ettt et te et e e ta et e et e e s e esaasseessenseessesseansessaensesnsseesnseesnseens 59
LT 03 o1 T AU 59
6.1.3. Javavm: Java RUNtime ENVIrONMENL.......c..ccovveiriiiriiiniiiniiinieieieneeeneeeneeie ettt sttt ettt nae s eaeens 59
LT 0 01 2T 100V TSRS 59
6.1.5. Swaudit and hwaudit: Products for hardware and software inventories..........c..coceceveeereereerienenceeennenne 59
6.1.6. OPSI-LEIMPIALE......eeieeiieiieeieie ettt et ettt ettt e te et e st e et e e s e eseesseeseeseentesseensesseenseeseenseaseenseestenseenseeennes 60
LT R 7410 s OSSOSO 60
0. 1.8, XPCONTIZ. .. eitieiiiitieie ettt et e bt et et e et e s aeesaesaeessesseessesseesseesaenseessenseessenseesseseenbeansaeentbeenntaeensaens 60
6.2. Integration of new software packets into the opsi software deployment 60
7. NETBOOT PRODUCTS: AUTOMATED OS INSTALLATION AND MORE............... 61
7.1. Unattended automated OS installation 61
8 B B 0 1= 4 1<) USRS 61
7.1.2. PIECONMAILIONS.enetinititciirieiirteetetee ettt ettt ettt sttt etttk ekt ne bt se st a et sae st sae st eteneetens 62
7.1.3. PC-client boots Via the NEEWOTK...........cceiieiieieiieiee ettt eae e e ennees 62
7.1.3.1. LoAdING PXEIIUX.....eeiuieiiiiieieitieteeitet ettt ettt ettt ettt et bt e bt e st e b esteebeemte st e e e e sbeenbesaeenaesmeenees 63
7.1.4. BOOE fTOM CD..co.ouiiiiiiiccccee ettt sttt e e 65
7.1.5. The linux bootimage prepares for reinsStallation...........ccceeverieierieiereee e 65
7.1.6. Installation of OS and opsi-preLoginLoader.........c..ccvevuiiiiriiieriieiere ettt 68
7.1.7. How the patcha program WOTKS...........cocuiiieiiiieeee ettt ettt e steeneesntee e naeesnteeeneens 68
7.1.8. Structure of the unattended installation ProdUCES..........c.coievveiieiiiieiicecreeeete et 70
7.1.9. Simplified driver integration With SYMIINKS...........ccccceeriiiiriiinieiieieccee e 70
7.2. Ntfs image (write and restore) 71
7.3. memtest 71
7.4. hwinvent 1
7.5. wipedisk 71
8. OPSI LICENSE MANAGEMENT........ccoiiiiimrr e ssss s s s 72

db 4 9.9

8.1. The opsi license management module - a co-financed opsi extension 72
8L 1. OVETVIEW. ..cuiiiiiiiitet ettt ettt ettt a bt bbbt be st b bt e et es e a b eh e ebe e bt e bt e bt sb e b e bt s e e st et e nbeenbeeneee 72
8.1.2. Acquisition and INSTAllatioN.coeiiiiiiiiiee ettt e eaeeas 73

8.2. License pools 73
8.2.1. License pools and OPST PIOAUCES.........ceervirieriiiierieeiesteeeereetesteeeesteeseesseeseesseesaesseessesseessassessssseesssesssseens 74
8.2.2. License pools and SOftWAre IDS........ccceiuieiirieiieiieiieiee ettt sttt ee e nteesneeenneees 75

8.3. Setting up licenses 76
8.3.1. Some aspects Of the [ICENSE CONCEPL......cuuiriiiiiiieietieierteet et ettt ettt et e steebesteessesreessesssesseesssaeessseesnseeas 77
8.3.2. RegiStering @ liCENSE COMIIACE..........ccuerieiirrertietestieieeteeteeteeteeetesaeseeessesaessesssessesssenseessenseensenseensenseensennns 78
8.3.3. Configuring the license MOEL..........cooiiiiiiiiiiiie ettt et e st enaeees 79
8.3.4. SAVING the dALA......cc.eiiiiiieieeieeeeeee ettt ettt et e b e e te et e e saesseesteseess e beeseesseensesaeenseeesreeennes 80

8.4. Editing licenses 80
8.4.1. Example dOWNZIade OPLIONcc.eeuiiiiiiiiiiieiieieeest ettt ettt sttt et e sttt e b et e e st e eeeneeeeene 81

8.5. Assignment and release of licenses 82
8.5.1. opsi service calls for requesting and releasing a liCENSE.ccuevvieieriieierieieie e 83
8.5.2. winst script calls for requesting and releasing of lICENSES.......c..ccueeririririenirininenenceee e 83
8.5.3. Manual administration 0f HCENSINE.eeouieieriiiieri ittt st 84
8.5.4. Preservation and deletion Of lICENSE USAGES........ccvieieruieieriieieriieiesieeiesteetesteeteeeeesseeseessesseessesseesnsaeensnens 86

8.6. Reconciliation with the software inventory .86

8.7. Overlook the license status 87
8.7.1. In case Of dOWNZIAdE OPTION.cc.iiiiiiieieitietiet ettt ettt sttt s h et e e et ese et e e st e nteebeeeeneeeenneas 88

8.8. Service methods for license management 89
8.8 1. LICEIICE COMITACES. .. .e.vitetititeteteteit ettt ettt ettt bt bbb ettt et e st e st e st eb e e bt ebe e bt eb e e bt s bt st et et et ensent et eneene 89
8.8.2. Licenses (SOfIWAIE LICENSES).....ccuuiirieiiieiieiiieiieete et e ete et e teete e s v e estaesaaeesteeesbeeseesaseesseessseesssessseensseaanns 90
8.8.3. LICEINSE POOIS...c.eiiutieeiiiieiiicteet ettt ettt et et e e et e e ete e s b e ess e beesb e beess e beesseeseessesseensesasenseeessaeentbeeeareeenraeas 92
8.8.4. Examples for using the methods from SCIIPLS.........cccverierierieriieieieeee et e e e eeeees 96

8.9. Example products and templates 98

9. OPSI-MODULE: DEPOT SERVER.......cccooirrrrririrrsmmrr e s s 99

9.1. Overview 99

9.2. Installation and initial operation 99

9.3. Access to the graphic user interface of the depot server via VNC 100

9.4. Shares for software packets and configuration files 101
9.4.1. SamMDba CONTIGUIATION.cetiiiieitieieit ettt ettt sttt sh et s b et e b et ea et e esee bt emeeebeeembeeanbeeenteeeneeas 101
9.4.2. Required administrative user acCoUNts and GLOUPS.......ccccvirverreeriereeriereeiesseesseeseesseessesseesesseessesssseessses 102

9.4.2.1. USET OPSICONTA. ...ttt ettt ettt et et e s et e e st e e en et e eneeenseeeenseeenseeenneeas 102
ub 5

L BT o 17 o 1]« FE USRS 103

9.4.2.3. GIOUP PCPALCH......i ittt ettt ettt et esaeesae s e esae s st ensesseenseeseensenseeennneennneenn 103

9.4.2.4. GIOUP OPSIAAMIUNL ..ottt ettt ettt et st et e bt et e s bt et e b e en b e e b e emte et e enteebeenbesaeebeeneenseeenneeans 103

9.4.3. Depot share with software packets (INStall)...........ccecievieriieiirieiereee e 103
9.4.4. Config share with configuration and logging (PCpatCh).........cceevverieiiirieiiiieeeeeeee e 104
9.4.5. Utils share: UHIIHES (UHIS)....ccueeieruiiieriiiieiieeiesie ettt ettt et e eteeteeseesaeesaesaeesaesteessesssessasseessenssessenssseenssens 104

9.5. Administration of PCs via DHCP 104
0.5.1. What 1S DHECP? ...ttt ettt st b sttt sttt et ettt et bt e bt ebesaebesseneeneans 104
0.5.2. DICPA.CONT ...ttt ettt et e e et e et e et essbeessaeesbe e sbeesseessaeansaenseesssaesssaesseesssennseensseesanses 106
9.5.3. Tools: DHCP administration with Webmin.............cccoceciiiriiiniiiniiniincecececeeeee e 109

9.6. opsi V3: opsi configuration API, opsiconfd and backend manager 110
10. OPSI-SERVER WITH MULTIPLE DEPOTS........ooiiiiiiiccsssernss s e s s e eneneenes 111
10.1. Support 111
10.2. Concept 111
10.3. Creating a (slave) depot-servers 113
10.4. packetmangment with the opsi-package-manager 114
10.5. configuration files 116
11. DHCP AND NAME RESOLVING (DNS).....ccctiiiiiiiimemrrrssssnnssssssssssss s ssssssssnenns 117
12. OPSI DATA STORAGE (BACKEND)........cccosmmmrrrriinnnssssnrns s s 118
12.1. File backend 118
12.1.1. File3.1-Backend (OPST 3.1)...eeuieuieiieiieie ettt ettt ettt st ae e te st enbe e st e nbeemeenbeeneeas 118

12.2. LDAP backend ..118
12.2.1. Integrating the LDAP-DACKENA.........ccceeriieieiieieciieie ettt ae e e et e e sabaeennee s 119
12.2.2. Configuring the LDAP-backend............cooouiiiiiiniiiiiiiiincneeee ettt 119
12.2.3. Assign the LDAP-backend to Methods.c.ooiiiiiiiiiiiieiicieiceecrceeee ettt et e 119

12.3. MySQL-backend for inventory data 121
12.3.1. overview and dataStIUCTUIE.c..eerueuirieirieiiriet ettt ettt 121
12.3.2. Initializing the MySQL-Backend...........cccooiiiiiiiiieice e 127

12.4. Conversion between different backends 128
12.5. Boot files 129
12.6. Securing the shares with encrypted passwords 129

‘jb 6 9,9

13. ADAPTING THE OPSI PRELOGINLOADER TO YOUR CORPORATE IDENTITY

(1) YOO 130
14. OVERVIEW: A PC BOOTS FROM THE NETWORK........ccccciiiiiiiiiiiiniiireeseeeeennens 131
15. IMPORTANT FILES ON THE DEPOT SERVERS..........ciiiiiieernneccennenennnene 132
15.1. Configuration files 132
15.1.1. Configuration fIles 1N /ETC.......cceririirieireirieircerte ettt ettt ettt ettt sttt et e reneene e 132
LS. 1 L1 JRECINOSES. ..ttt e 132

L B N) o7 o4 U 10| o OO PRSP 132
L5, 1. 1.3, /@tC/OPSI/PCREYS. ..evenvieeiesiieieiteeie st ete et et e et e e e te e s e e seesseeseessesstesseassesseessesseessenseessansaessenseesnsseensseens 132

I5.1. 1.4, /@tC/OPSI/PASSWA. ...ttt ettt ettt et ae et e s et e e ss e et e e s e et e ene e teeneeenteesmteeeaneeeenneean 133
15.1.1.5. /etc/opsi/backendManager.CONT............ccioiiriiiieriiiieie ettt ettt et saa s eeeas 133

15.1.1.6. /etc/opsi/backendManager.COnT/™. ..ottt 133

15.1.1.7. /ete/OPST/NWAUAIL/™.....coeiieiiecieee ettt et s e et eeteebeessbeesseessbeeeenssaaeeenssaaenan 133

15.1.1.8. /etc/opsi/opsSiCONTA.CONT.........cceiiiiiiieiecee ettt sttt be e enseeenseeensaeens 133
15.1.1.9. /etc/opsi/OPSICONTA.PEML.eouiiieieiieiieie ettt ettt sttt et e e bt e emteeeaneeas 134
15.1.1.10. /etc/opsi/opsipXeCON d.CONT..........ccoeriiiiiiieiereeie ettt be e stbe e st e e saeesnsee s 134

LT O O B L (0 T T 43 10 o VPR 134

IS 11120 JREC/MIE/ coniiniiiiciintctc ettt et bt 134

15.2. Boot files 134
15.2.1. Boot files in /APDOOL/IINUX.c.eiiuiieiiieiiricircererc ettt 134

I5.2. 1.1 PXEIIUX. 0.ttt ettt bbbt e et s 134
15.2.1.2. install UNA MINITOOL.EZ.......ecuieiiiieiieierie ettt ettt et e steesaesseessesseessesseesesssessesssensenssensenssens 135

15.2.2. Boot files in /tftpboot/INux/pXEliNUX.CEZ......ccveiiiiiieiieeeeeee et 135
15.2.2.1. 01-<MAC address> or <IP-NUMBER-IN-HEX>......cccceciviniiiniiiieieincneneeeeeeeeceeene e 135
15.2.2.2. AU ..ottt ettt 135
15.2.2.3 A0STALL .ttt b et 135

15.3. Files of the File-Backend 135
15.3.1. File3.1-BaCKENA.c.coiiiiiiiiieiirieicercrc ettt ettt s s s 135
I5.3.1.1. OVEIVIEW....eiiiiiiitiierte sttt ettt sttt ettt ettt ettt besae st b e ettt ebeenaeenaee 135
15.3.1.2. Configuration files in /var/lib/opsi/CONTig'........ccoovieviirieriiiieie et 136
15.3.1.2. 1. ClI@NEZIOUPS .M. c..tieieiieeieie ettt ettt e e st e e st et e e et e eeeneenseeneesseeneesseentesseensesaneeesnseean 136

15.3.1.2.2. lODALINI.c..ciiiiiciiiciiriccntctrtcertce ettt ettt etttk 136

15.3.1.3. Configuration files in /var/lib/opsi/config/Clients...........cccerierieriesieieniieee e 137

15.3. 1.3, 1. SPONAME™ M.t eeutiiienie ettt ettt ettt ettt et e et et ea e e bt satesbeemeenbeese e beemtenbeenteebeeneeeneeens 137
15.3.1.3.1.1. [ZENETAlCONTIZ]....cviiieiieiieiieieiieteee ettt ettt sttt et e e e sseessesseesaessaensesseensessnes 137
15.3.1.3.1.2. [NEtWOTKCONTIZeeeeeieeieiieeieee ettt ettt ettt et et e e eneeens 138
15.3.1.3.1.3. [10calboot Product StALES].......c.ccrieveeriierierrieieiieieseeiesteesbeeteesseeseesseeseesseeeseaeassseeenseeens 139
15.3.1.3.1.4. [netboot ProdUCt StALES].......ccrvertereriiieiriiririceieeierte sttt ettt ettt 139

15.3.1.3. 1.5, [<PrOQUCES-SEALE]......vieetreerieiiieeieeciee e et e et estteeteestee e teesteesbeessaeesseessseenseessaessnsneeesnnnes 139
15.3.1.3.1.6. [<Product>-inStall].........cccecteriirierieeieriieieieetee ettt se e s seaeseesaensaennees 139

I5.3. 13,17, [INF0] ittt ettt 139

15.3.1.4. Configuration files in /var/lib/opsi/config/templates............ccevireeeriiiienirierieeierieeeeee e 140
15.3.1.5. Configuration files in /var/lib/opsi/config/depots/<depotid>...........cceririrririeneneneeeceeieene 140
15.3.1.6. Product control files in /var/lib/opsi/config/depots/<depotid>/products.............ccceevrervrerrrererunrnne 140

15.4. Files of the LDAP-backend 143
15.5. Opsi programs and libraries 143
15.5. 1. PYtRON LIDTATY......iiiiiiiieieciesieeee ettt ettt ettt e e e st e sessee s e esaeseenseseensenseensenseansenseensesneenseenn 143
15.5.2. Programs i0 /UST/SDIN.......oiuiiiiiiieiietiee ettt ettt ettt et eae e bt e e bt e e bt e e eateeeneeas 143
15.5.3. Programs in /UST/DIN.........c.coieieriieierieeiesieeiesieete st eteeteesbeeteesseeseessesseessesssesseessessesssesseessesseessessseessseens 143
15.6. opsi-log files 144
LT R 2 VA o Y USSP 144
15.6.2. /var/10g/OpSi/OPSICONT.ccvieiiitieiiiieiecteete ettt sttt e sb et e esbesseessesseessesseessesseessessnas 145
15.6.3. /var/10g/OPSI/DOOTIMAZE.c.ceveueruiririiriieierie ettt ettt ettt ettt st sttt st b et st b et e b e nbeesbeenaees 145
15.6.4. /var/10g/opsi/OPSIPXECONTU.c.uiiuiiiiiiei ettt sttt sttt 145
15.6.5. Software installation (C:MIMP).......ccververiierrieierieiesteete st et et etesteeaesseessesteesseeseessesseesesssessesssessesssesnseens 145
16. REGISTRY ENTRIES ... 146
16.1. Registry entries for the opsi-preLoginLoader 146
16.1.1. OPSIOTZ/ZENETAL ...ttt sttt ettt ettt ettt sae bbb st et sse e enne e 146
16.1.2. OPSI.OTZ/SNATCINTO.eiciieiiiciieiicieic ettt ettt e st e e e e te e s e saeesbesseessesssessessaesseessenseessensenssens 146
16.1.3. OpS1.0TE/PIElOGINIOAARTeeeieeieiieieeiiee ettt ettt ettt et e st e e eesseeaesneenseeenneeeneeas 147
16.2. Registry-entries for opsi-wlnst 149
16.2.1. Controlling the logging via SySIOZ PrOtOCOL........ccvieiiriieieriieierii ettt ettt reere e eeneeas 149
17. SUPPLEMENT: UPDATE OF A OPSISERVERoociiiiimressnnnens 151

ub 6

17.1. Update 3.3.1 to 3.4 151
17.1.1. DOCUMENEALION.c.evervetiieiiieiireeitrt ettt ettt sttt sttt sttt et b et be e ebe e b e b s e et s enaesne e 151

R B 27 o1 Q| o T OSSPSR 151
17.1.3. DEbian / UDUNLU.c..ceriiuirieirieiiieieieteient ettt ettt sttt sttt ettt ettt se bt be e st saestsaesesaenaesteennens 151
17.1.3.1. Register of the 0psi 3.4 T@POSIIOIY.....ceiveeieitieieetieieeiete ettt et ete st ae st ete st eteenteeeseeesneeesneeas 151
17.1.3.2. Put in the opsi debian PACKAZES.ccvieiiriieiiiieeie ittt ettt et re et ereere e eteeetbeesaraeeeneas 152
L7014 SUSE....vnieteeeteeeee ettt e ettt 152
17.1.5. Checking the backend CONfIGUIAtION.ccoiuiiiiiiiiiiiiieee ettt s s 152
17.1.6. MySQL Inventory Backend............cccooieiiriiiiiieie ettt ettt sseesaesnsaesseeesneens 153
17.1.7. Download of the NewW OPST PrOAUCES.ccuieiiiiieieiteeieste ettt ettt st see e sae e e as 154
17.1.8. Import of the NEW OPST PIOAUCES.c.eecvieiiriieieciiete ettt ettt e ete et e reesaesreeseeesaaeesseessseeensseas 154
17.1.9. Install and check the activation file............ccieiieiiririee et 154
17.1.10. Final 'check' and rollout of the new preloginloader to the clients............ccccoeevenieiineninenciieeeen 155
17.2. Update 3.3 to 3.3.1 155
17.2.1. DOCUMENEIALION. ...ttt ettt ettt sttt st st sttt et ae e bt et e b e b e b saenesaeennene e 155
R 57 01 | o TSRS 155
17.2.3. DEbian / UDUNLU.c..c.eriiuirieiriiiiteieteeetent ettt sttt sttt ettt e et e bt seese e st saesesaesesaenaesteennens 156
17.2.3.1. Register of the 0psi 3.3.1 TEPOSILOTYeeruirieriieieeiieieeiieeeee ettt ettt te st e seessee e e snseeeseeenneeas 156
17.2.3.2. Put in the opsi debian PACKAZES.ccvieiiriieiiiiieieceeie ettt ettt re e saeese e ereeetbeesaraeeeneas 156
L7.204, SUSE....tiiiieeteeee ettt et et et e 157
17.2.5. Checking the backend CONfIGUIAtioN.ccoiuiiiiiiiiiiieieeee e et 157
17.2.6. MySQL Inventory Backend............ccooieiiriiiiiiieie sttt ettt saeesae e e enneeenneens 158
17.2.7. Download of the new opsi products (all USETS).........eeoueruieierieieiieie sttt 158
17.2.8. Download of the new opsi products (opsi-vista sSupport customers only)..........cccecvevvereeriereerneseennennnnn 158
17.2.9. Import of the NEW OPST PTOQUCES.........covertiriiieieieieietetete ettt et et s 159
17.2.10. Activating the new support for the USB and HD-Audio driver.........ccceceeviiieniniincneneneneee e 159
17.3. Update 3.2 to 3.3 160
17.3.1. DOCUMENEALION.c.evenitiieiirieiirteiteteet ettt ettt ettt sa ettt a et b et b et be e s e b et s e eaene e 160
17.3.2. Register Of the 0psi 3.3 T@POSIEOTY.....ccutiiiiuieieiiieie ettt ettt et see et e saeetesmteeebeeenneeeas 160
17.3.3. Put in the opsi debian PaCKAGES........cccvecveriieiiiieieiieie ettt ettt aeereebe e ebessaesbeesssbeesssaesnneeas 160
17.3.4. Checking the backend CONfIGUIAtION.c..ccueiiiiiiiriiiriirr ettt 161
17.3.5. Import of the NEW OPST PIOAUCES.ecvieiieiicieiteete ettt ettt ere e e reesaeereeseeesaaeesseesaseeennneas 162
17.4. Update 3.1 to 3.2 162
17.4.1. Register of the 0psi 3.2 TEPOSILOTYc.coveuirieuiriiirieieieeeieeetere ettt sttt sttt et e e e e eneens 162
17.4.2. Put in the opsi debian PaCKAZES.cceviruiriiririniiieiccctceeet ettt e 163
17.4.3. Import of the NEW OPST PrOAUCES.c.eecvieieriieierii ettt ettt et et e ste e e steessesreesseesnsaeesseesnsaeenssees 163

ub

17.4.4. Checking the backend CONfIGUIAtION...........c.ccuiiviiiiiiiiiiieiecieeteee ettt e e sae e sveeeneeenee s 163

17.5. Update 3.0 to 3.1 164
17.5.1. Register Of the 0PSi3.1 T@POSIEOIY......eivieieriieieeiieie et ete it ete st eae e eaesseesbessaestesseesseessanseensseesnseesnsnens 164
17.5.2. Put in the opsi debian Packages..........oecieriiiiiiiieiieeree ettt sttt st 164
17.5.3. Adapt the CONTIGUIATION.cociiiiieiieieiietete ettt sttt e ettt e seeeseesseessesseesseeensaeesseennsaeenssens 165

17.6. Update 2.5 to 3.0 166
17.6.1. Register Of the OPSi 3-TEPOSILOTYeeiuieiieiieeieit ettt ettt ettt ettt ettt et eee et eaeeseeeneeseeeneesaeeenneeens 166
17.6.2. Put in the opsi Debian PACKAZEcccoviiiiriieiiiieeieceeeste ettt sre et sreeaesbeesaesreesaseessneeas 166

17.7. Update 2.4 to 2.5 167

17.8. Update 2.x to 2.4 168

T LS 10 170

18.1. Difference between opsi version 3.3.1 and version 3.3 170
18.1.1. What's NEW @t OPST 3.3. 1 .cueiiiiiiiiriieerert ettt ettt ettt ettt bt e b e bt e sbee b 170
18.1.2. What you should read in case of a upgrade to opsi 3.3.1.c..cooiiiiieiiiiiiieeeee e 171

18.2. Difference between opsi version 3.3 and version 3.2 171
I8.2. 1. OVEIVIBW......eiiiiieiietieetere ettt sttt sttt ettt etttk b e bt s et s a et bt ettt ee et eseebeneenesaenaeeneens 171
18.2.2. What you should read in case of a upgrade t0 0psi 3.3....cuioiiiiiieiieee e 174
18.2.3. Migration t0 OPST V3.3, Luiiuiiiieieiicieieeteste ettt ettt ettt ettt et e e esb e s teesbessaessessaesseessesseessesseessanseesnseeas 175

18.3. Difference between opsi version 3.2 and version 3.1 175
L I R 1) 74 T2 USSP 175
18.3.2. What you ShOULA TEAG..........eoiuiiiiiticiieicieeeet ettt a et eesaesteessbaesaraeesasaesnseeas 176
18.3.3. MIGIation t0 OPST V3.2 uceiiiieiieieeieeie sttt ettt ettt e e et e st e sat e seese e sesstesseensesseessesseensenseensenseanseesnseean 177

18.4. Difference between opsi Version 3.1 and Version 3.0 177
L84 1. OVEIVIEW. . .euiiiiiiiitietetete ettt ettt ettt et sttt et ettt eaeeae e bt eateae e bt sbesa et e b e e enneenne 177
18.4.2. What you ShOULA TEAG........ccueiiiieiiieiecieiieet ettt ettt e e e b e e e seessessaenssaesssaeesseesnseeas 178
18.4.3. BACKEIA. ...ttt ettt ettt e ettt en et e n e e e ae et e ae et e ene e bt eneeteeneeateeneenean 179
18.4.4. MiIIation t0 OPST V3. L.iuiiiiiiiiiicieiieeiesieete ettt ettt ettt b e st beeseesaeesaesbeessesbaessesseessesseessesseenseesnseeas 179

18.5. Differences of opsi version 3 to version 2 180
18.5.1. Overview (What you Should 1€ad)........ccerviiiiriiriiiiiiieiiieence ettt e 180
18.5.2. COMCEPIUALuvieiiieiieeiit et ctte ettt et et e e e e e ta e e beeesaeesbeessbaesseessseesseensseeasaessseenseesssaenseesnsssaessnssseesanssses 180
18.5.3. Improvement Of the handIing............c.ccveieriieienieiere ettt et aaeseeeseeesnneens 182
18.5.4. VOCADUIALY ...ttt ettt b et s bt et e bt et e e bt em e eb e et e ese e bt emeenbeemeenneeesmneean 183
18.5.5. MIGIation t0 OPST V3. .ciiiiiiiiieieitieieetteteettet et et et este s e e beeseesbesseesseesaesseessesseessasseensenseessesseensensesensneens 185

‘jb 10 99

19. GLOSSARY

20. TABLE OF FIGURES

21. ADDITIONS AND CHANGES

21.1.
21.2.
21.3.
21.4.
21.5.
21.6.
21.7.

opsi 2.4 to opsi 2.5

Additions opsi 2.5 (9/25/06)

Additions opsi 2.5 / opsi 3.0 (12/8/06)

Additions opsi 3.0 (1.2.07)
Additions opsi 3.0

Additions opsi 3.1 (15.6.07)
Additions opsi 3.2 (21.11.07)

11

1. Introduction

1. Introduction

1.1. Who should read this manual?

This manual is written for all who want to gain a deeper insight into the mechanisms and
the tools of the automatic software distribution system opsi ("open pc server
integration"). It presents a complete HOWTO for the use of opsi while emphasizing the
understanding of the technical background. The decision maker who decides on using
opsi as well as the system administrator who works with it will get a solid foundation for
their tasks.

1.2. Notations

Angle brackets < > mark abstract names. In a concrete context any marked <abstract
name> must be replaced by some real name. Example: The file share, where opsi
places the software packets, may abstractly be noted as <opsi-depot-share>. If the real
fileshare is /opt/pcbin/install, then you have to replace the abstract name by exactly this
string. The location of the packet <opsi-depot-share>/ooffice becomes
/opt/pcbin/install/ooffice.

Example snippets from program code or configuration files use a Courier font, with
background color grey:
depoturl=smb://smbhost/sharename/path

2. Overview of opsi

2. Overview of opsi

Tools for automated software distribution and operating system installation are
important and necessary tools for standardization, maintainability and cost saving of
larger PC networks. Normally the application of such tools comes along with substantial
royalties, whereas opsi as an open source tool affords explicit economics. Expenses
thereby arise only from performed services like consulting, education and maintenance.

Although the software itself and the handbooks are free of charge, the process of
introducing any software distribution tool is still an investment. To get the benefit without
throwbacks and without a long learning curve consulting and education of the system
administrators by a professional partner is recommended. uib offers all these services
around opsi.

The opsi system as developed by uib depends on Linux-servers. They are used for
remote installation and maintenance of the client OS and the client software packets
("PC-Server-Integration"). It is based as far as possible on free available tools (GNU-
tools, SAMBA etc.). The complete system all together is named opsi (Open PC-Server-
Integration) and with its configurability is a very interesting solution for the administration

challenges of a large computer park.

2.1. Experience

opsi is derived from a system, which is in use since the middle of the 90's with more
than 2000 Client-PCs in different locations of a state authority. Since that time it has
continuously been adapted to the changing Microsoft operating system world. As a
product opsi is now accessible for a broad range of interested users.

You can find an geographical overview of the registered opsi-installations at:
http://www.opsi.org/map/.

2.2. opsi features

The main features of opsi are:

e automatic software distribution

ljb 13 2©e

2. Overview of opsi

automatic operating system installation

hard- and software inventory with history

comfortable control via the opsi management interface
support of multiple depot-servers

management of licenses

The functionality of opsi is based on the opsi server which allocates the server-sided
services.

2.3. What's new at opsi 3.4

Management of software licenses, which isn't free yet
(you have to pay 1 000 € once)

opsi-confied with support for context sensitive menus (right click)
Enhanced preloginloader 3.4 with two alternative modes:

e 'opsiclientd' which supports Vista and Windows 7, and have some more
new features but isn't free yet (you have to pay 2 000 € once)

e 'prelogin' which is the well known and free preloginloader 3.3 technology

Activation file to protect non free parts of opsi

Even opsi is open source, there are some components which are not free at the
moment. These components are developed in a co-funding project which means
that until the complete development costs are payed by co-funders, they are only
allowed to use by the co-funders or for evaluation purposes. If we have earned
the development cost we will give these modules for everybody for free. To
control the use of these components until they are free there is a activation file
/etc/opsi/modules, which is protected against changes via electronic signature. If
this activation file doesn't exist, only the free parts of opsi will work.

If you need for evaluation a temporary valid activation file please contact
info@uib.de. If you become a co-funder, you will get a unlimited activation file.

14 9.9

2. Overview of opsi

2.4. What you should read in case of a upgrade to opsi 3.4

At this manual.

e 4 Activation of non free modules: opsiclientd, license management, VPN-support
on page 39

e 5 preloginloader 3.4 on page 41

e Fehler: Referenz nicht gefunden Fehler: Referenz nicht gefunden on page
Fehler: Referenz nicht gefunden

e 8 opsi license management on page 72

3. opsi configuration and tools

3. opsi configuration and tools

3.1. Overview

The configuration of opsi requires some data management. In opsi V2 there only was a
file based data management and the old tools operated directly on the files (they still
can be used with the file backend). Since opsi V3 there are several types of data
management backends available and new tools which are using a web service for data
exchange. They exchange data via the 'opsiconfd’, and the 'opsiconfd' forwards the data
to the backend manager which passes the data into the selected backend. More about
this is to be found in chapter 'data management of opsi'.

The default backend is the File31 backend.

3.2. Tool: opsi V3 opsi-Configed

3.2.1. Requirements and operation
The opsi-configed requires Java 1.6 and a running opsiconfd on the server.

The opsi-configed is one component of the client product 'opsi-adminutils' and can be
started from the opsi-adminutils-group in the start menu.

On the server the opsi-configed will be installed as debian packet (opsi-
configed.xxxxx.deb) and can be started with a menu entry in the desktop menu as well
as /usr/bin/opsi-configed.

Also it can be started with java -jar configed. jar.

The help option java -jar configed.jar --help shows the available command
line options.

P:\install\opsi-adminutils>java -jar configed.jar --help
starting configed

default charset is windows-1252

server charset is configured as UTF-8

configed [OPTIONS]...

Options:
-1, --locale Set locale (format: <language> <country>)

ljb 16 2©e

3. opsi configuration and tools

-h, --host Configuration server to connect to

-u, —--user Username for authentication

-p, --password Password for authentication

-d, --logdirectory Directory for the log files
--help Show this text

The default port is port 4447. A different port can be selected together with the host
parameter, like '<host>:<port>'.

3.2.2. Login

- opsi config editor Logon X

opsi configuration editor, wersion 1.3.3 14.1.2009

Opsi server

| lacalhost

User

Fasswiord

Conneckt Exit

Figure 1: opsi-Configed: login mask

At login time the opsi-configed tries to connect the opsi server via https. The login is
done with the given parameters opsi server[:Port] (default port 4447 — opsiconfd) and
the User/Password of the opsi depot server account. For a successful login the provided
user has to be a member of the unix-group 'opsiadmin’'.

3.2.3. Depot selection

All depots integrated with your server are listed in the upper left corner of the opsi-
configed. By default the depot on your opsi-config-server is selected and the clients
belonging to this depot are shown. If you select multiple depots (in the usual manner of
multi-item-selection in a list , eg. with shift/ctrl + click) you have to reload the data for
getting any effects. If the selected server set is not synchronous (and can therefore not
be handled on common grounds) your are told so. Otherwise the client list of the
combined depots is shown, and their configurations may be editied.

ub .

3. opsi configuration and tools
3.2.4. Single client selection and batch selection

After a successful login the main window pops up and shows the tab 'Client selection'.
This tab shows a list of known clients with the columns 'client name', 'description' and
'last seen'.

e 'client name' is the 'full qualified hostname' which is the client name including the
domain name

e 'description' is a free selectable description which you can edit in the right top
part of the window

e 'last seen' shows the date and a time of the last client connect to the opsiconfd
web service

e 'created' shows the date and a time of the client creation. It isn't visible by default
and have to be activated by the context menu.

4 opsi config editor - i@bonifax = |EI|1|
File Grouping Opsiclient Help
c MA@y "
opsi Depot-Server W8 rietirh and additisnEl sethings I 53 Hardware information I L. Software irvenkory I E Log files
bonifax.uiblocal B Q Client selection L‘j Product configuration (} Metboot products
jvmax 10.uib.local client name # description last seen R
a7 ib.local 2008-12-19 15:41:45 :l P R TR,
waxd, uib.local Windows P 64 Testclient 2009-01-08 15:31:09 bonifaxuib.local ;I
vrnaxd, uib.local WinkP Test Jan 2009-01-19 19:47:21 LI
iz 11, uib.local test 64 bit Bardo/Rupert Z008-12-18 23:47:26
winix14.uib.local 2008-10-30 13:30:57 Description
iz 15, uib local teskclient detlef boni 2008-04-11 01:53:
iz 16, uib. local BARDO SCL Server 2005 Expre, .. [2009-01-21 22:25:26
LI iz 28, uib.local Arne, ¥P Pro 2009-01-22 10:46:41
iz, Uik Jacal Arne, %F Pro Testmaschine Z005-09-10 11:11:25 Notes
iz 32, uib local Bern PN Client 2009-01-22 09:36:21 ;I
iz 33, uib local 2009-01-21 14143115
e T S i3S, ib local Opsi + Vista Test 2009-01-20 18:21:26
g g g 1 iz 36, uib, local HZD ¥PM Client 1 2009-01-15 10:21:32
E OE K iz 37 uib local HZD VPN Client 2 2009-01-15 10:20:05
g g g iz 38, uib local 2009-01-09 12:35:42
Q Q Q iz, uib.local Susannes Testrechner 2009-01-22 10:36:30
iz 0, uib local 2008-04-01 12:29:04
i1, uib.local hupsi bootp client LI
i, uib. local 5
: 57 [mixe45. uib.local opsi MAC address
Configuration of clients Z005-01-21 14 : , : , :
nnes Testrechner 2009-01-22 10 I_ : I_ ' I_ : I_ ' I_ : I_
vmnix600, Uib.local

2005-12-19 12:35:07
2009-01-20 12:57:05

iz 7 b local
erniz<-alt. ib local

vrnbest. b, local

wtest vmware server 2 (arne)

2005-10-20 10:12:19

vbest103r . uib.local

virtualbox Rupert

vbest16r b, local

wmix31, Rupert virtueller Arbeit. .,

2009-01-05 05:50:40

vbest18-wzk-r uib.local

2005-05-24 17:58:35

vtestZ0rupert, uib local

lubuntu 7,04 System

windowsZkkest3rupert, uib. local

2007-07-12 11:06:35

windowsxptest2r,uib, local

2005-05-05 09:32:21

windowsxptest2rupert, uib, local

2007-11-14 10:57:17

Server configuration

uiimbecte ik lmeal

ernie P2 Bomerk Windmue ¥P Te

PONR-17-N4 1A:45:4F

Figure 2: opsi-Configed: client selection mask

ub

18

3. opsi configuration and tools

To sort the clients by a certain column click on the top header of that column.

You can select one or multiple clients to work with. The client view can be restricted to
the selected clients by clicking the funnel icon or from the menu by 'Grouping / Show
only selected clients'.

A selected client group can be saved with the icon 'Save grouping' or from the menu by
'Grouping / save group' with a free selectable name.

3. 5et grouping (opsi config editor) x|
Clignt group | ;l
Product name |FireFox ;l
Installation stakus |installed ;I
action request | =l
el s = =l |s.0.0s8
Package version - =
Hardware

[m compuTeER svsTEM [o] feataPhysicalemary [=] [< [=]f[zse |
[E7 oisk_partrmion =] [Freespace == Ew [El=] Bute
| |

Set | cese |

Figure 3: opsi-Configed: mask: group setting

With the icon 'Set client group' or 'Grouping / set client group' saved groups can be
loaded.

With the function 'Set client group' you can build client groups by certain criteria (e.g.: all
clients which have the product 'firefox' with the installation status 'installed').

3.2.5. Client processing / WakeOnLan / Create a Client / Move a Client

You can select one or more clients and send them a 'WakeOnLan' signal by choosing
this option from the menu 'OpsiClient'.

In the same menu you find the option for deleting selected clients, and creating a client.

If you choose to create a client an input mask opens. There you enter or confirm the
required data — client name without domain specification, domain name, depot server
name. You may add a textual description for this client and notes on this client.

ljb 19 2©e

3. opsi configuration and tools

.4 New opsi client (opsi config editor) <=

Client name (P name, without domain specification)

IP domain name
Likr local

belongs to depot:
bonifax. uib. local

[f the opsi server acts as PXE server:
Hardware address

N I O I I

If required for the opsi server DHCF config:

| Create |

Figure 4: creating a client

The mask also contains fields for an optional declaration of the IP-number and the
ethernet (MAC) address of a client. If the backend is activated for the configuration of a
local dhcp-server (which is not the default setting), this information will be used to make
the new client known to the dhcp-server. Otherwise the MAC address will be saved in
the 'File31'-backend in <pcname>.ini and the IP-number will be discarded.

In version 3.3 a menu item was added for moving a client to a different depot-server. If
clicked the following windows appears with a list of existing depot-servers (only
supported for professional support contracts):

3. opsi configuration and tools

Moving:

potryd detlef uib local (from: bonifax.uib local)

MO | VES

IJava Applet \wWindow
Figure 5: change the depot of a client

3.2.6. Product configuration

Switching to the tab 'Product configuration' you get a list of available software packets
with its installation status and action status for the selected clients. If there is a different
status for the selected clients this will be marked grey (‘'undefined'). The list of the
selected clients is shown at right on top. You can also sort the product list by clicking at
the column header.

e 'installation state' is the last announced state of the product and can hold the
values 'installed', 'not installed', 'installing’, 'undefined' and 'failed'. 'failed' means
that the installation script announced an installation abort. '‘Undefined' means the
multiple selected clients have a different state. 'Installing' is the state during an
product installation

e 'action request' is the next action to start. Possible values are 'none’, 'undefined'
and actions declared by the product script like: 'setup’, 'deinstall’, ‘once’, 'always'

3. opsi configuration and tools

/. opsi config editor - ‘@bonifax - .—I—I— ol x|
File Grouping OpsiClient Help
Sy =)
= 8 § RV
opsi Depot-Server " Iietiwork and | additional settings I 153 Hardware information | ,.[u Software inventary I [':j, Log files
e e - | L Client selection [J Product configuration 3 Nethoot products
ax10.uib.local installation state | action request VErsion ackage =
_ : q g ICIient: pelryadatletuis local =
7zip nok_installed «|
acczrtl not_installed Complete product name:
accessz not_installed .
accessxp not_installed banyan protocol client
accxprt! not_installed setup S
=l acroistanbfs not_installed L
acroread installed Packageversion: 1
acroread?d Product description:
= = i acrowrits not_installed - -
g \g g i B rot_installed setup Eanyan Yines Protokell und Client ;I
g g g alisadmodbe?_32 not_installed LI
altis 35 not_installed
g g g arcex installing Hints:
SEMTY not_!nstalled [Mur unter Windowes 2000 installierbar ;I
arcv3s not_installed
— }arcviewsz2 ot _installed LI
Configuration of clients {55y not_installed
asys_zdb not_installed Requirements:
E:z:an reqguired .pre-req... post-re... | on dein...
: bfscusta... installed: :l -
betz-firefox Z L
: mshakfix installed:
betz-ie7 - T
bf scustarnize: niok_inskalled [LesElvics: Ml
bfsmigrate not_installed once
bfsmigration not_installed LI
big_test not_installed 5
= R Switches: -
|b0r_c_5 installing
Server configuration [-52=me i) K |

Figure 6: opsi-Configed: product configuration mask

e 'version'is the version number of the software installed on the client (as defined

in the opsi packet)

e 'package'’is the package number of the opsi-packet installed on the client

Choose a software product to get more product information in the right part of the

window like:

'Complete product name': full product name of that software packet

'‘Softwareversion': software version number of the software packet (specified in the opsi

installation packet)

'Packageversion': version of the packet

'Product description': free text to describe the software

'Hints": free text with advices and caveats for handling the packet

22

3. opsi configuration and tools

'Requirements": A list of packets which the selected product depends on and the type of
dependency: 'required' means the chosen product requires that packet, but it doesn't
matter whether it is installed before or after the product itself. 'pre-required' means that
packet has to be installed before the product installation. 'post-required' means the
packet needs to be installed after the product installation. 'on deinstall' means this
action should take place before the chosen product will be de-installed.

'‘Switches': For a client specific configuration additional product specific switches can be
defined by the product. The list of available switches is shown. The meaning of the
switch is shown in the tool tip (when the cursor is moved over the switch name). Under
'‘property value' you get a list of permitted options for this switch. If there is no list, the
packet does not provide a restricted option list and the value can be any free text.

3.2.7. Netboot products

The products on tab 'Netboot products' are mainly used to install the client OS
(operating system) and are listed and configured like the products on tab 'Product
configuration'.

If for the selected client(s) a netboot product is set to 'setup’, the correspondent
bootimage will be loaded and executed at the next client reboot.

This is usually done to initiate an OS installation or any other bootimage task (like a
memory test etc.)

3. opsi configuration and tools

=lofxi

File Grouping OpsiClient Help

cHMBgGv -

opsi Depot-Server “ IWetwork and additionsl sethings I 153 Hardware information I 5] Software inventory
g Client selection | [:] Product: configuration & Netboot products
installakion stake | action request VErsion ackage 3 :
- o el B 2 ICIlent: petry3detiefuib.local
debian not_installed :l
hwinevent installed 1.1 1 Complete product name:
memtestas not_installed
netdeptest ‘Windows XP professional
nth-res.tor.e-lmage not_!nstalled Saftwareversion: sp3
nkFs-write-image not_installed o
opensuse not_installed Packageversion: 14
redhat not_installed Product description:
suselinux not_installed - -
syslinuxmeminfo not_installed Microsoft Betriebssystem ;I
winZ003 not_installed LI
win2003_en not_installed
winZ003_r2 not_installed Hints:
win2003_r2_64 ;I
WinZ003_rZ_x64_en not_installed
—_—win2005 LI
Configuration of clients fwinz003-64bit

winzk not_installed
winzk_en not_installed
win7 Switches:
winvista not_installed

s Property name Property value
winrvistatd — -

: - additional_drivers «|
winxppro installed Eetup sp3 13 =

- - askbeforeinst False
winxppro_enu installed spZ 2
ETTRAT exkendoem 1

- = ; Fullname uib GmbH
winxpprogd not_installed s k k

== = i386_dir i386
wipedisk not_installed : LI

Server configuration LI “““““““ L3t 1)

Figure 7: opsi-Configed: mask to start the bootimage

3.2.8. Hardware information

With this tab you get the last detected hardware information for this client (only available
if a single client is selected).

3. opsi configuration and tools

Configuration of clients

Scan 2009-01-06 11:06:55
‘@ AUDIO_CONTROLLER:
H BASE_BOARD

oo CACHE_MEMORY
CHAsSIS
COMPUTER _SYSTEM
] pctry3detlef
{3 DS _PARTITION
[Disk #0, Partition #0
8 FLOPPY_CONTROLLER
-1 FLOPPY_DRIVE
-E HARDDISK _DRIVE
8 IDE_CONTROLLER
15 KEYBOARD
oo MEMORY_BANK
oo MEMORY_MODILLE
‘| MONITOR,
8 NETWORK_CONTROLLER
“ 8 WT610Z [Rhine-11]
{2) OPTICAL_DRIVE
8 PCI_DEVICE
FOINTING DEVICE
- PORT_CONNECTOR,
PROCESSOR
SYSTEM_SLOT
B9 LISB_CONTROLLER
M UsB_DEVICE
% VIDED_CONTROLLER,

Server configuration

T6102 [Rhine-11]

Ethernet interface

WIA Technologies, Inc.

T6102 [Rhine-11]

00:04:61:4c:85:15

100.0 MBitfs

00:04:61:4c:85:15

192.168.2.116

Figure 8: opsi-Configed: Hardware informations for the selected client

3.2.9. Software inventory

epot-Server

fvmax 10.uib.local

Configuration of clients

Server configuration

=B 2§ B

i

Mame # Software id Wersion
Adobe Photoshop D1-v4.0 Adobe Photoshop D1-v4.0
Adobe Reader 8,1.3 - Deutsch {AC7EEABE-7AD7-1031-7644-A51300000. .. |8.1.3
ArcGlS Deskiop {1F34639E-4826-4B64-B163-42ESAESDE. ., [9.2.1350
ArciGIS Deskkop 9.2 - Deutsches Supplement {032 A065F-5644-498F-AB90-9329A550F, . (9.02,0200
ArciGIS Deskkop YBA Developer Resources {1FDODD4E-A07 2-4FE7-BDCD-84E3B1302. .. (9.2, 1324
ATI Display Driver ATI Display Driver 5.473-050309a-0613. ..
AutoHotkey 1.0.47.06 AutoHobkey 1.0.47.06
C-Media WDM Audio Driver C-Media Audio Driver
EPSON-Drucker-Software EPSOM Prinker and Utilities
FileZilla {remove only) Fil=Zilla
Filzip 2.01 Filzip 2.0.1.6_is1 2.01.6
Filzip 3.06 Filzip 3.0.6.93_is1 3.0.6
FreePDF xP (Remove only) FreePDF_XP
GRU Privacy Guard GNuUPG 1.4.9
GPiGshell 3,64 GPEshell_is1
InterBase Client 5.1.1 InterBase Client 5.1.1
Java(TM) 6 Update 10 {26A24AE4-0390-4CA4-8764-2FE321601.., |6.0.100
iEdit 4. 3preld iEdit_is1 4.5pre 14
McAfee YirusScan Enterprise {35C03C04-3F 1F-42C2-A989-A757EEASL .., [8.6.0
Microsoft JMET Framework 2.0 Microsoft JMET Framework 2.0
Microsoft JMET Framework 2,0 {71316460-CD3C-40F4-9769-CDIE4ERZE, . |2.0.50727
Microsoft .MET Framewark 2,0 Language Pack - DEU Microsoft .WET Framework 2.0 Language ...
Microsoft .MET Framewark 2.0 Language Pack - DEU H{8937FCE2-2FC6-4FC3-9FBES-DE2C92DES, ., [1.1,50727 .42
Microsoft Office P Standard {20120407-6000-1103-8CFE-00S004538, ., |10.0.6626.0
Microsoft Windows XP {Service Pack 3) CS375-640-0996263-236590 5.1
Mozilla Firefox (3.0.4) Mozilla Firefox (3.0.4) 5.0.4 (de)
M3XML 4.0 SPZ (KBE954430) {86423A00-5824D-4B3E-B072-8C5DCDCS. .. [4.20,9570.0

Mero BurnRiahts

Mero BurnRiohts!Uninstallkesy

Figure 9: opsi-Configed: Software information for the selected client

25

3. opsi configuration and tools

With this tab you get the last known software information for this client (only available if
a single client is selected).

3.2.10. Logfiles: Logs from client and server

Since opsi 3.3 the client log files are stored on the server and visible with the opsi-
configed.

It's also possible too search in the log file (to continue the search press 'F3' or 'n").

+@+opsi config editor - ehlers@bonifax s =100l
File Grouping OpsiClient Help
=] a8 |
¥ 4 c\ -
opsi Depot-Server [Client selection . I Product configuration | I Metboot products |

A | Wetwork and ad

nal settings [Hardweare information 59 T Software inventory T Log ﬂles"'Tj L

clientconnect instlog I hootimage I apsiconfd

ST TS T e e B === T o T

Target citmplexcel2007- kb9T3593 fullfle xB6-glb.exe exists, but seems to be older or equally old than source Plinstalhofiice_2007_hotfdms08- 06 :
Source Plinstallofiice_2007_hotidms089-067excel2007-kh87 359 3-fullfile-x86-glh.exe === FileVersion 12.0.6514.5000 Product/ersion 6514
Target citmplexcel2007-kb 97 3593-fullfile-¥86-glbh.exe === FileVersion 12.0.6514.5000 Productversion 6514

Info: Target cdmplexcel2007-kb973593-fullfile-x86-glh.exe exists and shall be ovenwritten

Phinstalhoffice_2007_hotfidrms09-06 Piexcel 2007-kh 87 359 3-fullfile-xB6-alb.exe copied to citmpl

1 File(s) treated

vmax10.uib.local

vmax106.uib.local

L‘m 2 ';m
uﬁ uﬁ u}d))
Execution of WinBatch_ApplyHotfix

Lm Lm L& Call"eMtmpiexcel2007-kh97 359 3-FullFile-x86-glb.exe /passive fnorestart fog:Citmpikh97 3593 bd"
Waiting until the called process is finished

Configuration ofclients Enlf;:;tCode 17025 Executed process "citmplexcel2007-kh873593-FullFile-xB6-alb.exe Ipassive fnorestart flog:Citmpikh 87 3593 bt

~~~~~~~ End Sub ~~~reenm sub_hotfix_install

0 errors
0warnings

Delete "citmp_winsthat_*
Search "citmpt
File "c:Mrpt_winsthat_bat'
Thefile has been deleted |
no script file name given D

wie have no update script
13.11.2009 15:50:21 JSON senvice request hitpsii 92.168.1.14:4447irpc?%7B%22id% 2211, %2 2method %2 2:% 2 25 etProductinstallation Status% 22, %Zz x|

= J T
Search string: Search next

Flgure 10: Display of the log file in the opsi-configed




3. opsi configuration and tools
3.2.11. Server configuration: network and additional settings

With the tab 'Network and additional settings' you can provide settings for the network
configuration of opsi and other optional configurations. The options are described in
chapter 6.1 “Filebackends / File31 / <pcname>.ini”.

ol

@bonifax

. opsi config editor -

File Grouping OpsiClient  Help

<A 1 1 BV

B clientselestion

. Broduct configuration I
iﬂ Metwork and additional settings |

W Hardware infarmation |

opsi Depot-Server b [Wetboot products

. Logfiles

B coftiare inventory: |

o local B

Metwork configuration

Property name Property value
configDrive P: «|

configUrl smb: fbonifaxjopt_pcbinfpcpatch
depotDrive F:
depotId bonif ¢, uib.local
depotUrl smb: fbonifax/opt_pcbinginstall
LI nextBootServerType
nextBootServicelIRL https:ff192,168,1,14:4447
opsiServer bonif ¢, uib.local
utilsDrive F:
ukilsLirl smb: f/bonif ax/opt_pcbinfutils vI

Additional configuration

Property name Property value
button_stoprietworking
e ——— debug on

G e T opsiclientd. global.log_lewvel 6

............................................... opsiclientsideconfigeaching FALSE
pcptchbitmapl winst1,brp
pcptchbitmapz winstZ, brp
pcptchlabell opsi.org

g pcptchlabelz uibr gmbh
'@’ secsuntilconnectiontimeout 2560

Server configuration

Figure 11: opsi-Configed: network and additional configuration

3.3. Tool: opsi V3 opsi-Webconfiged

The 'configed' as described above is available as an applet if the debian-packet 'opsi-
configed' is installed on the server.

Start configed from a browser: http[s]://<servername>:<port>/configed/
Example: https://dpvm03:4447/configed/

27



3. opsi configuration and tools

3.4. Tool: opsi-package-manager: (de-)installs opsi-packages

The opsi-package-manager is used for (de-)installing opsi-packages on an opsi-server.
opsi-package-manger replaces the former and now deprecated commands opsiinst and
opsiuninst.

In order to install a opsi-package this opsi-package must be readable for the opsi
system user opsiconfd. Therefore it is strongly recommended to install those packages
from the directory /home/opsiproducts (or a sub directory).

Install a package (asking no questions):

opsi-package-manager -i softprod 1.0-5.o0psi

Install a package (asking questions):

opsi-package-manager -p ask -i softprod 1.0-5.o0psi

Install a package (and switch required action to setup where installed):

opsi-package-manager -S -i softprod 1.0-5.opsi

Deinstall a package (asking no questions)::

opsi-package-manager -r softprod

Extract and rename a package:

opsi-package-manager -x opsi-template <version>.opsi --new-productid myprod

Calling opsi-package-manager with option -h gives a listing of possible options.

The option -d or --depots are reserved for the use in a multi-depot-server environment
and you will get commercial support only based on a professional support contract.
Using option -d the opsi-package will be copied to the /var/lib/opsi/products directory of
the target server before installing. Please make sure that there is enough free space on
this file system. See also:

chapter Fehler: Referenz nicht gefunden10 opsi-server with multiple depots page 111

svmopside:~# opsi-package-manager -h

Usage: opsi-package-manager [options] <command>

ljb 28 2©e



3. opsi configuration and tools

Manage opsi packages

Commands:
-i, --install <opsi-package> ... install opsi packages
-u, --upload <opsi-package> ... upload opsi packages to repositories
-1, --list <regex> list opsi packages matching regex
-D, --differences <regex> show depot differences of opsi
packages matching regex
-r, --remove <opsi-product-id> uninstall opsi packages
-x, --extract <opsi-package> ...extract opsi packages to local directory
-V, --version show program's version info and exit
-h, --help show this help message and exit
Options:
-d, --depots <depots> comma separated list of depots to process
(default: <this-host>.<myDomain>)
use keyword ALL to process all known depots
--direct-install install package directly without repository upload
-p, --properties <mode> mode for default product property values
ask display dialog
package use defaults from package
keep keep depot defaults (default)
-f, --force force install/uninstall (use with extreme caution)
-U, --update set action "update" on hosts where
installation status is "installed"
-S, --setup set action "setup" on hosts where
installation status is "installed"
--max-transfers <num> maximum number of simultaneous uploads
O=unlimited (default)
-o, —--overwrite overwrite existing package even if size matches
-k, --keep-files do not delete client data dir on uninstall
-t, --temp-dir <path> tempory directory for package install

--new-product-id <product-id>
set an new product id when extracting opsi package

--interface <type> type of user interface

text text based interface

snack newt interface (default)
-v, —--verbose increase verbosity (can be used multiple times)
-q, --quiet do not display any messages
--log-file <log-file> path to debug log file

3.5. Tool: opsi V3 opsi-admin

New in opsi V3.



3. opsi configuration and tools
3.5.1. Overview

opsi V3 introduced an opsi owned python library which provides an API for opsi
configuration. The 'opsiconfd' provides this API as a web service, whereas 'opsi-admin
is the command line interface for this API.

'opsi-admin' provides an interactive mode and a non interactive mode for batch
processing from within scripts.

The help option opsi-admin -h shows a list of available command line options:
# opsi-admin -h

Usage: opsi-admin [-u -p -a -d -1 -f -i -c -s] [command] [args...]

-h, --help Display this text

-u, —--username Username (default: current user)

-p, --password Password (default: prompt for password)

-a, --address URL of opsiconfd (default: https://localhost:4447/rpc)
-d, --direct Do not use opsiconfd

-1, --loglevel Set log level (default: 2)

O=nothing, l=critical, 2=error, 3=warning, 4=notice,
5=info, 6=debug

-f, --log-file Path to log file

-i, --interactive Start in interactive mode

-c, --colorize Colorize output

-S, —--simple-output Simple output (only for scalars, lists)
-s, --shell-output Shell output

'opsi-admin' can use the opsi web service or directly operate on the data backend. To
work with the web service you have to provide the URL and also an user name and
password. Due to security reasons you probably wouldn't like to do this from within a
script. In that case you'd prefer direct access to the data base using the -d option:
opsi-admin -d.

In interactive mode (start with opsi-admin -i Or opsi-admin -d -i -c¢) you get input
support with the TAB-key. After some input, with the TAB-button you get a list or details
of the data type of the next expected input.

The option -s or -S generates an output format which can be easily parsed by scripts.

There are some methods which are directly based on API-requests, and there are some
'tasks', which are a collection of function calls to do a more complex special job.

ljb 30 2©e



3. opsi configuration and tools

3.5.2. Typical use cases

3.5.2.1. Delete product

The method is 'deleteProduct <productld>'. The command line request for deleting the
product 'softprod' is:
opsi-admin -d method deleteProduct "softprod"

3.5.2.2. Set a product to setup for all clients which have this product installed

opsi-admin -d task setupWhereInstalled "softprod"

3.5.2.3. Client delete

opsi-admin -d method deleteClient <clientname>
For example:
opsi-admin -d method deleteClient pxevm.uib.local

3.5.2.4. Client create

opsi-admin -d method createClient <clientname> <domain>
For example:
opsi-admin -d method createClient pxevm uib.local

3.5.2.5. Client boot image activate

opsi-admin -d method setBootimage <OS-Produkt> <clientname>
For example:
opsi-admin -d method setBootimage win2k pxevm

3.5.2.6. Attach client description

opsi-admin -d method setHostDescription "dpvm02.uib.local" , "Client
unter Vmware"

3.5.2.7. Set pcpatch password

opsi-admin -d task setPcpatchPassword
Set the password of user pcpatch for Unix, samba and opsi.

3.5.3. List of methods

Here comes a short list of some methods with a short description. This is meant mainly
for orientation and not as a complete reference. The short description does not
necessarily provide all information you need to use this method.

ub 31



3. opsi configuration and tools

method addHardwareInformation <hostId>, <info>

Adds hardware information for the computer <hostid>. The hash <info> is passed.
Existing information will be overwritten for matching keys. Applicable for special keys
only.

method authenticated

Prove whether the authentication on the server was successful.

method checkForErrors

Test the backend for consistency (only available for file backend by now).

method createClient <clientName>, <domain>, description=None, notes=None

Creates a new client.

method createGroup <groupId>, members = [], description = ""

Creates a group of clients (as used by the opsi-Configed).

method createlicenseKey <productId>, <licenseKey>

Assigns an (additional) license key to the product <productid>.

method createlocalBootProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0, setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('localBoot')

Creates a new localBoot product (winst-Product).

method createNetBootProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0, setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('netboot')

Creates a new netBoot (boot image) product.

method createOpsiBase

For internal use with the LDAP-backend only.

method createProduct <productType>, <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0,setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=""

Creates a new product.

method createProductDependency <productlId>, <action>, requiredProductId="",
requiredProductClassId="", requiredAction="",
requiredInstallationStatus="", requirementType=""

Creates product dependencies.

method createProductPropertyDefinition <productId>, <name>, description=None,
defaultValue=None, possibleValues=[]

ub 32 «®-



3. opsi configuration and tools

Creates product properties.

method createServer <serverName>, <domain>, description=None

Creates a new server in the LDAP-backend.

method createServerProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0,setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('server')

Not implemented yet — for future use.
method deleteClient clientId

Deletes a client.
method deleteGeneralConfig <objectId>

Deletes a client configuration or domain configuration.
method deleteGroup <groupId>

Deletes a client group.

method deleteHardwareInformation <hostId>

Deletes all hardware information for the computer <hostid>.

method deletelicenseKey <productId>, <licenseKey>

Deletes a license key for product <productid>.

method deleteNetworkConfig <objectId>

Deletes network configuration (for example depot share entry) for a client or domain.
method deleteOpsiHostKey <hostId>

Deletes a pckey from the pckey data base.
method deleteProduct <productId>

Deletes a product from the data base.

method deleteProductDependency <productld>, <action>, requiredProductId="",
requiredProductClassId="", requirementType=""

Deletes product dependencies.

method deleteProductProperties <productId> *objectId

Deletes all properties of a product.

method deleteProductProperty <productId> <property> *objectId

Deletes a single product property.

method deleteProductPropertyDefinition <productId>, <name>
method deleteProductPropertyDefinitions <productId>

ljb 33 2©e



3. opsi configuration and tools

Deletes a single property or all properties from the product <productld>.

method deleteServer <serverId>

Deletes a server configuration

method exit

Quit the 'opsi-admin’.
method getBackendInfos listOfHashes
Supplies information about the available backends of the opsi depot server and which of

them are activated.
method getBootimages list

Supplies the list of the available boot images.

method getClientIds_list serverId = None, groupId = None, productId = None,
installationStatus = None, actionRequest = None

Supplies a list of clients which meet the assigned criteria.

method getClients listOfHashes serverId = None, groupld = None, productld =
None, installationStatus = None, actionRequest = No

Supplies an extended list of clients which meet the assigned criteria (with description,
notes and 'last seen' for each client).
method getDefaultNetBootProductId <clientId>

Supplies the netboot product (for example: system software) which will be installed
when the boot image 'install' is assigned.

method getDomain <hostId>

Supplies the computer domain.
method getGeneralConfig hash <objectId>

Supplies the general configuration of a client or a domain.
method getGroupIds list

Supplies the list of saved client groups.
method getHardwareInformation listOfHashes <hostId>

Supplies the hardware information of the specified computer.

method getHostId <hostname>

Supplies the hostid of the specified host name.
method getHost hash <hostId>

List of properties of the specified computer.

ljb 34 2©e



3. opsi configuration and tools

method getHostname <hostId>

Supplies the host name of the specified host id.

method getInstallableLocalBootProductlIds list <clientId>

Supplies a list of all localBoot products that could be installed on the client.

method getInstallableNetBootProductIds list <clientId>

Supplies a list of all netBoot products that could be installed on the client.
method getInstallableProductIds list <clientId>

Supplies a list of all products that could be installed on the client.
method getInstalledLocalBootProductIds list <hostId>

Supplies a list of all localBoot products that are installed on the client.
method getInstalledNetBootProductIds list <hostId>

Supplies a list of the installed netBoot products of a client or server.
method getInstalledProductIds_ list <hostId>

Supplies a list of the installed products for a client or server.
method getIpAddress <hostId>

Supplies the IP address of a host.

method getLicenseKey <productId>, <clientId>

(For future use) Supplies an available license key of the specified product or the product
license key which is assigned to the client.

method getLicenseKeys listOfHashes <productId>

(For future use) Supplies a list of all license keys for the specified product.
method getLocalBootProductIds list

Supplies a list of all (for example in the LDAP-tree) known localBoot products.

method getLocalBootProductStates_hash clientIds = []

Supplies for all clients the installation status and action request of all localBoot
products.

method getMacAddresses_ list <hostId>

Supplies the MAC address of the specified computer.
method getNetBootProductlIds_ list

Supplies a list of all NetBoot products.
method getNetBootProductStates hash clientlds = []

ub 35 «®-



3. opsi configuration and tools

(For future use) Supplies for all clients the installation status and action request of all
netBoot products.
method getNetworkConfig hash <objectId>

Supplies the network specific configurations of a client or a domain.
method getOpsiHostKey <hostId>

Supplies the pckey of the specified hostid.
method getPcpatchPassword <hostId>

Supplies the password of pcpatch (encrypted with the pckey of hostld).
method getPossibleMethods listOfHashes

Supplies the list of callable methods (approximately like in this chapter).

method getPossibleProductActionRequests list

Lists the available action requests of opsi.

method getPossibleProductActions_hash

Supplies the available actions for each product (setup, deinstall,....).
method getPossibleProductActions list productId=None

Supplies the list of all actions (setup, deinstall,....).
method getPossibleProductInstallationStatus_list

Supplies the list of all installation stati (installed, not installed,...).

method getPossibleRequirementTypes list

Supplies the list of types of product requirement (before, after,...).
method getProduct hash <productId>

Supplies the meta data (description, version,...) of the specified product.

method getProductActionRequests listOfHashes <clientId>

Supplies the list of upcoming actions of the specified client.

method getProductDependencies listOfHashes productlId = None

Supplies the list of product dependencies of all or the specified product.

method getProductIds list productType = None, hostId = None,
installationStatus = None

Supplies a list of products which meet the specified criteria.
method getProductInstallationStatus_hash <productId>, <hostId>

Supplies the installation status for the specified client and product.
method getProductInstallationStatus_listOfHashes <hostId>

ub 36 «®-



3. opsi configuration and tools

Supplies the installation status of the specified client.
method getProductProperties hash <productId>, objectId = None

Supplies the product properties of the specified product and client.

method getProductPropertyDefinitions hash

Supplies all known product properties with description, allowed values,... .

method getProductPropertyDefinitions listOfHashes <productId>

Supplies the product properties of the specified product with description, allowed
values,... .
method getProductStates hash clientIds = []

Supplies installation status and action requests of all products (for the specified clients).
method getProduct hash <productId>

Supplies the meta data (description, version, ...) of the product

method getProvidedLocalBootProductlIds_list <serverId>

Supplies a list of available localBoot products on the specified server.
method getProvidedNetBootProductlds list <serverId>

Supplies a list of available netBoot products on the specified server.

method getServerId <clientId>

Supplies the opsi depot server in charge of the specified client.
method getServerIds_ list

Supplies a list of the known opsi depot server.

method getServerProductIds list

Supplies a list of the server products.
method getUninstalledProductIds list <hostId>

Supplies the products which are uninstalled.

method powerOnHost <mac>

Send a WakeOnLan signal to the specified MAC address.

method setBootimage <bootimage>, <hostId>, mac=None

Set a boot image for the specified client.

method setGeneralConfig config, objectId = None

Set for client or domain the generalConfig

method setHostDescription <hostId>, <description>

ub a7



3. opsi configuration and tools

Set a description for a client.
method setHostLastSeen <hostId>, <timestamp>

Set the 'last seen' time stamp of a client.

method setHostNotes <hostId>, <notes>

Set the notes for a client.
method setMacAddresses <hostId>, <macs>

Set the client MAC address in the data base.

method setNetworkConfig <objectId>, serverId='', configDrive='',6 configUrl='",
depotDrive='"', depotUrl='', utilsDrive='',6 utilsUrl='',6 winDomain='"',
nextBootServiceURL=""

Set the specified network data for the opsi-preloginloader for a client.

method setOpsiHostKey <hostId>, <opsiHostKey>

Set the pckey for a computer.
method setPXEBootConfiguration <hostId> *args

Set the pipe for PXE-Boot with *args in the 'append'-List
method setPcpatchPassword <hostId> <password>

Set the encrypted (!) password for hostid
method setProductActionRequest <productId>, <clientlId>, <actionRequest>

Set an action request for the specified client and product.

method setProductInstallationStatus <productId>, <hostId>,
<installationStatus>, policyId="", licenseKey=""

Set an installation status for the specified client and product (policyld and licenseKey
are for future use).

method setProductProperties <productId>, <properties>, objectId = None

Set the product properties for the specified product (and the specified client).

method unsetBootimage <hostId>

Unset the boot image start for the specified client.

method unsetPXEBootConfiguration <hostId>

Delete PXE-Boot pipe.
method unsetProductActionRequest <productId>, <clientId>

Set the action request to 'undefined' so LDAP policies are in charge for this client.



4. Activation of non free modules: opsiclientd, license management, VPN-support

4. Activation of non free modules:
opsiclientd, license management, VPN-support

Even opsi is open source, there are some components which are not free at the
moment. At this time (13 July 2009) the following components of opsi are not free:

license management
opsiclientd (Vista / Windows 7)
VPN Support (not completely implemented yet)

These components are developed in a co-funding project which means that until the
complete development costs are payed by co-funders, they are only allowed to use by
the co-funders or for evaluation purposes. If we have earned the development cost we
will give these modules for everybody for free. To control the use of these components
until they are free there is a activation file /etc/opsi/modules, which is protected against
changes via electronic signature. If this activation file doesn't exist, only the free parts of
opsi will work.

If you need for evaluation a temporary valid activation file please contact info@uib.de. If
you become a co-funder, you will get a unlimited activation file.

You may check your activation state with -4 opsi-Module X|
one of the following methods:
valid: true
Using the opsi-configed choose the menu EXPIres: never
entry Help/opsi-Module which shows a vista: true
YN true

window with the activation state. customer: Lib GrbH

, license_management: true
At the command line you may use the - L

command opsi-admin with the method

getOpsiInformation_ hash. (Remark: ok.

Never give your activation file or the output  Fig. 12: Display of activation state in opsi-configed
of this command to third people without

deleting the signature).

db 39 99



4. Activation of non free modules: opsiclientd, license management, VPN-support

opsi-admin -d method getOpsiInformation hash
{
"opsiVersion" : "3.4.0.0",
"modules" :
{
"customer" : "uib GmbH",
"vista" : false,
"license management" : true,
"expires" : "never",
"valid" : true,
"signature" : "THIS-IS-NOT-A-VALID-SIGNATURE",
"vpn" : true

}



5. preloginloader 3.4

5. preloginloader 3.4

5.1. Overview

To make Software distribution manageable for the system administrator, a client
computer has to notice that new software-packets or updates are available and install
them without user interaction. It is important to make user-interaction completely
obsolete as the installation can run unattended this way and a user cannot stop the

installation during the installation process.
These requirements are implemented by two software components:

On the client side at boot time before the user logs in the opsi preLoginLoader

examines whether an update has to be installed for this client.

- P

Figure 13: Automatic software distribution on a client. An opsi server provides
configuration information and installable software packets.

If there are software packets to be installed on the client, the script processing program
'winst' is being started to do the installation job. The server provides all the installation
scripts and software packets on a file share. At this time the user has no chance to

interfere with the installation process.

As an additional option the module 'loginblocker' can be installed to prevent a user login

before the end of the installation process is reached.

ub 41



5. preloginloader 3.4

Before software packets can be installed with the 'winst' program, they have to be
prepared as opsi packets. For details see Chapter 'Integration of new software packets

into the opsi software deployment'.

5.2. Two modes: opsiclientd and prelogin

Due to the major changes between Windows XP and Vista, the opsi preloginloader (with
the exception opsi-winst) has been completely new implemented. The major component
of this new implementation is the opsiclientd which replaces the old parts prelogin.exe
and pcpatch.exe. Inside the opsi-preloginloader 3.4 packages there are both
implementations which can be installed as different modes: prelogin or opsiclientd.

The opsiclientd is not free at the moment and subject to a co-funding project. In order to
use the opsiclientd you need a activation entry for 'vista' in the activation file. For Details
see Chapter 4 Activation of non free modules: opsiclientd, license management, VPN-
support on page 39.

Wich mode will be installed is controlled by the product property ‘client_servicetype' and
the file /opt/pcbin/install/preloginloader/files/opsi/cfg/config.ini with the entry:
[installation]

;client servicetype=prelogin
client servicetype=opsiclientd

To check which is the default value for 'client_servicetype' at your server, call:

opsi-admin -d method getProductProperties_hash preloginloader

To set the default value for 'client_servicetype' at your server to 'prelogin’ call:

opsi-admin -d method setProductProperty preloginloader "client servicetype" "prelogin"

If you don't have activation for 'vista', you should use the 'prelogin' mode because the
opsiclientd will not work without activation.

5.3. The new mode: opsiclientd

This new implementation has been done in the Python language which is also used for
the server parts of opsi. For the installation are files are used, which are compiled by the
py2exe program. This makes the installation independent from any existing python
installation at the client.

ljb 42 2©e



5. preloginloader 3.4

The important enhancements are:

-Event based control:

The activity of the opsi client agent (opsiclientd) may be triggered by different events in
the client system. According to this fact the start of the installation is not fixed at the
system startup any more.

-Control via web service:
This interface is used for maintenance purpose at the moment. It will be used for central
(time) controlled installations in future.

-Remote configuration:
The configuration data for the clients may be changed (globally or client specific) at the
server by editing the 'general config' parameters

The opsi-preloginloader 3.4 consists of multiple components :
-opsiclientd: the central service

-notifier: information and communication window
-opsi-loginblocker: block the login until the installation has finished

The legacy prelogin.exe based service may be installed as well, but it is deprecated and
should be replaced by opsiclientd based installations.



5. preloginloader 3.4

/opsiclientd-notifier

jsonrpc
L J

opsiclientd (OpsiLoginBlocker

Notification server
Port 4442

Control pipe 7 Bitte warten...
\\.\pipe\opsiclientd jsonrpc

Control server

Port 4441

%, Windows Vista Utimate
~ J
e . ~
Browser / opsiconfd
jsonrpc
L—p
EEEEE
= J

Figure 1: Scheme of the opsiclientd components

5.3.1. Installation

In case of automatic OS-Installation with opsi (not image based), the opsi preloginloader
will be installed automatically.

For a subsequent installation on a existing Windows system or for repair purposes there
two possibilities that described more detailed in the opsi manual:

Lib 44 Qég



5. preloginloader 3.4

-Login with a administrative account, mount the opt_pcbin share of the opsi server and
call the script install\preloginloader\service_ setup.cmd

-Use the server side script opsi-deploy-preloginloader

At clients which are still integrated in opsi, the new preloginloader can be install with the
standard opsi process by switching the required action to setup. At Vista clients with the
former preloginvista installed, this product will be switched to not_installed. The product
preloginvista may (and should) deleted from the server. The OS-Installation packages
(winvista, winxppro, ...) must be updated too in order to work with the new
preloginloader.

The preloginloader got a new product property 'client_servicetype'. The default is
‘opsiclientd' which is the new one. In special cases you may switch to the legacy
'prelogin’. But this one contains no new extensions and is deprecated.

For deinstallation of the preloginloader the action request may be switched to 'uninstall’

5.3.2. opsiclientd

Core component of the preloginloader is the service opsiclientd. This service starts at
the boot time.

The opsiclientd has the following tasks:

e Getting active if the configuration event takes place. The default event is
'gui_startup' which will fire (like the legacy version) at boot time and before login.

e Via web service (JSON-RPC) the opsiclientd contacts the opsi server and ask for
configuration data and required actions.

e Creates a named pipe which is used by the opsi login blocker to ask via JSON-
RPC the opsiclientd when to unblock the login.

e Starting the opsiclientd_notifier as thread for information and interaction with the
user.

e If needed, mounting the depot share and update and start of the opsi winst to
process the action requests (installations).



5. preloginloader 3.4
5.3.3. opsiclientd_notifier
The opsiclientd_notifier implements the interaction with the user. They displays status

messages and may give the possibility to interact with the process.

5.3.3.1. opsiclientd event notifier

The event_notifier gets active if a event fires and for this event is configured that
warning_time is > 0 (default = 0). In this case the user will see warning_ time
seconds a message windows with the in message configured text and a 'Start now'
button. Is user_cancelable = true, so will be also a 'Abort' button enabled. When the
warning_time is expired or if the user choosed 'Start now' the actions and the
action_notifier will be started.

At the default event gui_startup, the event_notifier is disabled by default. It is
enabled and more important at events like vpn_startup.

=]

Processing event <event:
Q@g qui_startup=

Starting to process product actions, Attertion: the
computer may restart. Please save all unsaved data now,

| Abart I | Start now

Figure 2: opsiclientd event notifier

5.3.3.2. opsiclientd action_ notifier

The action_notifier presents the action progress and gives (if so configured) the
possibility to cancel the process.



5. preloginloader 3.4

event gui_starup

Figure 3: opsiclientd action notifier

5.3.4. opsi-loginblocker

The opsi login blocker at Vista is implemented as 'credential provider filter'.
It blocks all ‘credential providers' until the release by the opsiclientd or the timeout.

SMSS
Session Manager Subsystem

Session 0 ( Session 1 \

ﬁ WININIT WINLOGON 1

LogonUl (COM server)

LSASS é  CredentialProviders ‘
Local Security Authority SubSystem . ( PasswordProvider ) .:

:’ LSM OpsiLoginBlocker |
Local Session Manager . ‘
SERVICES /Winstao
Service Controller Z
> Winlogon
W Zugriff nur winlogon.exe (Token)

OPSICLIENTD Default ‘_
Opsi Client Daemon

Screensaver

Figure 4: Scheme of opsiclientd an login blocker in Vista



5. preloginloader 3.4

The opsi login blocker at Win2K / Winxp is implemented as 'pgina’. It blocks the
msgina.dll until the release by the opsiclientd or the timeout.

5.3.5. Configuration

5.3.5.1. Configuration via configuration file

The configuration file is:
c:\program files\opsi.org\preloginloader\opsiclientd\opsicliend.conf

The configuration written in this file may be changed by different configuration data,
which comes via web service after a successful connection to the opsi-server.

A sample opsiclientd.conf:

[global]

# Location of the log file.
log _file = c:\\tmp\\opsiclientd.log

# Set the log (verbosity) level

# (0 <= log level <= 9)

# 0: nothing, 1: critical, 2: errors, 3: warnings, 4: notices

# 5: infos, 6: debug messages, 7: more debug messages, 9: passwords
log level = 4

# Opsi host key.
opsi_host key =

# On every daemon startup the user login gets blocked

# If the gui starts up and no events are being processed the login gets
unblocked

# If no gui startup is noticed after <wait for gui timeout> the login gets
unblocked

# Set to 0 to wait forever

wait for gui timeout = 120

[config service]

ub 48



5. preloginloader 3.4

# Service url.
# http(s)://<opsi config server address>:<port>/rpc
url = https://opsi.uib.local:4447/rpc

# Conection timeout.
connection_timeout = 10

# The time in seconds after which the user can cancel the connection
establishment
user_ cancellable after = 0

[control server]

# The network interfaces to bind to.

# This must be the IP address of an network interface.
# Use 0.0.0.0 to listen to all interfaces

interface = 0.0.0.0

# The port where opsiclientd will listen for HTTPS rpc requests.
port = 4441

# The location of the server certificate.
ssl server cert file = %system.program files dir
%\\opsi.org\\preloginloader\\opsiclientd\\opsiclientd.pem

# The location of the server private key
ssl _server key file = %system.program files dir
%\\opsi.org\\preloginloader\\opsiclientd\\opsiclientd.pem

# The location of the static files
static_dir = %system.program files dir
%$\\opsi.org\\preloginloader\\opsiclientd\\static_html

[notification_server]

# The network interfaces to bind to.

# This must be the IP address of an network interface.
# Use 0.0.0.0 to listen to all interfaces

interface = 127.0.0.1

# The port where opsiclientd will listen for notification clients.
port = 4442

[opsiclientd notifier]

# Notifier application command

ub 49



5. preloginloader 3.4

command = %system.program files dir%\\opsi.org\\preloginloader\\notifier.exe
-p %notification_server.port$

[opsiclientd rpc]

# RPC tool command

command = %system.program files dir
%$\\opsi.org\\preloginloader\\opsiclientd rpc.exe "$global.host id%"
"%global.opsi host key%" "%control server.port%"

[action processor]

# Locations of action processor

local dir = %$system.program files dir%\\opsi.org\\preloginloader\\opsi-winst
remote dir = \\install\\opsi-winst\\files\\opsi-winst

filename = winst32.exe

# Action processor command

command = "$%action processor.local dir%\\%action processor.filename$%"
/opsiservice "https://%$config service.host$:%config service.port$" /clientid
%$global.host id% /username %global.host id% /password %global.opsi host key$%

[event daemon_startup]
type = daemon startup
active = false

[event daemon_shutdown]
type = daemon shutdown
active = false

[event gui startup]

type = gui startup

message = Starting to process product actions. Attention: the computer may
restart. Please save all unsaved data now.

user cancelable = false

block login = true

lock_workstation = false

logoff current user = false

get config from service = true

update config file = true

write log to_service = true

update _action processor = true

event notifier command = %opsiclientd notifier.command% -s notifier\\event.ini
event notifier desktop = current

action notifier command = %opsiclientd notifier.command% -s
notifier\\action.ini

action notifier desktop = current

action processor command = %action_ processor.command$%

action processor_ desktop = current

ub 50 «®-



5. preloginloader 3.4

[event vpn startup]

type = custom

active = false

wgl = SELECT * FROM __ InstanceModificationEvent WITHIN 2 WHERE TargetInstance
ISA 'Win32 NetworkAdapter' AND TargetInstance.Name = "TAP-Win32 Adapter V9"
AND TargetInstance.NetConnectionStatus = 2

message = Opsi will start software and hardware inventory on this computer.
You can continue your work in the meantime.

get config from service = true

update config file = true

write log to_service = true

warning time = 20

service options = { "actionProcessingFilter": { "productIds": ["hwaudit",
"swaudit"] } }

event notifier command = %opsiclientd notifier.command% -s notifier\\event.ini
event notifier desktop = current

action notifier command = %opsiclientd notifier.command% -s
notifier\\action.ini

action notifier desktop = current

action processor command = %action processor.command% /service options
"$event vpn startup.service options%"

action processor_ desktop = current

The above mentioned timeouts have the following relations:

1. If a event fires, the event_notifier shows warning time seconds a message
and according to the value of user_cancelable a 'Abort' button. Is the
warning time = 0 (default) the event_notifier don't starts.

2. After the warning_time the action starts, which means normally that the
opsiclientd try to reach the opsi server using the url address.

3. If after user_cancellable_after seconds still no connection established, so
the action_notifier will enable a 'Abort' button. Once the connection is
established, there is no more possibility to abort.

4. If there no connection could be established in connection_timeout seconds,
the opsiclientd abort the actions. To avoid a user from aborting, set

user_cancellable after = connection_timeout.

5.3.5.2. Configuration via web service (general config)

The opsiclientd configuration can be changed by the 'general config' at the server.



5. preloginloader 3.4

The entries in the general config have to been according to the following patterns:
opsiclientd.<name of the section>.<name of the key>

Example:

opsiclientd.global.log_level = 4

set in the configuration file opsiclientd.conf in the section [global] the value of log_level
to the value 4.

The following Figure shows how to change the server wide general configure via opsi
configed

¥J opsi configuration editor - Mozilla Firefox &l -0 x|
Datei Bearbeiten Ansicht  Chronik  Lesezeichen  Extras  Hilfe
i;v C X & H@lhttps:ffhunlfax:4447fmnﬁgedf ¥ - |'|GDDg|E! pel

|8] Meistbesuchte Seiten # Erste Schritie 5| Aktuelle Nachrichten - ... © opsi configuration editor |j VTN W ITIC \j YIS ¥ITIC |j OTRS :: Ticket :; Que...

J £ opsi configuration editor & | | wiic applet = ‘ | wric applet =] | ] opsl client interface &3] |~

-

opsi configuration editor

Datel Gruppierung  OpsiClient  Hilfe

e HNRe s

opsi Depot-Server B Clisnt-Auswah] | I Produktkenfiguration | & Nethont-Arodukte
'2&( Metzwerk-{Zusatzkonfiguration | W Hardwareinformationen | B Scftware-Inventur | E Logdateien
Metzwerklonfiguration =
Property-hame Property-‘Wert
configlrl smb:ffbonifaxfopt_pebin/pcpatch -
depatDrive P
depatld bonif ax, uib, local
depotUrl smb: ffbonifaxfopt_pebinfinstal
nextBootServerType
nextBootServiceURL https: /192,168 1. 144447
opsiServer bonif 2, uib. local
utilsDrive F:
UkilsUrl smb: ) fbonifaxfopt_pcbinfutils
winDyomain barif e -
ZusatzkonFiguration
Property-Mame Property-\Wert
button_stopnetworking —
(@)=
FALSE
peptchbitmapl winst1,brap
pcptchbitmaps winst2, brap
| |pcptchlabelt opsi,arg ~
Server-Konfiguration 4| | 4

-
1| | »

|Fertig | bonifzc 4447 L

Figure 5: Setting the server default opsiclientd configuration




5. preloginloader 3.4

At the moment it isn't possible to manipulate these entries client specific via opsi
configed (we working on this). So any client specific change at the general config must
be done manually direct in the backend.

Here a example for the File31-Backend:

Excerpt from a <pcname>.ini file:

[generalconfig]
opsiclientd.global.log level=6

Here a example for the LDAP-Backend (with JXplorer as LDAP-Browser):

€ JXplorer &l =10l x|

Datei Bearbeiten Ansicht Favoriten Suchen LDIF Optionen  Exfras  Sicherheit Hilfe

gls|a| &|=|=|a|a| x| o|=] =] o]

I o L”= jl Schnellsuche I
o Erkunden | @ Ergebrisse | G schema | HTML ansicht [E3] Tabellenediter |
@ Waorld - attribute tvpe value
E-e Iocal cn pcbond.uib.local
= . uib objectClass opsiGenearalZonfig
" admin opsikeyyaluePair hestz=test
L E )
= 0_|:|5| npsiclisntd. global.log_level=6|
E generalConfigs
B3 borifax. uib.local
. pcbond,uib.local

groups | |
; Abschicken Zuriicksetzen Klasse &ndern Eigenschaften

Connected To 'ldap: /{bonif a:c: 389

Figure 6: Client specific configuration of the opsiclientd at the LDAP-Backend using JXplorer

5.3.5.3. Configuration of different events

The following events are predefined:

-event_gui_startup
Default event at client boot - before login



5. preloginloader 3.4

-event_vpn_startup

Example of a 'custom event' where the fire condition is defined via a WMI-WQL query.
In this case the condition is the activating of the VPN network interface:

wql = SELECT * FROM _ InstanceModificationEvent WITHIN 2 WHERE
TargetInstance ISA 'Win32 NetworkAdapter' AND TargetInstance.Name
= "TAP-Win32 Adapter V9" AND TargetInstance.NetConnectionStatus =
2

where "TAP-Win32 Adapter V9" is the of the VPN network adapter which is specific
for the used VPN software.

-event_daemon_startup
not implemented yet

-event_daemon_shutdown
not implemented yet

Setting the entry 'active = false' disables the event.

5.3.6. Logging

The opsiclientd logs to:
c:\tmp\opsicliend.log

All log informations will be transfered to the opsi server via web service. At the server
you find these log infos at /var/log/opsi/clientconnect/<pcname>.log. They are presented
in the opsi configed at the tab 'logfiles / client connect'.

Every line at the log has the pattern:
[<log level>] [<time stamp>] [message source] message.

There are the following log levels:

# Set the log (verbosity) level

# (0 <= log level <= 9)

# 0: nothing, 1: critical, 2: errors, 3: warnings, 4: notices

# 5: infos, 6: debug messages, 7: more debug messages, 9: passwords

Example:

[4] [Feb 02 17:30:11] [opsiclientd] Config read (opsiclientd.pyo|1602)
[0] [Feb 02 17:30:11] [opsiclientd] Opsiclientd version: 0.4.4.4 (opsiclientd.pyo|1816)

ub 54



5. preloginloader 3.4

[0] [Feb 02 17:30:11] [opsiclientd] Commandline:
C:\Programme\opsi.org\preloginloader\opsiclientd.exe (opsiclientd.pyo|1817)

[0] [Feb 02 17:30:11] [opsiclientd] Working directory: C:\WINDOWS\system32 (opsiclientd.pyo|
1818)

[4] [Feb 02 17:30:11] [opsiclientd] Using host id 'vmix35.uib.local'’ (opsiclientd.pyo|1819)
[4] [Feb 02 17:30:11] [opsiclientd] Starting control pipe (opsiclientd.pyo|1825)

[4] [Feb 02 17:30:11] [opsiclientd] Control pipe started (opsiclientd.pyo|1829)

[4] [Feb 02 17:30:11] [opsiclientd] Starting control server (opsiclientd.pyo|1834)

[4] [Feb 02 17:30:11] [opsiclientd] Control server started (opsiclientd.pyo|1843)

[4] [Feb 02 17:30:11] [opsiclientd] Starting notification server (opsiclientd.pyo|1848)

[4] [Feb 02 17:30:11] [opsiclientd] Notification server started (opsiclientd.pyo|1863)

[4] [Feb 02 17:30:11] [opsiclientd] Event 'daemon shutdown' is deactivated (opsiclientd.pyo|
1770)

[4] [Feb 02 17:30:11] [opsiclientd] Event 'net startup' is deactivated (opsiclientd.pyo|1770)
[4] [Feb 02 17:30:11] [opsiclientd] Event 'daemon_startup' is deactivated (opsiclientd.pyol|
1770)

[4] [Feb 02 17:30:12] [control server] Control server is accepting HTTPS requests on port 4441
(opsiclientd.pyo|1164)

[4] [Feb 02 17:30:12] [control server] Control server exiting (opsiclientd.pyo|1170)

[4] [Feb 02 17:30:12] [opsiclientd] gui startup event 'gui_startup' created (opsiclientd.pyo|
1784)

[4] [Feb 02 17:30:12] [opsiclientd] Waiting for gui startup (timeout: 120 seconds)
(opsiclientd.pyo|1872)

[4] [Feb 02 17:30:13] [opsiclientd] rpc getBlocklLogin: blockLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:15] [opsiclientd] rpc getBlocklLogin: blocklLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:17] [opsiclientd] rpc getBlocklLogin: blocklLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:19] [event gui_startup] Firing event '<event: gui_startup>' (opsiclientd.pyo|
258)

[4] [Feb 02 17:30:19] [opsiclientd] Processing event <event: gui_startup> (opsiclientd.pyo|
1936)

[4] [Feb 02 17:30:19] [event wait for gui] Firing event '<event: wait for gui>'
(opsiclientd.pyo|258)

[4] [Feb 02 17:30:19] [opsiclientd] Executing:
C:\Programme\\opsi.org\\preloginloader\\opsiclientd rpc.exe "vmix35.uib.local" "*** confidential
*%kx" "4441" "setCurrentActiveDesktopName (System.getActiveDesktopName())" (Windows.pyo|628)

[4] [Feb 02 17:30:19] [opsiclientd] Gui started (opsiclientd.pyo|1874)

[4] [Feb 02 17:30:19] [opsiclientd] rpc getBlocklLogin: blocklLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:21] [opsiclientd] rpc getBlocklogin: blocklLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:21] [control server] Authorization request from vmix35.uib.local@127.0.0.1
(opsiclientd.pyo|888)

[4] [Feb 02 17:30:21] [control server] Authorization request from vmix35.uib.local@127.0.0.1
(opsiclientd.pyo|888)

[4] [Feb 02 17:30:21] [opsiclientd] rpc setCurrentActiveDesktopName: current active desktop name
set to 'Winlogon' (opsiclientd.pyo|2152)

[4] [Feb 02 17:30:22] [opsiclientd] Process ended: 1736 (Windows.pyo|636)

[4] [Feb 02 17:30:22] [event processing] Starting notifier application in session '0' on desktop
'Winlogon' (opsiclientd.pyo|1295)

[4] [Feb 02 17:30:22] [event processing] Executing:
C:\Programme\\opsi.org\\preloginloader\\notifier.exe -p 4442 -s notifier\\action.ini

(Windows .pyo| 628)

[4] [Feb 02 17:30:23] [opsiclientd] rpc getBlocklLogin: blockLogin is 'True' (opsiclientd.pyo]|
2065)

[4] [Feb 02 17:30:25] [opsiclientd] Getting config from service (opsiclientd.pyo|1647)

[4] [Feb 02 17:30:25] [service connection] Connecting to config server
'https://192.168.1.14:4447/rpc' #1 (opsiclientd.pyo|1235)

[4] [Feb 02 17:30:25] [opsiclientd] rpc getBlockLogin: blockLogin is 'True' (opsiclientd.pyol|
2065)

[4] [Feb 02 17:30:26] [service connection] Connected to config server
'https://192.168.1.14:4447/rpc' (opsiclientd.pyo|1247)

[4] [Feb 02 17:30:27] [opsiclientd] Got config from service (opsiclientd.pyo|1664)

[4] [Feb 02 17:30:27] [opsiclientd] Trying to write config to file:
'C:\Programme\opsi.org\preloginloader\opsiclientd\opsiclientd.conf' (opsiclientd.pyo|1607)

[4] [Feb 02 17:30:27] [opsiclientd] No need to write config file
'C:\Programme\opsi.org\preloginloader\opsiclientd\opsiclientd.conf', config file is up to date
(opsiclientd.pyo|1637)

ub 55



5. preloginloader 3.4

[4] [Feb 02 17:30:27] [opsiclientd] rpc getBlockLogin: blockLogin is 'True' (opsiclientd.pyol|

2065)
[4] [Feb 02 17:30:28] [opsiclientd] Got product action requests from configservice

(opsiclientd.pyo|2294)
[4] [Feb 02 17:30:28] [opsiclientd] No product action requests set (opsiclientd.pyo|2302)
[4] [Feb 02 17:30:29] [opsiclientd] rpc getBlocklogin: blocklLogin is 'True' (opsiclientd.pyo]|

2065)
[4] [Feb 02 17:30:31] [opsiclientd] Writing log to service (opsiclientd.pyo|1675)

The opsi login blocker logging to to the Windows event log. If the log level is 8 and up
there is also a log file: c:\tmp\opsi_loginblocker.log.

5.3.7. control server

"I opsi client interface - Mozilla Firefox
Datei  Bearbeiten  ansicht  Chronik  Lesezeichen  Exfras  Hilfe

CS - & X . uﬁHhtqjs:ff\rmix35:4441,‘interface?{ "id": 1, "method": "getFo 17 -~ |-|Google pe

[.&] Meistbesuchte Seiter 8 Erste Schritte 5| Aktuelle Nachrichten - ... &) opsi configuration editor |:] WITIX Y ITIC »

=10] x|

() opsi canfiguration edi... || | L wrnc applet =] | L] wmc applet fe [ " Laden... & E

opsi client interface

Method: getPossibleMethods_listOfHashes ;l

{ "method": "getPaossibleMethods_listOfHashes",

"narams": 1

Authentifizierung erforderlich x|

9 hiips: /fvmix3S 4441 werlangt einen Benutzernamen und ein Passwort, Ausgabe der Wiebsite: "OPSI
Client Service"

Benutzername: I Adrministrator

Passwort: I [T111]

(04 I Abbrechien

{

"error": "Cannot authenticate, nho password given',
"id": 1,
"result": nuall
¥
; . , "
| Warten auf ¥mix33... | | ¥mix33i444l o o

Figure 7: Web interface of the control server

The control server port may be used for a remote control of the opsiclientd. For security
reasons we need an authentication. This authentication may be the local Administrator

db 56 gég



5. preloginloader 3.4

with password (empty passwords are not allowed) or the full qualified client name withe
client key (etc/opsi/pckeys) as password. At the moment the control server is used for
maintenance purposes only.

5.3.8. Push Installation: opsi-fire-event.py

Example:

/usr/share/opsi/opsi-fire-event.py <client-id> gui_startup

5.4. The old mode: prelogin

The opsi preLoginLoader consists of four components: prelogin.exe, pcptch.exe,
winst32.exe and the optional Loginblocker. The prelogin.exe starts as a system service

at boot time. That means the task prelogin.exe starts before the user login is available.

The main task of the prelogin.exe is to start the task pcptch.exe and grant access on
the graphical user interface (otherwise the installation process wouldn't be displayed on
screen). Pcptch.exe is started with the privileges of the local 'pcpatch' account
(administrative account), which has been installed during PreLoginLoader installation.
The program pcptch.exe mounts the network file shares which provide the software
installation packets (and the PC configuration files if file backend is applied). The
configuration for the installation process is provided by the opsi depot server. A
description of this configuration information can be found in the related chapters at the

end of this manual.

Then the pcptch.exe starts the opsi Installation program winst.exe and passes the
information which packets to install. After winst.exe completed the installations, the
status information is passed back to the opsi depot server. While the installation is still
in progress, the loginblocker prevents the user login. When the installation is done,

winst.exe and pcptch.exe terminate and the user login screen is enabled.



5. preloginloader 3.4

Often an installation packet requires one or several reboots. In that case the installation
script launches an immediate system restart. Then at system restart the installation

process resumes control again and continues with the installation.

5.5. Blocking the user login with the opsi-Loginblocker

To prevent a user login before all installations completed, opsi provides the optional

Loginblocker module.
5.5.1. opsi loginblocker under Windows 2000 to XP (prelogin and opsiclientd)

The Loginblocker is implemented as a gina.dll. Gina means ,Graphical Identification
and Authentication“ and is the official Microsoft hook to manipulate the login process.

The opsi gina is a pgina.dll based on the project http://pgina.xpasystems.com.

If you already have a gina.dll installed which is different from the original msgina (e.g.
Novells nwgina), you should not install the opsi-Loginblocker without consulting uib. It is
possible to chain different gina.dll's, but therefore the installation has to be customized.
Proper chaining of Gina DLLs is a quite critical task and might result in a locked up

computer if done improperly.

Whether the Loginblocker is installed or not this is configured by the switch

LoginBlockerStart=on/off in section [preloginloader-install] of the client configuration.

5.5.2. opsi loginblocker under Vista & Co (only opsiclientd)

The opsi login blocker at Vista is implemented as 'credential provider filter'
It blocks all ‘credential providers' until the release by the opsiclientd or the timeout.

5.6. Subsequent installation of the opsi-preloginloaders

The information about the 'Subsequent installation of the opsi-preloginloaders' you will
find in the opsi-getting-started manual (Chapter 'First Steps').


http://pgina.xpasystems.com/

6. Localboot products: automatic software distribution with opsi

6. Localboot products: automatic software distribution with opsi

6.1. opsi standard products

6.1.1. opsi-preloginloader

The 'opsi-preloginloader' packet contains the installation and update mechanism of the
opsi-preloginloader.

6.1.2. opsi-winst

The 'opsi-winst' packet is a special case. It includes the actual 'opsi-winst' winst.exe,
which is updated by the preloginloader packet itself. The preloginloader checks the
server for an update of winst.exe and then copies the new winst.exe (and it's files) to
the client.

6.1.3. Javavm: Java Runtime Environment

The product 'javavm' installs the required Java 1.6 runtime environment (required for
opsi-configed) on the clients.

6.1.4. opsi-admin

The product 'opsi-admin' offers some utilities and a local installation of the opsi-
configed.

6.1.5. Swaudit and hwaudit: Products for hardware and software inventories
The products hwaudit and swaudit provide the hardware and software inventories.

The hardware data are acquired using WMI and written to the hardware inventory via
opsi-webservice.

The data for the software inventory are taken from the registry
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall)
and passed to the inventory server via opsi-webservice.

ljb 59 2©e



6. Localboot products: automatic software distribution with opsi

Both products are based on python and require the python language package installed.

6.1.6. opsi-template
Template for you own opsi scripts.

You may extract this template with:

opsi-package-manager -x opsi-template <version>.opsi

it is also possible to rename it at the same time:

opsi-package-manager -x opsi-template <version>.opsi --new-product-id myprod
6.1.7. python

It is the python runtime environment for python based products like swaudit and
hwaudit.

6.1.8. xpconfig

Package for customizing the GUI and Explorer settings (not only) for XP.

6.2. Integration of new software packets into the opsi software deployment.

The information about the 'Integration of new software packets into the opsi software
deployment.' you will find in the opsi-getting-started manual.



7. Netboot products: Automated OS installation and more

7. Netboot products: Automated OS installation and more

7.1. Unattended automated OS installation

7.1.1. Overview

Steps of a re-installation:
Using PXE-Boot:

Choose the client which has to be installed with the utility opsi-configed or opsi-

admin.

At the next reboot, the client detects (via PXE-Bootprom) the re-installation request

and loads the boot image from the opsi depot server.
Using CD-Boot:
The client boots the boot image from the opsi-bootcd.

The boot image starts and asks for confirmation to proceed with the re-installation.
This is the only interactive question. After confirming this, the installation proceeds
without any further request for interaction.

The boot image partitions and formats the hard disk.

The boot image copies the required installation files and configuration information

from the depot server to the client and initiates a reboot.

After the reboot the client installs the OS according to the provided configuration

information without any interaction.

Next the opsi PreLoginLoader is installed as the opsi installer for automated software
distribution.



7. Netboot products: Automated OS installation and more

The automated software distribution then installs all the software packages as

defined in the client's configuration.

7.1.2. Preconditions

First of all an opsi depot server has to be installed.

The client PC has to be equipped with a bootable network controller. Most recent
network controllers provide this functionality (PXE boot), also recent network controllers
which are integrated on the PC's main board. The PXE software, which is stored in the
'bootprom’' of the network controller, controls the boot process via network according to
the BIOS boot device sequence. Usually the boot sequence has to be set in the BIOS,
'network-boot' has to be the first boot device.

On request also the support of 'bootp' bootproms is available.

The opsi installation package for the OS to be installed needs to be provided on the

depot server. In the following we assume Windows 2000 to be the OS to install.

7.1.3. PC-client boots via the network

The PXE firmware gets activated at startup of the PC. Part of the PXE implementation
is a DHCP client.

Depot-Server PC/Client

dhcpdiscover
from P

i

dhcpoffer EXE-Bootpro_m
/etc/hosts + - ecomes active

/etc/dhcp3/dhcpd.conf

dhcprequest

dhcpack

|
2
PC now knows:
-it's IP
- the server
- Gateway and netmask
- bootfilename

Figure 14: Step 1 during PXE-Boot




7. Netboot products: Automated OS installation and more

At first the PC only knows its hardware Ethernet address (MAC), consisting of six two-
digit HEX characters.

The firmware initiates a DHCPDISCOVER broadcast: “I| need an IP address, who is my
DHCP-Server?*

The DHCP-Server offers an address (DHCPOFFER).

DHCPREQUEST is the response of the client to the server if the IP address is
accepted. (This is not an obsolete step as there could be more than one server in the
network.)

The server sends a DHCPACK to acknowledge the request. The information is sent to
the client again.

You can watch this process on the display, for the PXE-BOOTPROM displays some
firmware information and its 'CLIENT MAC ADDR'. The rotating pipe-symbol is
displayed during the request. When an offer was made it is replaced by an '\' and you
get the transmitted information (CLIENT IP, MASK, DHCP IP, GATEWAY IP).

A short while later you should get a response like this: ‘My IP ADDRESS SEEMS TO
BE ...... "

This process makes the PC a regular, fully configured member of the network.

The next step is to load the boot file (boot image) given in the configuration information.

7.1.3.1. Loading pxelinux

The boot image is loaded via trivial file transfer protocol (tftp). The displayed message is
,LOADING". tftp is a rather old and simple protocol to transfer files without
authentication. In fact, all data available via tftp is available to everyone in the network.
Therefore the tftp access is limited to one directory, which is usually '/tftpboot'. This
directory is specified in inetd (internet daemon, /etc/inetd.conf), which will start the tftp
daemon 'tftpd' if requested. The start command as noted in inetd.conf is something like

tftpd -p -u tftp -s /tftpboot.

The PXE boot-process is multi-stage:

ljb 63 2©e



7. Netboot products: Automated OS installation and more

Stage 1 is to load and start the file submitted as part of the address discovery process

(usually /tftpboot/linux/pxelinux.0).

The program 'pxelinux.0' then looks for configuration and boot information in
'ftftpboot/linux/pxelinux.cfg'. It first looks for a PC specific file with a name based on the
hardware ethernet address (MAC) of the network controller with a leading 01. The
filename for the controller with the hardware ethernet address 00:0C:29:11:6B:D2 would
be 01-00-0c-29-11-6b-d2. If the file is not found, 'pxelinux.0" will start to shorten the
filename (starting at the end) to obtain a match. If this process ends without result, the
file 'default’ will be loaded. This file only contains the instruction to boot from the local
hard disk. In this case the PC won't install anything and will just start the current OS
from hard disk.

depotserver PC/Client

PC knows IP, Server,

— TFETP-requests a _bfi
/titpboot/linux/pxelinux.0 ™ bootfile boot-bfilename ...

searching in:
/titpboot/linux/pxelinux.cfg -

Bootlmage will be loaded

—01-file

Figure 15: Step 2 PXE-Boot

To initiate the re-installation of a certain PC, a loadable file is prepared for the program
'pxelinux.0". In order to do so, the opsi relnstallationsManager creates a PC custom file
in '/tftpboot/linux/pxelinux.cfg'. Part of this file is the command to load the installation

boot image. Also this file contains the client key to decrypt the pcpatch-password. This
file is created as a 'named pipe' and therefore disappears after being read once. More

details about this in the chapter on security of file shares.

ljb 64 2©e



7. Netboot products: Automated OS installation and more

Based on the information the 'pxelinux.0' got from the 'named pipe', the actual
bootimage is loaded from the opsi depot server via tftp. The bootimage is based on a
linux kernel (/tftpboot/linux/install) within an appropriate initrd file system
(/tftpboot/linux/miniroot.gz) and has a size of approximately 40MB.

7.1.4. Boot from CD

Similar to the tftp boot via PXE-bootprom, the installation boot image can be booted
from the opsi bootcd.

This might be recommended under the following conditions:
the client has no PXE bootprom;
there is no dhcp;

there is a dhcp but it isn't allowed to configure any client data and the hardware
addresses of the clients are unknown;

there is a dhcp but it isn't configured for this demand.

According to different situations, several information has to be provided for the CD boot
image by interactive input. The most simple case is to provide no further information.
Eventually the clients hostname can be passed by hn=<hostname>. Using the option
ASK_CONF=1 several parameters can be queried. Pressing F1 at the CD prompt
shows the syntax.

7.1.5. The linux bootimage prepares for reinstallation

The bootimage again performs a dhcp request and configures the network interface
according to the perceived information. Afterwards the configuration data for the client
will be loaded via opsi-webservice.

The configuration data provides the information about the server in charge, the file

share and the name of the installation script.



7. Netboot products: Automated OS installation and more

depotserver PC/Client

v

dhcp-request Bootimage

dhcp server provides
net configuration -
and tftpserver

\J

Disk will be partitionied,

opsiconfd <OPsi-webservice-request formated and made bootable

for configuration data

Bootimage mount with
configuration information
the installation directory
and start the

mount installafi -
nstallation directory P installation scrip
opt/pcbin/install/winxppro) Py

copy File for operating system

installation will be copy on
the disk and setup control
will be create

Reboot start the automatic
operating system
installation

Figur 16: PXE-Boot loaded with bootimage preparing hard disk for operating system
installation

It also holds the information on how to partition the hard disk, what file system to use

and which operating system to install. Also it provides the encrypted password to

connect the file share.

These informations will be combined with some information taken from the dhcp

response and then be passed to the installation script for further processing.

Then the password for the user 'pcpatch’ will be decrypted with the transferred key to
mount the installation share and then call the installation script from the mounted share
to start the installation of the operating system. What specific operations the script
performs depends on the operating system which is to be installed. Below the steps of a

Windows XP installation will be described.

Prepare the disc: On the hard disk the bootimage creates a new partition (of size 6

GB), formats it and installs a bootable ntloader kernel.

ljb 66 2©e



7. Netboot products: Automated OS installation and more

Copy the installation file: The files required for OS installation and the setup files for
the opsi-PreLoginLoader (which is the opsi software distribution pack) will be copied

from the server file share (e.g. /opt/pcbin/install/winxppro/i386) to the local hard disk.

Maintain the configuration informations: Some of the configuration and control files
contain replacement characters, which will be patched before starting the actual
installation. With a specified script (patcha-script) the placeholders will be replaced with
parameters taken from the information packet, which is built from configuration files and
the dhcp-response. For example the file 'unattend.txt', which is the control file for
unattended OS Installation, will be patched with specific information like host IP, client

IP, client name, workgroup, default gateway etc..

Prepare Reboot: Bootrecords will be installed which will start the Windows setup
program at the next reboot. The patched 'unattend.txt' is passed to the setup as the

control file for unattended installation.

Depot-Server PC/Client
[tftpboot/linux - dhep-request PC reboot
/pxelinux.cfg
/default — ™| PC boot local
(Default = hdboot)

start setup-program

Last command:
Installation preloginloader

Figure 17: After preparation of the bootimage the computer starts from local disk and
installs the operating system and the opsi-PreLoginLoader

Reboot: During the previous boot, the named pipe (which is indicating a request for

installation) has been removed by reading it once. So the next PXE boot will load the

ljb 67 2©e



7. Netboot products: Automated OS installation and more

default netboot response, which executes the command 'hdboot'. The local boot loader

will be started and the setup for operating system installation starts.

These steps are controlled by an OS specific python script (e.g. winxp.py for the
Windows XP installation). The bootimage provides a python library (description in the

opsi-bootimage handbook).

7.1.6. Installation of OS and opsi-preLoginLoader

The OS installation is based on the Microsoft unattended setup. Part of this is the
standard hardware detection. In addition to the possibilities given during an installation
from non-OEM or slipstreamed installation media, drivers and patches (i.e. service
packs) can be installed during the initial installation, making the separate installation of
drivers obsolete.

One feature of the unattended installation is the possibility to initiate additional
installations after the main installation is finished. This mechanism is used to install the
opsi preLoginLoader, which implements the automatized software distribution system.
An entry in the registry marks the machine as being still in the 'reinstallation-mode'.

The final reboot leads to starting the opsi preLoginLoader service for software
distribution prior to the first user login. Based on the value of the aforementioned
registry key the opsi preLoginLoader switches into 'reinstallation-mode'. Therefore,
regarding the configuration status of each software packet, each packet which is
marked as action status ”setup” or installation status "installed” within the
configuration of that client will be installed. After all the designated client software has
been installed, the reinstallation process is finished and the internal status is switched
back from 'reinstallation-mode' to 'standard-mode'. In 'standard-mode' only software
packages that are marked as action status ”setup” will be installed.

7.1.7. How the patcha program works

As mentioned above the information collected from dhcp and opsi-webservice will be
used to patch some configuration files as e.g. 'unattend.txt'. The program used for
patching is the script '/user/local/bin/patcha’.

ljb 68 2©e



7. Netboot products: Automated OS installation and more

This script replaces patterns like #@flagname (*) # in a file with values taken as
'flagname=value' from a control file (default input is '/proc/cmdline’). In the files that have
to be patched, the search and replace pattern must start with '"#@', might have an

optional ™" after the flagname and must have one or more trailing '#'.

So by calling 'patcha <filename>' the file '<filename>' will be patched with information

taken from '/proc/cmdline’.

Calling 'patcha’ without any parameters will show all the 'flagname=value' entries from

'/proc/cmdline’.

A different input file (‘fanother_cmdline') can be passed to 'patcha":

patcha -f another cmdline

Without any other parameter 'patcha’ will show the information taken from
‘another_cmdline'. This input file must have 'cmdline'syntax, which means to be entries

like '<flagname>=<value>' separated by space.

patcha -f another cmdline patchfile

This will patch 'patchfile' with substitutions taken from ‘another_cmdline’'.

Version 0.93 23.10.2003 (c) J.W.

Usage:

$prog [-v] [-h] [-f cmdline] [file]

Options: -v show version only
-f another input file (cmdline)
-h this help

$prog patches files using Flag=value patterns from /proc/cmdline (default).
Without any parameters will show the values taken from /proc/cmdline.

Caveat: patch a patches only the first pattern of each line.
Each pattern will be expanded (or reduced) to the length of the value to be replaced
with and then replaced. Trailing chars will not be affected.

Examples:

With the input file 'try.in’

ljb 69 2©e



7. Netboot products: Automated OS installation and more

cat try.in
tagl=very long_ substitution tag2=t2

and the file 'patch.me' to be patched:

cat patch.me
<#Qtagli###tiitiitiiiiiiiiiiiHia>
<#Qtag2######H#HHHHHHHHHHHHHHHHHHH>
<#Qtagl#>

<#@tag2#>
<#@taglr###########HHHHHHHHHHHHH#H>
<#Qtag2*######hhhhhhhhhhhhhHhHHHN>
<#Qtagl*#>

<#Q@tag2*#>

<#Qtagli#><i#tQtagliitititi>
<#Q@tag2*#######><#Qtagl#>

the result will be:
./patcha -f try.in patch.me

cat patch.me

<very long substitution>
<t2>

<very long substitution>
<t2>

<very long substitution>
<t2>

<very long substitution>
<t2>

<very long_ substitution><#@tagl####i#>
<t2><#Qtagl#>

7.1.8. Structure of the unattended installation products

The information about the 'Structure of the unattended installation products' you will find

in the opsi-getting-started manual.

7.1.9. Simplified driver integration with symlinks

The information about the 'Simplified driver integration with symlinks' you will find in the

opsi-getting-started manual.



7. Netboot products: Automated OS installation and more

7.2. Ntfs image (write and restore)

The products 'ntfs-write-image' and 'ntfs-restore-image' are utilities to save and restore
client partition images. Target (and source) for the image file has to be on the opsi
depot server and will be transferred per ssh (user pcpatch) as specified as an product
property.

7.3. memtest

The product 'memtest’ is a utility to perform a client memory test.

7.4. hwinvent

This product delivers a hardware inventory of the client.

7.5. wipedisk

The product 'wipedisk' overwrites the complete hard disk (partion=0) or several
partitions with different patterns. The number of consecutive write operations to perform

is specified as the product property 'iterations' (1-25).



8. opsi license management

8. opsi license management

8.1. The opsi license management module - a co-financed opsi extension

8.1.1. Overview

The opsi license management module is designed for handling the software licenses for
proprietary software installed on opsi clients.

:g'g-upsi config editor - mig

File  Grouping Qpsi
o
L

opsi Depot-Server

bonifax.uib.local

vmax10.uib.local
vmax 106.uib.local F

U= QU g 4
[o: Q. .

[ AR S

Configuration of clients

&

e
Figure 8: Start the

license configuration

ub

The main features are:

> Integrating the license management into the opsi config

editor, which is the standard opsi user interface for

managing the software configuration of opsi clients.

Software license management features, which are
insertion, reservation, (automated) assignment, release

and deletion of license keys and license pools.

Several types of licenses are available:

- standard single licenses (a single license key assigned
to a single client)

- volume licenses (a single license key valid for a certain
amount of installations)

- campus license (a single license key valid for an
unlimited amount of installations within the company/site)
- client bound licenses (which is a single license valid for

a dedicated client only, e.g. OEM licenses).

Release of license assignment after deinstallation of the

corresponding software.

Manual editing of license data, e.g. for software which is

not deployed by opsi.

72 2©-



8. opsi license management

2 Reporting functions showing the opsi license assignment and the software

installations detected by the software inventory module.

The license management module is a separate window integrated into the opsi config
editor and can be started with the button ,Licenses®, which is enabled if the license
management module is unlocked within the opsi configuration (,license management”
from the main menu /help/modules).

8.1.2. Acquisition and Installation

The opsi license management module is a co founded opsi extension module, which is
available to the participants of the co funding project, who have payed a certain amount
of the development costs (which is 1.000€ plus tax). The module will be available to the
community when all the development costs have been funded.

The opsi license management module is part of the opsi release 3.4 and will be
available if this feature is unlocked. For installation details see the installation manual.

8.2. License pools

For every type of license a license pool has to be defined. The license pools represent
the use cases of licenses and provide the license keys for installing the licensed
software on the clients.

When starting the license management module, the first tab holds the administration of

license pools:



8. opsi license management

v.g}"f_t.opsi config editor Licenses

j License pools | Newlicense | Editlicenses | Licenses usage | Reconciliaion | Statistics |

licensePaalld

License pools (stock of licence keys for fixed installation purposes)

4 | description

windows Sofwareld

Windows software ID assigned to the selected License pool

4| displayName

p_2008-05-26_14:43:20_0 Lizensen fuer 7zip 'y
n_license-testmixed opsilicense test

p_license-test-oem opsilicense test

p_license-test-retail opsilicense test

p_license-testvolume opsi licpnea tast

powin? _rc_32hit Lizenze Mew license poal it

n_winxppra Lizenze Delete faw ional v
W @ Save data

Abandaon changes
Assignments: License pool ... stores licences for product ...
Reload data

licenseFoolld 4 | product |
p_2009-05-26_14:43:20_0 datacc2 A
p_license-test-mixed license-test-mixed

p_license-testoem license-test-aem

n_license-testretail license-test-retail

n_license-testvolume license-testvalume

p_win?_rc_32bit win?

p_wirxppra winxppr ¥
¥ 9

| displaye... | installatio..

| binanMa... |

v ©

{083F79E4-GFES-46FB-ABCE-4F 8862742947}
{02B74145-B896-4EF3-BFA0-2124FDE4BERD)
{0BCECCT1-AIE1-417d-AB3A-CATCAFBG4F A3
{0BCECCT1-ASE1-417d-AB3A-CETC4FBE4FA3)T ...
{09298F 26-A95C-31E2-9D95-2CROFS8EF 075}
{09715083-BF10-4834-9E28-BA0 882051 3CA}
{09E3AZB0-6216-402B-9E40-FE4GF Y 2AA0ES}
{0A3D3CE4-2ECO-4D6T-B 265-FF1 T926EBDET)
{0ABROARS-RCA4-4FTC-ASCT-72D3CACEDIEY

ATIHYDRAWISION

Microsoft MET Framework 2.0 SDI - DEU
Pirmasoft RunAsSve - netio3

Pirmasaft RunAsSve - netio2

Microsoft Visual C++ 2008 Redistributable - x86 ...

Lexware buchhalter 2007
Mokia Connectivity Cable Driver
MSXML B.0 Parser (KBI33579)

Figure 9: Tab "License pools" from the license management window

3259006
2.0.50727

1.4.369.1..
1.4.3689.1..

9.0.21022

1.0.8.126...

12.00
6.85.10.0

f.10.1200.0

3

1
1
1
3
1
1
2

CProgra.. |4

CProgra..
CiProgra...

CProgra...

The upper part contains the table of available license pools. The context menu provides

several functions for managing license pools, especially to insert a new license pool.

When editing, the green check mark changes to red and the cancel option is enabled.

By clicking the red check mark the changes can be saved, or canceled by clicking the

cancel option (also available from the context menu).

8.2.1. License pools and opsi products

In most cases an opsi product installing licensed software (e.g. acrobat writer) is

connected to a single license pool providing the license keys.

ub

74



8. opsi license management

More complex are the license management requirements of an opsi product installing
several software packets, which are subject to different license conditions. For instance
an opsi packet "designer" installing Adobe Photoshop as well as Acrobat Writer. In this
case the opsi product must retrieve license keys from different license pools.

Also there could be different opsi packets requesting licenses from the same pool. So
there might be a complex and ambiguous relationship between opsi products and

license pools.

The middle part of the license pool tab manages the relationship between license pools

and productlds (opsi products).

As it is with all tables of the license management module, clicking on the column header
will sort the table content by the column content. Clicking again inverts the order

(ascending or descending).

Sorting can be used to display the connections between opsi products and license
pools. Sorting by 'opsi product' displays all license pools connected to a certain product,
whether sorting by 'license pool' shows which opsi products are connected to a certain

license pool.

The context menu provides an option for inserting a new relationship from 'opsi product'
to 'license pool'. An empty row is inserted on top of the table. Clicking into the field

'licensePoolld' or 'productld’ displays a dropdown with available options.

8.2.2. License pools and software IDs

The third section of the 'License pools' tab holds the Windows software IDs connected
to the currently selected license pool (in the first section of the tab).

A Windows software ID is a unique key identifying a software packet and will be written
to the registry during installation. These software IDs are also used by the opsi software

inventory module to identify which software is actually installed on the client.



8. opsi license management

The assignment of software IDs to the current license pool can be changed by setting or
removing the selection (ctrl-click or shift-click). From the context menu the display can
be toggled between showing all available software IDs detected by the software audit or

just showing the software IDs connected to the current license pool.

Displaying the relationship between Software IDs and license pools is useful for
comparing the number of actual software installations (detected by the software audit)
with the number of legal installations available from the license pool (Tab 'Statistics’,
see chapter 8.7).

8.3. Setting up licenses

Setting up a license for being provided by a license pool requires several steps. The

second tab 'New license' is for setting up and editing licenses.

On top is the table of available license pools to select the license pool the new license is

assigned to.



8. opsi license management

License poals | Newlicense | Editlicenses | Licenses usage | Reconciliation | Statistics |

Select license pool

licensePaoolld 4| description |
p_license-test-mixed opsilicense test i
p_license-test-oem opsilicense test [
p_license-test-retail opsilicense test ¥
Enter new license for the selected pool:
Select or enter license contract
licenseContractld & | partner | conclusionCate | notificationCrate | expirationDate | notes |
. default 2009-06-11 2008-06-23 2009-06-18 Auto generated defa... |-
v 0
Configure license
| Standard o Walume 1L OEM |
[In] Expiration date
License type
Max. installations 0" = unhounded) Contract
Bound fo
License key
Send

Available license options (license keys are editable)

softwareLicenseld 4| licensePoolid | licensekey |
| 2009-05-29 11:20:45 0 p_license-test-retail license-test-retail-key-1 E
v 9

_________________________________________________________________________________________________________________________|
Figure 10: Tab "New license" from the licence management window

Before continuing with the next steps (chapter 8.3.2 ff.), some basic concepts and terms

of license management have to be introduced:

8.3.1. Some aspects of the license concept

Licensing means the actual deployment of a permission to use a software by installing
the software on a client. This might (but doesn't have to) include the use of a special

license key.



8. opsi license management

The software license is the permission to install and use a software as defined by the
license contract. Within the opsi database a software license is identified by a
softwareLicenseld.

There are several types of software licenses (volume license, OEM license, time limited
license etc.) which are the different license models. A software license is based on a
license contract, which is defining and documenting the license regarding the juristic
aspects.

A license option defines the option to use a software license for a selected license
pool. Within opsi the license option is defined by a combination of softwareLicenseld

and licensePoolld. This includes the actual licenseKey (if required).

Finally the license usage documents the use of a license by assigning the license
option to a client. This is the legal and implemented licensing of a software defined by
the combination of softwareLicenseld, licensePoolld, the unique client name hostld and

(if required) the licenseKey.

8.3.2. Registering a license contract

After selecting the license pool for the new license option, the next step is to register the

license contract the license is based on.

The section "Select or enter license contract" (from tab "New license") defaults to
standard contract with ID default. The default setting can be used if the license contract

is implied by purchasing the software or the contract is documented some other way.

Otherwise the contract can be selected from the table or a new contract can be

registered from the context menu.

The license contract dataset comes with data fields for partner, conclusion date,
notification date and expiration date. The entry field notes can hold some additional

notes like the location where the contract document is kept.

ljb 78 2©e



8. opsi license management

The unique contract ID (licenseContractld) is for identifying the license contract in the
license management database. WWhen entering a new license contract, a new unique ID
is constructed based on the current date and time stamp. This ID can be changed
before saving the new data set. When saving the data, the opsi service checks whether
the ID is unique. In case it is not, a new ID is generated and cannot be changed any

more.

8.3.3. Configuring the license model

The third part of the Tab "New license" is named "Configure license" and is for

registering the license model and license data.

Three types of license models are available:
Standard
Volume

OEM

Each Option is represented by a button. Clicking a button, the form is filled with data for

that type of license model.

License model Standard means that this license is valid for a single installation on an

arbitrary client. So the license key (if any) is valid for a single installation only.

A Volume license is valid for a certain number of installations (given by "Max.
installations"). In this case the optional license key is used for that number of
installations. Setting "Max. installations" to "0" means, that the number of installations is

unlimited within the same network (campus license).

In case of an OEM license the license is valid for a dedicated client only. Clients that
come with a vendor pre installed operating system often have this type of license for the

pre installed OS and software packets.

ljb 79 2©e



8. opsi license management

After clicking a button, the automatic data setting includes generating a unique ID (date
and time stamp). This ID can be changed as desired.

It depends on the type of license model, which of the other fields can or cannot be
changed.

The field "Expiration date" defines the expiration date of the license in a technical
sense.

8.3.4. Saving the data

The "Send" button sends the data to the opsi service to save them permanently to the
opsi data base (if they are consistent and no errors occur).

While proceeding this, data records will be generated for the new software license
based on the selected software contract and the new license option assigned to that.

The list of available license options at the bottom of the window will be refreshed with
the new license option selected. If necessary, the license key can be changed then.

8.4. Editing licenses

For ninety percent of the use cases editing the license data with the tabs "License
pools" and "New license" will do. But there might be some special cases affording to
edit license data more specific and explicit.

Therefore the tab "Edit licenses" presents the license data in three tables close to the
internal data structure, allowing to adapt the data for some special cases.



8. opsi license management

ng‘g-opsi config editor Licenses

[ License pools | Newlicense | Esitlicenses | Licenses usage | Reconciliation | Statistics |

Aviilable license options (license keys are editable)
softwareLicenseld 4| licensePoolld | licensekey |
1_2009-05-29_11:20:45_0 p_license-testretail license-testratail-key-1 Iy
|_2008-05-29_11:20:46_0 p_license-test-ratail license-test-retail-key-2
|_2009-05-29_11:20:48_0 p_license-test-retail license-test-retail-key-3
1_2009-05-29_11:20:48_0 p_license-testretail = *+ast-retail-key-4
|_2008-05-29_11:20:50_0 p_license-test-retail Mews licence option  pat-retail-key-5
|_2009-05-29_11:21:44_0 p_\!cense-lest-uem Dl pst-oem-key-1
1_2009-05-29_11:21:46_0 p_license-test-oem pstoem-key-2
| 20060570 11:71-47 0 hlirensa.da st narm Save data bat. e ket ¥

Abandon changes
v 0 ‘
Reload data

S e li ing clause (defi the validity of license keys)
softwareLicenseld 4| licenseContractld | licenseType | maxinstallations | houndToHost | expirationDate |
|_2008-05-28_10:26... c_default WOLUME 0 A
|_2008-08-29_11:20... c_license-testretail  RETAIL 1
|_2009-05-29_11:20... c_license-testretail RETAIL 1
|_2008-08-29_11:20... c_license-testretail  RETAIL 1
|_2008-08-29_11:20... c_license-testretail  RETAIL 1
|_2009-05-29_11:20... c_license-testretail RETAIL 1
|_2008-08-29_11:21.. c_license-testoem OEM 1 petryl detlefuib.local
L 2009-0A8-29 11-21 r_licencetectnorm CIEM 1 nebon? uik loeal ¥
v ©

Select or enter license contract
licenseContractld 4| pariner | conclusionDate | notificationDate | expirationDiate | notes |
¢_2008-05-28_09:3.. 2009-06-18 2009-06-23 testt A
_2008-07-09_16:2... wib ambh 2009-07-09 10 gebrauchte XP Li...
c_default 2009-06-11 2008-06-23 2009-06-18 Auta generated defa..
o_license-testmixed  uib ambh test contract
t_license-test-oem il gmbh autogenerated testc...
o_license-testretail uib amhbh testcontract
t_license-testvalume  uib ambh test contract
r_rmicrnsnft evaluisr hlirrnznft NNA-NA-NA 5
v ©

Figure 11: Tab "Edit licenses" from the license management window

Based on this direct data access, the following chapter shows how to configure a
special license, like the Microsoft Vista or Windows 7 professional downgrade option for
installing Windows XP.

8.4.1. Example downgrade option

downgrade option means, that instead of the software purchased, also the preceding
version can be installed. For instance installing Windows XP based on a Windows Vista
license. In this case, the license key also can be used for an installation, which it wasn't
meant for in the first place.

In the opsi license model this case can be configured like this:

ub 81 2©-



8. opsi license management

From the tab "New license" the Vista license is to be registered as usual, resulting in a
new license option, displayed in the list of license options at the bottom of the window.
This new license option is based on a new software license identified by
softwareLicenseld.

This softwareLicenseld is needed for the further configuration steps. You can keep it in
mind or copy it with drag&drop. You can as well look for the ID in the "Available license
options" list of the "Edit licenses" tab. The context menu supports copying the ID.

The important step now is to connect this softwareLicenseld to an additional license
pool.

Therefore a new record has to be registered from the "Available license options" table
of the "Edit licenses" tab. The fields of the new record have to be filled with the
softwareLicenseld and the ID of the additional license pool (in this case the pool for
Windows XP licenses). For installing Windows XP based on this license, an applicable
Windows XP license key already in use by another client has to be added.

After saving the new record, there are two different license options based on the same
software license. The opsi service counts the use of either of them as an installation
deducting from the maximum installation count. So in case of a downgrade license (with
maxInstallations = 1), the opsi service delivers a license key for a Vista installation or for
a XP installation, but not for both of them.

8.5. Assignment and release of licenses

Using a license option by installing the software on a client results in the actual licensing

(which is the use of the license option).

In the opsi context installations are done script based and automatically, whereas the
client running the Winst script invokes some calls to the central opsi service.

The following chapters introduce some of these service calls, which are relevant for the
license management. For further information about Winst and opsi commands see the

documentation on Winst and opsi.



8. opsi license management
8.5.1. opsi service calls for requesting and releasing a license

The opsi service call for requesting a license option and retrieving the license key for
doing the installation (as transmitted by a Winst script) is

getAndAssignSoftwarelLicenseKey

The parameters to be passed are the client hostID (hostlD of the client where the
software is to be installed) and the ID of the license pool the license is requested from.
Instead of the licensePoolld also an opsi product ID or a Windows Software ID can be
passed, if they are connected to a license pool within the opsi license management.

The use of a license option can be released by calling
deleteSoftwarelicenseUsage

Again the parameters to be passed are the hostID and alternatively the licensePoolld,
productlD or Windows Software ID. Calling this service releases the license option and
returns it to the pool of available license options.

For the complete documentation of opsi service calls see chapter 8.8.

8.5.2. winst script calls for requesting and releasing of licenses
The winst provides the client related calls as winst commands

A winst script can make a call to the function DemandLicenseKey to get a license key
for installing. The parameters to be passed are:

DemandLicenseKey (poolld [, productId [, windowsSoftwareId]])

The return value is the license key (a string, can be empty):

set $mykey$ = DemandLicenseKey ("pool office2007")

The returned license key can be used by other script command for installing the
software.

For releasing a license option and license key (as to be used in a winst deinstallation
script) the command FreeLicense is available with the following syntax:

|jl’ 83 2©e



8. opsi license management

Freelicense (poolId [, productId [, windowsSoftwareId]])

The boolean function

opsilicenseManagementEnabled
can be used to decide whether to work with the opsi license management or not:

if opsilicenseManagementEnabled

set $mykey$ = DemandLicenseKey ("pool office2007")
else

set $mykey$ = IniVar ("productkey")

There are some string returning functions available for handling error states, for
instance in case no vacant license option is available:

getLastServiceErrorClass

or

getLastServiceErrorMessage

The error handling can be done like this:

if getLastServiceErrorClass = "None"
comment "kein Fehler aufgetreten"
endif

8.5.3. Manual administration of licensing

Within the opsi config editor, the licenses registered by the opsi service are listed on the
tab "Licenses usage":



8. opsi license management

wiopsi config editor Licenses

[ License poals T Mew license T Edit licenses T Licenses usage T Recanciliation T Statistics ]

Usage of licences, detail

hostid 4 | softwareLicenseld | licensePoolld | licensekey

| hotes

wmaxl02 . uib.local
yimaxi05.uib.lacal
yimaxd11.uib.local
yimaxi21.uib.local
wimaxl22.uib.local
wimax] S0.uib.local
wmax! 80.uib.local
yimax! a0.uib.local
yimax! 82 .uib.local
yimax! S6.uib.local
wimax] S6.uib.local
wimax! S6.uib.local
yimax! 89.uib.lacal
ymixl 6.uib.local
ymixl .uib.local
wimixl B.uib.local
wmix32.uib.local
wimixd. Uik local
yrmixg.uib.local
wimixd.uib.local
wimixd.uib.local
wmix-altuib.local
wmix-altuib.local

Lot G

¥ 9

I Leanl

|_2008-05-29_11:25:04_0
|_winxppro_valurme_lizen...
|_2009-05-29_12:40:30
|_winxppro_wolume_lizen...
|_winxppro_volume_lizen...
|_2009-05-29_11:20:48_0
1_2009-05-29_11:22:44_0
1_2009-05-29_11:24:53_0
|_2009-05-29_12:40:30
1_2009-05-29_11:20:49_0
1_2009-05-29_11:22:44_0
|_2008-05-29_11:24:54_0
|_winT _re_evaluierung
|_2009-05-29_11:20:50_0
|_2009-05-29_11:22:44_0
|_2009-05-29_11:24:55_0
|_2008-05-29_11:24:57_0
|_2009-05-29_11:25:04_0
1_2009-05-29_11:20:45_0
|_2008-05-29_11:22:44_0
|_2009-05-29_11:24:52_0
|_2009-05-29_11:25:04_0
|_winxppro_volurme_lizen...

L9000 ns AN 44:99:44 0

p_license-test-mixed
p_wirxppro
p_winkppro-msdn
n_winxppro
n_winxppro
p_license-test-retail
p_license-testvolume
p_license-test-mixed
p_win¥ppro-msdn
n_license-test-retail
p_license-testvalume
p_license-test-mixed
p_winT_re_32bit
n_license-test-retail
n_license-testvalume
p_license-test-mixed
p_license-test-mixed
p_license-test-mixed
p_license-test-retail
p_license-testvalume
n_license-test-mixed
p_license-test-mixed
p_wirxppro

o linenon FYSP ST Ty

license-test-mixed-vol-key

12123122

DFPWE-TWEY- (Y00t
79 Delete row

DFF Save data

E.)FP Abandon changes
licen

licen| Reload data

licen TESFIFET BT .

TaYJK-RATVT-24CD3-BP...
license-testretail-key-4
license-testwolume-val-key
license-test-mixed-retail-...
MYBCO-BIVPW-CTI68-V. .
license-test-retail-key-5
license-testwolume-val-key
license-test-mixed-retail-...
license-test-mixed-retail-...
license-test-mixed-val-key
license-testretail-key-1
license-testwolume-val-key
license-test-mixed-retail-...
license-testmixed-val-key
DFPYE-TWENY-QYHV0-8.

lismsnm e do ot

Reserve license for client:

License pools (stock of licence keys for fixed installation purposes)

licensePoalld
p_license-test-oem

o lirancatact ratail

4 | description |

opsilicense test 5

aneiliranca tact

l Fsecute

>

Figure 12: Tab "Licenses usage from the license management window

clients.

"Delete row" (available from the context menu) releases a license option.

"Reserve license for client" at the bottom of the window is for making a license

reservation for a dedicated client.

By editing the field "licenseKey" from the "Usage of licenses" table, the license

key can be changed.

b 85

These are the functions for manual license management in detail:

From this tab, licenses also can be managed manually. This can be useful, if a licensed

software is not integrated into the opsi deployment, but installed manually on just a few




8. opsi license management
8.5.4. Preservation and deletion of license usages

If a software packet is reinstalled, the call to winst function DemandLicenseKey will
return the same license option and license key as had been used before.

In case this is not favored, the former license option has to be released by calling the
winst command Freelicense, or by caling the opsi service call
deleteSoftwareLicenseUsage or deleting the license use manually.

So, if not explicitly deleted, the license usages are kept when reinstalling a client.

For releasing the licenses, they can be deleted from the tab "Licenses usage" or can be
deleted with by a service call

deleteAllSoftwareLicenseUsages

passing the client host name to delete the license uses from.

8.6. Reconciliation with the software inventory

The tab "Reconciliation” lists for each client and for each license pool
- whether a use of this license pool is registered by opsi ("used_by_opsi") and

- if the software inventory (swaudit) on that client reported a software, that requires

a license option from that pool ("Swinventory _used").

To evaluate the results from swaudit, the relevant Software IDs (as found in the client
registry) have to be associated with the appropriate license pool (tab "license pools",
see chapter 8.2.2).



8. opsi license management

License pools I Mew license I Edit licenses I Licenses usage T Reconciliation I Statistics ]

Reconciliation to software audit

hostld 4| licensePoolld | used_hy_opsi | BWinventary_used |
ymax!aluib local n_license-test-retail @ L i
ymax1 50.uib local n_license-testvolurme & ] r
wimax! a0 Uik local p_win7_rc_32hit L L

wimaxT a0 Wik local p_winkpprn L L

a1 A0 Uik local p_winkppro-msdn [} [}
ymax1a1.uib.local p_2008-05-26_14:43:20_0 L L
ymax1al.uib.local p_license-test-mixed L L

wimaxT a1 ik local p_license-test-nem L L

wimaxT a1 ik local p_license-test-retail [l [l

a1 81 ik local p_license-testvalume [l [l
ymax1al.uib.local p_win?_rc_32hit L L
wrnax1al.uib.local p_wirppro L L

wmaxT a1 ik local p_winkppra-msdn L L

wimax1 82 ik local p_2009-05-26_14:43:20_0 [} [}

a1 82 ik local p_license-test-mived [} [}
ymax1a2.uib.local p_license-test-oem L L
ynax1a2.uib.local p_license-test-ratail L L

wmax1 a2 Uik local p_license-testvalume L L

wimax1 82 ik local p_winT _rc_32hit [} [}
ymax1a2.uib.local p_wirppro L L
ymax152.uib local p_wingppro-msdn WV WV

wimaxT a3 Uik local p_2009-05-26_14:43:20_0 L L

wimaxT a3 Uik local p_license-test-mived [l [l

wimaxT A3 ik local p_license-test-oem [} [}
ymax1a3.uib local p_license-test-ratail L L )
ymax1a3.uib.local p_license-testvolume L L

wimaxT a3 Uik local p_win7_rc_32hit L L

wimaxT A3 ik local p_winkpprn [} [}

i 83 ik local p_wineppro-rsdn [} [}
ymax1ad.uib.local p_2009-05-26_14:43:20_0 L L
yinaxlad.uib.local p_license-test-mived L L

ymax1 a4 ik local p_license-test-oem L L

wimax! 84 ik local p_license-testretail [} [}

wimiax] 84 ik local p_license-testvalume [l [l "'
\\\\\\ AE 4 ik laeal noawin T ke 3 Thit [ [

Figure 13: Tab "Reconciliation" from the license management window

8.7. Overlook the license status

The tab "Statistics" is for giving a summary about the different license pools, showing
the total number of license options ('license_options') and how many of them are in use
('used_by_opsi') or still available (‘remaining opsi').

The number of installations registered by the opsi license management
("used_by opsi") is listed as well as the number of installations detected by the software
audit (resulting in the software inventory). The data from the column
'SWinventory used' are based on the registry scans from the opsi product 'swaudit' and
the assignment of the Windows software IDs (as they are found in the registry) to the
license pools (as registered with the opsi license management, see tab "License pools",
chapter 2.2).

ub .



8. opsi license management

The context menu provides an option for printing the table.

[ License pools T New license T Editlicenses T Licenses usage T Reconciliation I Statistics ]

Usage of licences, overview

licensePoolld 4 | licence_options | used_by_opsi | remaining_opsi | SWinventory_used | SWinventory_remain... |
p_2009-05-26_14:4.. = 1 & 1 oo
p_license-testmixed 20 149 1 4 16

p_license-testoem 5 4 1 0 5]

n_license-testretail & 5 ] ] ]
p_license-testvolume 10 10 0 3 T

n_win?_rc_32hit a0 1 L) ] )

p_winxppro L) 4 0 18 -]

n_winxppro-msdn a0 G o) 3 )

Figure 14: Tab "Statistics" from the licence management window

8.7.1. In case of downgrade option

If a downgrade option has been configured, this appears in the overview and statistics
like this:

A single downgrade license results in a license option for at least two different license
pools, but only one of them can be requested for an installation. So using a downgrade
license option decreases the number of available license options (‘remaining_opsi') in
each of the license pools concerned by that downgrade option.



8. opsi license management

So this looks like a single installation reduces the number of available license options
twice, which, in this case, actually is the fact.

8.8. Service methods for license management

These service methods can be called for instance from the command line tool 'opsi-
admin'. Parameters marked with an asterisk "*" are optional.

8.8.1. Licence contracts

method:
createLicenseContract (*licenseContractld, *partner, *conclusionDate,
*notificationDate, *expirationDate, *notes)

This method registers a new licence contract record with the ID licenseContractld. If no
licenseContractld is passed, it will be generated automatically. If an existing
licenseContractld is passed, the existing record will be overwritten.

The parameters partner (co-contractor) and notes are strings and can be filled with any
information desired. The parameters conclusionDate (date of conclusion of the
contract), notificationDate (date for a reminder) and expirationDate (expiration date of
the contract) are passed in the format YYYY-MM-DD (e.g. 2009-05-18).

Return value is the licenseContractld of the new or changed license contract record.

method:
getLicenseContractlds_list ()

This method returns a list of licenseContractlds of all existing contract records.

method:
getLicenseContract_hash (licenseContractld)

returns a hash with all the information about the license contract identified by ID
licenseContractld.

The hash keys are:
licenseContractld, partner, notes, conclusionDate, notificationDate, expirationDate,
softwareLicenselds.

ljb 89 2©e



8. opsi license management

Data types of the key values are the same as they are while registering a new record.
softwareLicenselds is the list of all software licenses connected with this contract.

method:
getLicenseContracts_listOfHashes ()

returns all the information about all existing contract records as a list of hashes. Each
single element of the list is a hash as returned by getLicenseContract_hash ().

method:
deleteLicenseContract (licenseContractld)

deletes the contract identified by ID licenseContractld. A contract record can only be
deleted, if no software licenses are connected to it.

8.8.2. Licenses (software licenses)
method:

createSoftwareLicense (*softwareLicenseld, *licenseContractld, *licenseType,
*maxInstallations, *boundToHost, *expirationDate)

This method creates a new license. If no softwareLicenseld is passed, it will be created.
When passing an existing softwareLicenseld , the existing record will be changed.

The licenseContractld passed assigns the license to a contract. If no licenseContractld
is passed, the license is assigned to the default contract. If this doesn't exist, it will be
created.

Available types of license (licenseType) are "OEM", "VOLUME" und "RETAIL". If no

licenseType is passed, it defaults to VOLUME. The maximum number of installations
available based on this license is set as maxinstallations. If no value or a value < 1is
passed for maxinstallations, the maximum number of installations is unlimited.

For licenseType “OEM“ maxinstallations is set to 1.

A license can be assigned to a special host with boundToHost. For registering a new
record of licenseType “OEM* the parameter boundToHost is required.

u‘b 90 E.E



8. opsi license management

The optional parameter expirationDate sets the limit of validity of the license and is
passed as a date in the format YYYY-MM-DD. On the date determined the license runs
out f validity.

The method returns the softwareLicenseld of the new or changed record.

method:
getSoftwareLicenselds_list ()

This method returns a list of all registered softwareLicenselds, which is a list of all
existing licenses.

method:
getSoftwareLicense_hash (softwareLicenseld)

returns all the information about the license with license ID softwarelLicenseld as a
hash.

The hash keys are: softwareLicenseld, licenseContractld, licenseType,
maxInstallations, boundToHost, expirationDate, licensePoollds, licenseKeys.

Data types of the key values are the same as they are while registering a new record.
licensePoollds is the list of all software license pools connected with this license.

licenseKeys again is a hash with each key of the hash representing a license pool
(licensePoolld) the license is connected to. The corresponding value for the key

licensePoolld is the license key from that license pool.

method:
getSoftwareLicenses_listOfHashes ()

returns the information about all existing software licenses as a list of hashes. Each
element of the list is a hash as returned by getSoftwareLicense hash ().
method:

deleteSoftwarelLicense (softwarelLicenseld, *removeFromPools)

deletes the license with ID softwareLicenseld. A license can be deleted only if not used
by a client and not assigned to a license pool. The optional parameter

ljb 91 2©e



8. opsi license management

removeFromPools (boolean, default=false) removes the license from all license pools
before deletion.

8.8.3. License pools

method:

createLicensePool (*licensePoolld, *description, *productlds, *windowsSoftwarelds)

This method creates a record for a new license pool. If no licensePoolld is passed, it will
be created. Passing the licensePoolld of an existing license pool will change the
existing record.

The String description can set any description for that license pool.

The parameter productlds defines opsi products connected to that license pool,
whereas windowsSoftwarelds defines a list of Windows Software IDs connected to the
license pool.

The method returns the licensePoolld of the new or changed license pool record.

method:
getLicensePoollds_list ()
This method returns the list licensePoollds of all existing licence pool IDs.

method:
getLicensePool_hash(l/icensePoolld)

returns all the information about the license pool with ID licensePoolld as a hash.
The hash keys are: licensePoolld, description, productlds, windowsSoftwarelds.

Data types of the key values are the same as they are while registering a new licence
pool record.

method:
getLicensePools_listOfHashes ()



8. opsi license management

returns the information about all of the existing licence pools as a list of hashes. Each
element of the list is a hash as returned by getLicensePool_hash.

method:”
deleteLicensePool (licensePoolld, *deleteLicenses)

deletes the license pool identified by ID licensePoolld. A license pool can be deleted
only if no software licenses are connected to it. Passing the optional parameter
deleteLicenses (boolean, default=false) deletes all of the licenses connected to that
pool and also the license usages (which is the license connection to the clients).

method:
addSoftwareLicenseToLicensePool (softwareLicenseld, licensePoolld, *licenseKey)

connects the software license identified by softwareLicenseld to the license pool
identified by licensePoolld. The optional parameter licenseKey sets the license key for
that licence option.

method:

removeSoftwareLicenseFromLicensePool (softwareLicenseld, licensePoolld)

deletes the software license identified by softwareLicenseld from the license pool
identified by licensePoolld.

method:

addProductldsToLicensePool (productlds, licensePoolld)

connects a list of opsi product IDs (productlds) to the license pool identified by
licensePoolld.

method:

removeProductldsFromLicensePool (productlds, licensePoolld)

Deletes the assignment of opsi products (productlds) to the license pool identified by
licensePoolld.

method:

setWindowsSoftwareldsToLicensePool (windowsSoftwarelds, licensePoolld)

assigns a list of Windows software IDs (windowsSoftwarelds) to the license pool
identified by licensePoolld. Existing assignments will be deleted.

ljb 93 2©e



8. opsi license management

method:
getLicensePoolld (*productld, *windowsSoftwareld)

returns the license pool ID (licensePoolld) connected with the opsi product identified by
productld or with the Windows software ID windowsSoftwareld.

method:
getSoftwareLicenses_listOfHashes (*licensePoolld)

returns a list of all of the existing software licenses. By passing the optional parameter
licensePoolld the list returns only licenses connected to this license pool. The elements
of the list returnde are hashes with the keys: softwarelLicenseld, licensePoolld,
licenseKey.

method:
getOrCreateSoftwareLicenseUsage_hash (hostld, “licensePoolld, *productid,
*windowsSoftwareld)

Returns information about the license use of a dedicated client and license pool. The
license pool can be identified by licensePoolld or indirectly by passing a productld or
windowsSoftwareld. When specifying an indirect reference by productld or
windowsSoftwareld, the connection to a single license pool must be non-ambiguous. If
the connection is ambiguous, the method will throw an exception of type
LicenseConfigurationError.

If the client has no license from license pool is use, an available license from that pool is
assigned to the client. If no license is available, the method throws an exception of type
LicenseMissingError.

The method returns a hash with the keys softwareLicenseld, licenseKey, licensePoolld,
hostld and noftes.

method:
getAndAssignSoftwareLicenseKey (hostld, *licensePoolld, *productld,
*windowsSoftwareld)

This method is quite the same as getOrCreateSoftwareLicenseUsage hash with the
difference, that the license key (licenseKey) only is returned.



8. opsi license management

Another difference is the behavior in case of no available license. If a product/d had
been passed when calling the method, the method checks whether there is a product
property named "productkey”, which is not an empty string. In this case no exception is
thrown but this "productkey" is returned.

method:
getSoftwareLicenseUsages_listOfHashes (*hostlds, *licensePoollds)

This method returns a list of hashes holding information about license usages. The list
can be limited by passing the optional parameters hostlds (a list of clients) and
licensePoollds (a list of license pools).

The method returns a list of hashes with the keys softwareLicenseld, licenseKey,
licensePoolld, hostld and notes.

method:
setSoftwareLicenseUsage (hostld, licensePoolld, softwarelLicenseld, *licenseKey,
*notes)

This method marks a license as being used by a client. If this assignment already
exists, it will be modified. The license pool must be passed as licensePoolld and the
software license as softwareLicenseld. The optional parameter licenseKey sets the
license key being used by the client. The optional parameter notes adds some notes.

method:
deleteSoftwarelLicenseUsage (hostld, *softwareLicenseld, *licensePoolld, *productid,
*windowsSoftwareld)

This method releases the software licenses used by the client hostld. The licenses to be
released can be limited to a given license pool identified by licensePoolld or indirectly
by passing a productld or windowsSoftwareld (as with
getOrCreateSoftwarelLicenseUsage hash). By passing a softwareLicenseld this license
only will be released, otherwise all matching licenses will be released.

method:
deleteAllSoftwareLicenseUsages (host/ds):

All software licenses in use by the clients identified by hostlds will be released.



8. opsi license management

method:
getLicenseStatistics_hash (licensePoolld)

This method returns information about the use of software licenses from the license
pool identified by licensePoolld. The hash returned has got the keys:

licenses: number of licenses in the license pool

usedBy: list of clients using a license from the pool.

usageCount: number of clients using a license from the pool.

maxInstallations: maximum total number of installations allowed by that license.

remaininglnstallations: Number of available licenses (licenses from that pool that are
currently not in use).

8.8.4. Examples for using the methods from scripts

All the methods listed can be called from the command line tool opsi-admin (see the
respective chapter of the opsi manual) within a script to, for instance, read existing
licenses from a file.

Some examples can be found in the product "license-test-*.opsi" at

http://download.uib.de/opsi3.4/produkte/license-management-test/.

When installing this packet with the opsi-package-manager
opsi-package-manager -i *.opsi

at "/opt/pcbin/install/<product name>" the script
create_license-*.sh

is to be found.

Here as an example the script "create license-mixed.sh".
If in any doubt, better use the download examples mentioned above, for they are
probably more recent than the examples listed in this manual:

#!/bin/bash
# This is a test and example script
# (c) uib gmbh licensed under GPL

PRODUCT ID=license-test-mixed

# read the license key from a file

# myretailkeys.txt has one licensekey per line

MYRETAILKEYS= cat myretailkeys.txt"’

# myoemkeys.txt has one pair: <licensekey> <hostid.domain.tld> per line
MYOEMKEYS="cat myoemkeys.txt"

ljb % 2©e


http://download.uib.de/opsi3.4/produkte/

8. opsi license management

# some output
echo "SPRODUCT ID"

# this 1s the function to create the oem licenses

T EE L L L L L L

createlic ()

{

while [ -n "S$1" ]

do
#echo $1
AKTKEY=51
shift
#echo $1
AKTHOST=S$1
shift

echo "createSoftwareLicense with oem key: ${PRODUCT ID}-oem-${AKTKEY}
for host ${AKTHOST}" N
MYLIC= opsi-admin -dS method createSoftwareLicense "" "c SPRODUCT ID"
"OEM" "1" "S{AKTHOST}" """ - -
opsi-admin -d method addSoftwarelicenseToLicensePool "SMYLIC"
"p $PRODUCT ID" "${PRODUCT ID}-oem-${AKTKEY}"
done
}
FHAH AR AHA

# here the script starts

# delete the existing license pool and all connected licenses
# ATTENTION: never (!) do this on a productive system

echo "deleteLicensePool p $PRODUCT ID"

opsi-admin -d method deleteLicensePool "p SPRODUCT ID" true

# delete the existing license contract
echo "deleteLicenseContract c_ $PRODUCT ID"
opsi-admin -d method deletelLicenseContract "c $PRODUCT ID"

# create the new license pool

# the used method has the following syntax:

# createlLicensePool (*licensePoolId, *description, *productlds,
*windowsSoftwareIds)

echo "createLicensePool p S$SPRODUCT ID"

opsi-admin -d method createLicensePool "p SPRODUCT ID" "opsi license
test" \'['"'$PRODUCT ID'"']J\' \'['"'$PRODUCT ID'"'J\"'

# create the new license contract

# the used method has the following syntax:

# createlLicenseContract (*licenseContractId, *partner, *conclusionDate,
*notificationDate, *expirationDate, *notes)

echo "createlLicenseContract ¢ SPRODUCT ID"

opsi-admin -d method createlLicenseContract "c $PRODUCT ID" "uib gmbh" "™ "" ""
"test contract"

# create the new license and add the key(s)

# the used methods have the following syntax:

# createSoftwarelicense (*softwarelLicenseld, *licenseContractId, *licenseType,
*maxInstallations, *boundToHost, *expirationDate)

# addSoftwareLicenseTolLicensePool (softwareLicenseld, licensePoolId,
*1licenseKey)

# create the retail licenses:

‘jl, 97 Eiéﬂ



8. opsi license management

for AKTKEY in SMYRETAILKEYS
do
echo "createSoftwareLicense with retail key: ${PRODUCT ID}-retail-$
{AKTKEY} "
MYLIC= opsi-admin -dS method createSoftwarelLicense "" "c $PRODUCT ID"
"RETATL™ "1" "n wno - -
opsi-admin -d method addSoftwarelLicenseToLicensePool "SMYLIC"
"p_ $PRODUCT ID" "${PRODUCT ID}-retail-${AKTKEY}"
done

# create the oem licenses
createlic $SMYOEMKEYS

# create the volume licenses

echo "createSoftwareLicense with volume key: ${PRODUCT ID}-vol-key"

MYLIC= opsi-admin -dS method createSoftwareLicense "" "c_ $PRODUCT ID" "VOLUME"
"10" mwn wi

opsi-admin -d method addSoftwarelLicenseToLicensePool "SMYLIC" "p SPRODUCT ID"
"${PRODUCT_ID}—vol—key"#

8.9. Example products and templates

In the uib download section at
http://download.uib.de/opsi3.4/produkte/license-management-test/
there are four example products. One for each type of license model, as there are

Retail, OEM and Volume license type, as well as a product combining all of them.

These example products use as an example some licenses and release them again. So
using them leaves some marks in the software inventory, that might be of influence to

reconciliation and statistics.

All of these products contain a shell script to automatically generate license pools,

license contracts and license options.

The standard template for Winst scripts also contains some examples for using the opsi

license management.



9. opsi-Module: depot server

9. opsi-Module: depot server

9.1. Overview

The opsi depot server is a special server installation based on GNU/Debian Linux. It is
the base installation for the modules 'software distribution' and 'operating system

installation'.

For the software distribution it provides secured file shares, where configuration files
and software packets (software depots) are protected against unauthorized access. The
password transmission to the client for connecting these shares is encrypted, so just the
modules of the software distribution and the system administrator get access to these
shares.

The opsi depot server comes with a web interface for opsi configuration and abstraction
layer for the data backend.

Another important module of the opsi depot server is to supply of services for the
automated operating system installation:

dhcp for the administration of IP addresses,
tftp for the transmission of bootimages and configuration information.

In addition some interactive and scrip-table tools for the administration of the

configuration files and the boot images are provided.

For security reasons, stability and minimum resource consumption the opsi depot server
is limited to the reasonable and so the hardware requirements are very low. The opsi

depot server can also run as a virtual instance, e.g. vmware® (www.vmware.com).

9.2. Installation and initial operation

The installation media to install an opsi depot server can be downloaded from the opsi
website.

ljb 99 2©e



9. opsi-Module: depot server

9.3. Access to the graphic user interface of the depot server via VNC

Opsi depot server has no X-server for special hardware. The console of the depot
server is plain text therefore. As X-server the (tight) VNC-server is in operation. So
using vncviewer the X-server running on the opsi depot server is accessible from any
computer in your network. This structure (without any hardware specific adaptions)
allows for good standardization, which simplifies maintenance and increases stability.

At starting the depot server a VNC-server is started for every administrator, who is
registered in the file /etc/vncuser. If for any reason the VNC-server isn't running, it can
be started from the command prompt as 'vnc-server'.

Configuring the VNC-Servers:

The file /etc/vncusers is the configuration file for the VNC-Server. For every user a
,<default VNC-Server can be set. This VNC-Server will start when the booting the opsi
depot server.

#fparameters for vncserver

#

#examples:

#

#username:displayno:resolution:start at boot:localhost:
#test2:45:800x600:start_at boot:localhost:

#test3:46:800x600::: # mandatory entries

#

#start_at boot and localhost can be omitted, but not the colons!
#displayno should be different for each entry
root:49:1260x960:start_at boot::

The file has a similar structure as the /etc/passwd (important is the number of colons for
they are field delimiters).

1. Field: user name

2. Field: this is the display number, the port the VNC-server listens to (1-99 allowed)
3. Field: display resolution. For a 1024x786 display will 1050x700 be a good choice.
4

. Field: start_at_boot, only with this text at the boot of the opsi depot server the VNC-
server will be started automatically; (usually not necessary).

5. Field: localhost, the VNC-server can be connected from localhost only. This can be
used for ssh tunneling.

‘jl’ 100 QGDE



9. opsi-Module: depot server

Being logged on as a user at the opsi depot server, the vncserver specified for that user
can be started by 'vncserver'.

The first start of vncserver prompts for a password, which will be saved in
'~USER/.vnc/passwd' and will be valid for all VNC-servers of this user.

To stop the VNC-server:

vncserver -kill :<DisplayNumber>

What is VNC ?
VNC is open source software distributed under the GNU Public License.

VNC (Virtual Network Computing) is an (almost) operating system-independent
client/server application, which provides the graphical user interface of a specified
computer (= server) on the own desktop (= Client) to work with this computer remotely.
VNC consists of a server and a client application, which can be configured according to
different purposes.

Regarding to the VNC naming convention, the 'client' is the local computer you are
sitting at. The 'server' is the remote computer, which is to be accessed via network.

The remote server application exports its display to the local client application and also
provides an interface for keyboard and mouse input. For security reasons the server
application should be configured for using passwords, which have to be passed at the
connection request.

Websites for vnc : http://www.realvnc.com/
and tightvnc: http://www.tightvnc.com/

9.4. Shares for software packets and configuration files

9.4.1. Samba Configuration

The opsi depot server provides network shares holding the configuration information
and the software packets. These shares can be mounted by the clients. For Windows
Clients the shares are provided by SAMBA (version 3.x).

On the opsi depot server the SAMBA configuration files are located in '/etc/samba’. The
file '/etc/samba/smb.conf' holds the general settings and configurations. The
specifications of the shares are also located in 'smb.conf or in the include file

ub 101 «@e


http://www.tightvnc.com/
http://www.realvnc.com/

9. opsi-Module: depot server

'share.conf'. In this file it is configured, what shares are provided for the modules
'software depot server', 'utilities server' and 'configuration management server'. There
can be a different share for each module, but the default setting is, that all of these
modules are using a single share. The default setting is to share the directory
'lopt/pcbin' as the SAMBA share 'opt_pcbin'. Any changes to these defaults have to be
configured in the file '/fetc/samba/share.conf' and also in the global opsi network
configuration. Changing the SAMBA configuration, a SAMBA reload is required for the
changes to come into effect (/etc/init.d/samba reload).

In principle the SAMBA 3.x installation of the opsi depot server can be extended to be a
a fully featured file- and print server. Uib gmbh offers comprehensive support in this
area.

Example for the share.conf:

[opt_pcbin]

available = yes

comment = opsi depot share
path = /opt/pcbin

oplocks = no

level2 oplocks = no
writeable = yes

invalid users = root

[opsi_config]

available = yes

comment = opsi config share
path = /var/lib/opsi/config
writeable = yes

invalid users = root

[opsi_workbench]

available = yes

comment = opsi workbench share
path = /home/opsiproducts
writeable = yes

invalid users = root

9.4.2. Required administrative user accounts and groups

9.4.2.1. User opsiconfd

The opsiconfd deamon is started as user 'opsiconfd'.

l.ib 102 EY )



9. opsi-Module: depot server

9.4.2.2. User pcpatch

Access to the client configuration files and the software depot should be restricted and
should be granted only to the system administrators and the software distribution
service (opsi preLoginLoader) running on the client. This for instance is required to meet
the license agreements, which is in the system administrators responsibility.

To allow this the user account 'pcpatch’ gets the user-ID 992, the home directory
'lopt/pcbin/pcpatch' and as default the password 'Umwelt'. Change the password with:
opsi-admin -d task setPcpatchPassword

The user 'pcpatch’ is the owner of the opsi configuration files and on this account run
the opsi service processes. Also the opsi-PreLoginLoader uses this account for
connecting the depot server shares.

9.4.2.3. Group pcpatch

Beside the user 'pcpatch’ there is also a group 'pcpatch'. The user 'pcpatch’ as well as
the group 'pcpatch' has full access on most of the opsi files. All the administrators of the
opsi depot server should therefor be member of the group 'pcpatch’, so they have write
access to the configuration data.

A user can join group 'pcpatch’ by: 'addgroup <user> pcpatch'.

9.4.2.4. Group opsiadmin

Members of the group 'opsiadmin' are permitted to connect the opsi-webservice and
can use for instance the 'opsi-configed' configuration editor. Therefor all opsi
administrators should be members of the group 'pcpatch'.

A user can join group 'opsiadmin' by: 'addgroup <user> opsiadmin’.

9.4.3. Depot share with software packets (install)

The depot-Share provides all the software-packets which are installable by the client
task 'winst'. The default directory for the software packets is the directory
'lopt/pcbin/install'. In this directory each software packet has its own sub directory

u‘ b 103 E.E



9. opsi-Module: depot server

named as the software packet. These sub directories contain the packet-specific
installation scripts and files.

9.4.4. Config share with configuration and logging (pcpatch)

When using the 'file' backend, the client configuration files are located in the
configuration-share, one file per client. This directory is preset to '/opt/pcbin/pcpatch' on
the opsi depot server. In the sub directory 'pclog' are the client-specific log files: log file
from the OS installation (e.g. hardware information, hard disk partition info) and the
error logs from the client software installation. Using the 'File31' backend all the
configuration data is located in '/var/lib/opsi/config'.

9.4.5. Utils share: Utilities (utils)

The utils-share contains several opsi client utilities. The directory is preset to
'lopt/pcbin/utils' on the opsi depot server.

9.5. Administration of PCs via DHCP

9.5.1. What is DHCP?

DHCP is part of the TCP/IP protocol stack to exchange and set information about the
network configuration and components between client and server.

The DHCP protocol can be seen as an extension of the older BOOTP protocol. It allows
the dynamic allocation of IP addresses for client PCs (this DHCP feature is not used
with the opsi depot server).

For client PCs most of the common network controllers can be used if they have a
bootprom:

e Network controllers with PXE-bootprom (= Preboot Execution Environment)

e Network controllers with older TCP/IP BOOTP-bootprom (e.g. bootix

bootproms ).

The IP address of a PC-client can be found in the '/etc/hosts’.

db 104 9.9



9. opsi-Module: depot server

The other configuration data is located in the file 'letc/dhcp3/dhcpd.conf'. This file can
be edited (in addition to the common unix/linux editors) web based with the gui-tool
webmin(web based interface for system administration for Unix ).

Basically there are three ways of IP address allocation on DHCP-Servers:

Dynamically: From within a certain range of IP addresses vacant addresses are
assigned to a client for a certain amount of time. At expiration — even during a
working-session — the client has to try to extend this assignment, but eventually
the client gets a new IP address. In this way the same |IP address can be used at

different times by different clients.

Automatically: An unused IP address is assigned to each client automatically for

an unlimited time.

Manually: The assignment of the IP addresses is configured by the system
administrators manually. At a DHCP-request this address is assigned to the
client. For the opsi depot server this method is recommended, since this

simplifies the network administration.

PCs with a static IP address can use both protocols DHCP/PXE or BOOTP (depends on
the network controller's bootprom).

A dynamic or automatic IP address assignment can only be realized with DHCP and
PXE bootproms.

BOOTP (Bootstrap Protocol) only supports static assignment of MAC and IP addresses,
like the manual assignment with DHCP.

There are only 2 types of data packets with BOOTP: BOOTREQUEST (Client-
Broadcast to Server = request for IP address and boot parameters to a server ) and
BOOTREPLY (Server to Client: advise of IP address and boot parameters).

At the start of the network connection the only information a network controller has got
is its own hardware address (= hardware Ethernet, MAC of the NIC), consisting of six
two-digit hexadecimal numbers.

u‘ b 105 E.E



9. opsi-Module: depot server

The PXE firmware is activated at boot time and sends a DHCPDISCOVER broadcast
request into the network (standard port). It is a request for an IP address and for the

name of the DHCP server in charge.

With DHCPOFFER the DHCP-Server makes a proposal.

DHCPREQUEST is the client's answer to the server, if the offered IP address is
accepted (there might be several DHCP servers in the network).

With DHCPACK the DHCP server acknowledges the client request and sends the
requested information to the client.

Additional data packets:

+ DHCPNACK Rejection of a DHCPREQUEST by the Server.

+ DHCPDECLINE Rejection by the Client, because the offered IP address is

already in use

+ DHCPRELEASE The client releases the IP address (so it is

available for a new assignment).

+ DHCPINFORM Client request for parameters (but not for an IP address).

9.5.2. Dhcpd.conf

The opsi depot servers 'dhcpd.conf' is limited to just the required information and
functions:

- PC name,

- hardware Ethernet address,

- IP address of the gateway,

- net mask,

- IP address of the boot server,

- name of the boot file,

- URL of the OPSI configuration files.

Internal structure of the 'dhcpd.conf’

u‘b 106 E.E



9. opsi-Module: depot server

Lines with configuration instructions are terminated by a semicolon (;). Empty lines are

allowed. Comments begin with a hash(#) (the ,host description®, an additional
description for the PC in front of the host name, is realized in the same way.).

At the beginning of the '/etc/dhcp3/dhcpd.conf' are some general parameters. In the
second part the entries for subnets, groups and hosts are located. A hierarchical

grouping of clients can be done by enclosing entries (e. g. subnet and group) with curly

brackets. The defaults of a block refer to all elements within this block.

General parameters / example

# Sample configuration file for ISC dhcpd for Debian
# also answer bootp questions

allow bootp;

The network protocol bootp is supported.

PC-specific entries

A DHCP-configuration file must have at least one subnet definition. Everything defined

within the brackets is valid for all hosts or groups of that subnet.

By the element 'group' groups of computers can be defined, which have common
parameters (so the common parameters do not have to be defined for every client).
If different instructions are set on different levels, then the innermost definition

overwrites the outer one.

Example

ub

subnet{

..... aroup(
..... host{
}

}

# Server Hostname

107



9. opsi-Module: depot server

server-name "schleppi";

subnet 194.31.185.0 netmask 255.255.255.04
option routers 194.31.185.5;
option domain-name "uib.net";
option domain-name-servers 194.31.185.14;
#Group the PXE bootable hosts together

group {

Here is the beginning of a group of PCs within a subnet;
Example: Group of PCs with PXE-Network-Interface-Controllers.

# PXE-specific configuration directives...
# option dhcp-class-identifier "PXEClient";
# unless you're using dynamic addresses
filename "linux/pxelinux.0";

All PCs within this group use a Linux bootfile, unless something different is defined in
the PC-entry.

host pcbon13 §
hardware ethernet 00:00:CB:62:EB:2F;

}

This entry only contains hostname and hardware address (MAC).
The hardware address is six couples of hexadecimal characters (not case sensitive),
which must be separated by a colon!

}
}

The curly brackets mark the end of the segments 'group’ and 'subnet'.

If a new PC should join the subnet, it has to be registered in 'dhcpd.conf'.

After changing the DHCP configuration file, the DHCP server must be restarted, so
that the new configuration is applied to the DHCP server:
letclinit.d/dhcp3-server restart

u‘b 108 E.E



9. opsi-Module: depot server

9.5.3. Tools: DHCP administration with Webmin

Since the syntax of the 'dhcpd.conf' is quite complex, the depot server provides a
graphical web based tool for DHCP administration. The well known administration tool
'‘webmin' is used as a graphical interface to the 'dhcpd.conf'.

The service 'webmin' should be running after booting the server. Otherwise it can be
started (as user root) by: '/etc/init.d/webmin start'.

=]

@ b - a I’ https:ll',l'schleppi:1DDDEI,I'dhcpd,I'edit_group.cgi?idx=2&uidx=10j @_l ﬁ - El - 8 X

cEl l Merkur - Informationsportal der hessischen... MM Host-Gruppe bearbeiten | x

Host-Gruppe beatheiten
In subnet 194.31.185.0/255.255.255.0

Group the F<E bootable hosts together
SCC4E033 - 194.31.185.0
[

% lirwsprelinus. 0
¢ I
¢ I

o

Speichem | Bearbeite Client-Einstellungen Liozchen |

Einen neven Host hinzufiigen

Figure 18: Webmin-input mask for groups

If 'webmin' is running on the server, it can be connected from any client by:
'https://<server name>:10000" (default user/password: admin/linux123).

[J
ub 109

(@
@



9. opsi-Module: depot server

9.6. opsi V3: opsi configuration API, opsiconfd and backend manager

Opsi V3 comes with a python based configuration API. This API provides an abstraction
layer interface to the opsi configuration, which is independent of the actual type of
backend in use. Also there are some internal functions to operate on a special type of
backend. The backend manager configuration file (/etc/opsi/backendmanager.conf)
defines which backend type is to use.

The tool 'opsi-admin’ provides a command line access to the configuration-API. In the
corresponding chapter you get a detailed overview of the API functions.

In addition the opsi server provides a web service as an interface to the API to be
connected by other tools and services (for example the graphical configuration tools,
opsi-winst or opsi bootimage). The web service isn't based on XML/Soap but on the
compact JSON standard (www.json.org). The web service is part of the opsi
configuration daemon 'opsiconfd'. The web service can be connected via https through
port 4447 and also provides a simple interactive web GUI.

The 'opsiconfd' runs as user 'pcpatch’. So the user 'pcpatch' since opsi V3 needs
different privileges as with opsi V2.

The configuration file for ‘opsiconfd' is ‘/etc/opsi/opsiconfd.conf.

The 'opsiconfd' log files are written to '/var/log/opsi/opsiconfd’, a separate file for each
client.



10. opsi-server with multiple depots

10. opsi-server with multiple depots

10.1. Support

The functions described in this chapter are complex and you will get only support on this
topic via a professional support contract.

10.2. Concept

Supporting multiple depotshares in opsi aims at the following targets:

e central configuration data storage and configuration management
e providing the software depots on local servers

e automated deployment of software packages from the central server to the local
depots

Accordingly, it is implemented:
e All configuration data is stored on the central opsi-config-server

e All clients connect to this config-server in order to request their configuration data. The
configuration data comprise the information on method and target of the depot-server
connection.

e Allinstallable software is stored on depot-servers.

e The depot-servers have as well an opsipxeconfd running by which they provide
bootimages to clients via PXE/tftp.



10. opsi-server with multiple depots

Schema: opsi with a decentral depot-server

opsi-configed (Admininterface)

A
|/
- opsiconfd (webservice) -¢
opsi-Library
opsipxeconfd Depotshares
opsi-atftpd
config | lolo v | v|lv|lv
fles 3|3 |2 |2 2 ®|8
Tftp-Bereich o|® @ @ | D DD

>

decentral server
- P opsiconfd -

le.nt - opsipxeconfd
------- p Service

share -
Mount 4—,_>

PXE <@ --. opsi-atftpd

> Tftpbereich

e opsi-package-manager. A program to (de-)install opsi packages on one ore more
depot-servers.

e The opsi packages are copied via webdav protocol to the depot-servers and are
installed from the opsiconfd via a webservice call.

e opsi-configed supports the management of multiple depots.



10. opsi-server with multiple depots

e Clients connected to different depots can be managed in one bundle if the
involved depots are synchronized (have all product packages in identical
versions).

the following schema gives a more detailed view on the communication between the
components of a opsi multi depot share environment.

opsi-package-manager ‘ | opsi-configed | ‘ opsi-linux-bootimage | ‘ opsi-preloginloader

A E

configserver.opsi.org depotserver.opsi.org

<opt_pebi <opt_pcbin>

_pebin>
|—|nsl Il |— install

—winxppro [—winzppro

fox / L—firefox

/ b firef
E opsicontd opsiconfd
»! Bacl L
<products> cts>
twmxppm_su}lops\ twmxppm;p!-lops\
firefox 2.0.0.14-Lopsi firefox_2.0.0.14- Lopsi
opsipxecenfd ‘ opsipxeconfd

‘I BackendManager
| —

Backends opsi-atftpd opsi-atftpd

<tftproot> <tftproot> L

prelinux.0

prelinux.cig

Figure 20: Components and communication of a multi depot installation

10.3. Creating a (slave) depot-servers

In order to create a opsi-depot-server you have to install a standard opsi-server (see
opsi-server installation manual). This server can be configured to act as depot-server by
calling the script /usr/share/opsi/register-depot.py . Because this script does
not only reconfigure the local server, but also registers this server as depot-server with
the central config-server, username and password of a member of the opsiadmin group
have to be supplied here.

ub 113 @e



10. opsi-server with multiple depots

Example:

vmix12.uib.local will be reconfigured as depot-server and registered with the config-
server bonifax.uib.local:

vmix1l2:~# /usr/share/opsi/register-depot.py

khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdk
* %%

&3 This tool will register the current server as depotserver.

*

* The config file /etc/opsi/backendManager.d/15 jsonrpc.conf will be
recreated. *

* =>>> Press <CTRL> + <C> to abort <<=
*

khkhkhkhkhkkkkkhkhkhkhhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhhkhhhhkhkhkhkhkhkhhhhhhkhkhkhkhkhkhhkhhhhkhkhkkhkhkhhkhkhhhhkhkkkkkk
* %%

Config server [localhost]: bonifax.uib.local

Account name to use for login [root]: oertel

Account password [password]:

Connecting to host 'bonifax.uib.local' as user 'oertel'

The subnet this depotserver is resonsible for [192.168.4.0/24]:
Description for this depotserver [Depotserver vmix1l2]:
Additional notes for this depotserver [Notes for wvmix12]:

Creating depot 'vmix1l2.uib.local'

Requesting base-url '/rpc', query '{"params":
["vmix12","uib.local","file:///opt/pcbin/install","smb://vmixl2/opst_pcbin/ins
tall","file:///var/lib/opsi/products", "webdavs://vmix1l2.uib.local:4447/product
s","192.168.4.0/24","Depotserver vmixl2", "Notes for
vmix1l2"],"id":1, "method" : "createDepot"}' failed:

Trying to reconnect...

Testing connection and setting pcpatch password

Connection / credentials ok, pcpatch password set!

Creating jsonrpc backend config file

/etc/opsi/backendManager.d/15 jsonrpc.conf

Patching config file /etc/opsi/backendManager.d/30_vars.conf

10.4. packetmangment with the opsi-package-manager

see also chapter 3.4 Tool: opsi-package-manager: (de-)installs opsi-packages on page
28

In or to manage opsi-packages with different depot-servers the opsi-package-manager
got the option -d ( or --depot). With this option you can give the target depot-server for
the Installation. Using the keyword 'ALL' the opsi package will be copied to

ub 114



10. opsi-server with multiple depots

/var/lib/opsi/products on all known depot-servers and then installed via a local
webservice call.

If you don't give the option -d, the opsi package will be only installed on the local server
(without upload to /var/lib/opsi/products)

Example:
Install the package softprod_1.0-5.0opsi on all known depot-servers:

opsi-package-manager -d ALL -i softprod 1.0-5.o0psi
Processing upload of 'softprod 1.0-5.o0psi' to depot 'bonifax.uib.local'
Processing upload of 'softprod 1.0-5.0psi' to depot 'vmix13.uib.local'
Processing upload of 'softprod 1.0-5.0psi' to depot 'vmixl2.uib.local'
Overwriting destination 'softprod 1.0-5.o0psi' on depot 'bonifax.uib.local'
Starting upload of 'softprod 1.0-5.o0psi' to depot 'bonifax.uib.local'
100.00% 3 KB 0 KB/s 00:00 ETAs - softprod 1.0-5.opsi >>
bonifax.uib.local
Upload of 'softprod 1.0-5.o0psi' to depot 'bonifax.uib.local' done
Installing package 'softprod 1.0-5.o0psi' on depot 'bonifax.uib.local'
Overwriting destination 'softprod 1.0-5.o0psi' on depot 'vmix1l3.uib.local'
Starting upload of 'softprod 1.0-5.o0psi' to depot 'vmixl3.uib.local'
Overwriting destination 'softprod 1.0-5.o0psi' on depot 'vmixl2.uib.local'
Starting upload of 'softprod 1.0-5.o0psi' to depot 'vmixl2.uib.local'

100.00% 3 KB 3 KB/s 00:00 ETAs - softprod 1.0-5.opsi >>
vmixl3.uib.local
100.00% 3 KB 3 KB/s 00:00 ETAs - softprod 1.0-5.opsi >>

vmixl2.uib.local

Upload of 'softprod 1.0-5.o0psi' to depot 'vmix1l2.uib.local' done

Installing package 'softprod 1.0-5.o0psi' on depot 'vmixl2.uib.local'

Upload of 'softprod 1.0-5.o0psi' to depot 'vmix1l3.uib.local' done

Installing package 'softprod 1.0-5.opsi' on depot 'vmix1l3.uib.local'
Installation of package '/var/lib/opsi/products/softprod 1.0-5.opsi' on depot
'bonifax.uib.local' finished

Installation of package '/var/lib/opsi/products/softprod 1.0-5.opsi' on depot
'vimixl3.uib.local' finished

Installation of package '/var/lib/opsi/products/softprod 1.0-5.opsi' on depot
'vmixl2.uib.local' finished

In this example three depot-servers are known (bonifax.uib.local, vmix12.uib.local,
vmix13.uib.local). The opsi-package-manager first starts the uploading of the package
to the depots. When the uploads are finished the installation takes place. The local
depot is treated in the same way as the external depots.

In order to get information's about what are the differences between depots you may
call opsi-package-manager with the option -D (or --differences).

Example:
Show the differences between all known depots regarding the product mshotfix

opsi-package-manager -D -d ALL mshotfix

ub 115



10. opsi-server with multiple depots

mshotfix
vmixl2.uib.local : 200804-1
vmixl3.uib.local : 200804-1
bonifax.uib.local: 200805-2

10.5. configuration files

see Chapter 15.3.1.5 Configuration files in /var/lib/opsi/config/depots/<depotid> on page
140



11. DHCP and name resolving (DNS)

11. DHCP and name resolving (DNS)

## have to be written ##



12. opsi data storage (backend)

12. opsi data storage (backend)

12.1. File backend

With the backend type 'file backend' the configuration information is kept in text files (ini
file syntax) on the server.

12.1.1. File3.1-Backend (opsi 3.1)
Basic features of the backend 'File3.1" :
e current opsi default backend
e Linux standard base conform
e not backward compatible with opsi 2.x/3.0
e all opsi functions are available with this backend

e works only for clients which are run in 'service'-mode (accessing their
configuration files via opsi service).

The actual data files are kept in '/var/lib/opsi'.

Content and configuration of these files are described in the chapter 10 “Important data
files of the opsi depot server”.

12.2. LDAP backend

The opsi-LDAP-schema is saved as '/etc/ldap/schema’.
For activation of the LDAP-Backend a functional LDAP-server has to be accessible.

The opsi LDAP-schema has to be included to the LDAP configuration file
'letc/ldap/lapd.conf":

include /etc/ldap/schema/opsi.schema

(the LDAP service 'sldap' has to be restarted)

ub 118 «@e



12. opsi data storage (backend)

The next step is to patch the backend configuration of opsi.

12.2.1. Integrating the LDAP-backend

To activate the LDAP-backend change the following settings in
'/etc/opsi/backendmanager.conf":

Settings for the file-backend:

self .backends [BACKEND FILE]
self.backends [BACKEND LDAP]

{ 'load': True }
{ 'load': False }

Settings for the LDAP-backend:

self .backends [BACKEND FILE]
self .backends [BACKEND LDAP]

{ 'load': False }
{ 'load': True }

12.2.2. Configuring the LDAP-backend
self.backends [BACKEND LDAP]['config'] = {

"host": "localhost",
"bindDn": "ecn=admin, %$s" % baseDn,
"bindPw": "password",

12.2.3. Assign the LDAP-backend to methods

self.defaultBackend = BACKEND LDAP
self.clientManagingBackend [ BACKEND DHCPD, BACKEND LDAP ]
self.pxebootconfBackend BACKEND OPSIPXECONFD
self.passwordBackend BACKEND FILE31l
self.pckeyBackend BACKEND FILE31l
self.swinventBackend BACKEND MYSQL
self.hwinventBackend BACKEND_MYSQL
self.loggingBackend BACKEND FILE31l

In this example the LDAP backend is set as the default backend. The PC-keys and the
pcpatch-passwords are still administrated as files.

Now restart the opsi config daemon 'opsiconfd":

/etc/init.d/opsiconfd restart

The following command creates the LDAP base structure:

opsi-admin -d method createOpsiBase



12. opsi data storage (backend)

Underneath the LDAP-base node is an organizationalRole cn=opsi (e.g. cn=opsi,
dc=uib, dc=local). You find underneath the node opsi all of the opsi data. This structure
can be explored very easily with a graphical frontend like the Jxplorer (which is included
in the opsi-adminutils).

&l _i0|x]

Datei Bearbeiten  Ansicht  Favoriten  Suchem LDIF  Optionen  Extras  Sicherheit  Hilfe

Q
gls|s] s |®=[ma|n] x| 0|=] 4] of
I':'-I L”= L” Schnellsuche I

o Erkunden | @ Ergebnisse | % Schema | HTML Ansicht Tabellenaditar
B World attribute bype walue
=@ local cn Tzip
= uib objectClass opsiLocalBootPraduct
opsiPackageYersion 1
opsiProductCreationTimestamp 20070111124358
opsiProductLicenseRequired TRIJE
opsiProductMame 7-Zip
opsiProductPriority 0
opsiProduct¥ersion 4.4.2
description 7-Zip ist eine gute Packer-Freeware, die...
opsiPraductClassPravided cri=Packer,cn=productClasses, cn=opsi...
opsiSetupScripk Fzip.ins
opsifwaysScripk
opsioncescript
opsiProductAdyice
opsiUninstallScripk
opsilpdatescript
acroread?
acroread
javavm
jeditd_1
mozilla
preloginloader
softprod
teskl123
test4as
testswitch
thunderbird
tightvnc
ultravnc
userutils
winZk,
Wirp
E|--- productStates Abschicken Zuriicksetzen Klasse &ndern Eigenschaften

Connected To 'ldap://pcbonl 4:389°

o g
ub 120 «®-




12. opsi data storage (backend)

12.3. MySQL-backend for inventory data

12.3.1. overview and datastructure

Inventory data is stored in structured text files by default. This type of storage is not very
useful if you wish to form free queries on these data. In order to allow free queries and
reports a mysql based backend for the inventory data has been introduced.

The main characteristics of this backend are:
e only for inventory data (up to now)
e optional (not the default backend)

e a very fine granulated data structure with an additional table to make queries
easier.

e a history function which tracks changes in the inventory.

The MySQL based backend for the inventory data exists since opsi 3.3. Regarding the
very different structure of the components in the inventory the resulting datastructure is
complex.

The table 'hosts' comprises all known hosts. For every device type we use two tables:
The HARDWARE_DEVICE _ .table describes the model without individual aspects like
the serial number. The HARDWARE_CONFIG table stores these individual and
configuration data.

These both tables are connected via the field hardware_id. This is the resulting list of
tables:

HARDWARE CONFIG_ 1394 CONTROLLER
HARDWARE_CONFIG_AUDIO CONTROLLER
HARDWARE_CONFIG_BASE_BOARD
HARDWARE CONFIG BIOS
HARDWARE_CONFIG_CACHE_MEMORY
HARDWARE CONFIG_COMPUTER SYSTEM
HARDWARE_CONFIG_DISK_PARTITION
HARDWARE_CONFIG_FLOPPY_ CONTROLLER
HARDWARE_CONFIG_FLOPPY DRIVE
HARDWARE_CONFIG_HARDDISK_ DRIVE
HARDWARE_CONFIG_IDE_CONTROLLER
HARDWARE_CONFIG_KEYBOARD
HARDWARE_CONFIG_MEMORY BANK
HARDWARE_CONFIG_MEMORY MODULE

ub 121 «@e



12. opsi data storage (backend)

HARDWARE_CONFIG_MONITOR
HARDWARE_CONFIG_NETWORK CONTROLLER
HARDWARE_CONFIG_OPTICAL DRIVE
HARDWARE_CONFIG PCI_DEVICE
HARDWARE_CONFIG_PCMCIA CONTROLLER
HARDWARE_CONFIG_POINTING DEVICE
HARDWARE CONFIG_PORT_ CONNECTOR
HARDWARE CONFIG_PRINTER
HARDWARE_CONFIG_PROCESSOR
HARDWARE_CONFIG_SCSI_CONTROLLER
HARDWARE_CONFIG_SYSTEM SLOT
HARDWARE_CONFIG_TAPE_DRIVE
HARDWARE CONFIG_USB_CONTROLLER
HARDWARE_CONFIG_VIDEO_ CONTROLLER
HARDWARE_DEVICE_ 1394 CONTROLLER
HARDWARE_DEVICE AUDIO_ CONTROLLER
HARDWARE_DEVICE_ BASE_BOARD
HARDWARE_DEVICE BIOS
HARDWARE_DEVICE CACHE_MEMORY
HARDWARE DEVICE_COMPUTER SYSTEM
HARDWARE_DEVICE DISK_PARTITION
HARDWARE DEVICE FLOPPY CONTROLLER
HARDWARE_DEVICE FLOPPY DRIVE
HARDWARE_DEVICE HARDDISK DRIVE
HARDWARE_DEVICE_ IDE_CONTROLLER
HARDWARE DEVICE KEYBOARD

HARDWARE DEVICE_MEMORY BANK
HARDWARE DEVICE MEMORY MODULE
HARDWARE DEVICE_MONITOR

HARDWARE _DEVICE NETWORK CONTROLLER
HARDWARE DEVICE OPTICAL DRIVE
HARDWARE DEVICE PCI_DEVICE
HARDWARE DEVICE PCMCIA CONTROLLER
HARDWARE_DEVICE POINTING DEVICE
HARDWARE DEVICE PORT CONNECTOR
HARDWARE_DEVICE_ PRINTER

HARDWARE DEVICE PROCESSOR
HARDWARE_DEVICE_SCSI_CONTROLLER
HARDWARE_DEVICE_SYSTEM SLOT
HARDWARE_DEVICE TAPE DRIVE
HARDWARE_DEVICE USB_CONTROLLER
HARDWARE_DEVICE VIDEO CONTROLLER
HARDWARE_INFO

HOST

SOFTWARE

SOFTWARE_CONFIG

Because this data structure is not easy to handle, there is a table HARDWARE_INFO
which collects the information of different devices:

ljb 122 EY =)



CREATE TABLE

12. opsi data storage (backend)

\opsi\.‘HARDWARE_INFO‘ (
‘config_id’ int(11l) NOT NULL,
‘host_id' int(11l) NOT NULL,
"hardware _id" int(11l) NOT NULL,

"hardware class” varchar(50) NOT NULL,

‘audit_firstseen timestamp NOT NULL,
‘audit lastseen’ timestamp NOT NULL,
‘audit_state’ tinyint(4) NOT NULL,
“internalConnectorType” varchar(60) ,
‘verticalResolution  int(11),
“totalPhysicalMemory bigint(20),
“family® wvarchar (50) ,

‘vendorId® varchar (4) ,
"addressWidth®™ tinyint(4),
“videoProcessor  varchar (20) ,
‘numberOfFunctionKeys  int(11),
‘maxDataWidth®™ tinyint(4),
‘memoryType  varchar (20) ,
‘maxSize  int(1ll),

“tag® wvarchar(100) ,

“voltage™ double,

"slots’ tinyint(4),

‘screenWidth™ int(11),
“connectorType  varchar (60) ,
‘maxCapacity  bigint(20),

“size® bigint(20),

‘formFactor® wvarchar(10) ,
‘driveletter’  varchar(2) ,
‘capacity  bigint(20),
“socketDesignation” wvarchar(100) ,
“externalConnectorType  varchar(60) ,
“numberOfButtons” tinyint(4),
“capabilities” wvarchar(200) ,
‘port’ varchar (20) ,

‘dataWidth' tinyint(4),
“horizontalResolution™ int(1l1l),
‘version® varchar (50) ,
‘maxClockSpeed” bigint(20),
“location” wvarchar (50) ,
‘paperSizesSupported” varchar (200) ,
“deviceType varchar (10) ,
“subsystemVendorId  wvarchar(4) ,
“adapterRAM™ bigint(20),

“speed’ int(11),

‘architecture’ wvarchar (50) ,
“status’ varchar (20) ,

“freeSpace” bigint(20),

‘product” varchar (100) ,

‘vendor® varchar (50) ,
“description’ wvarchar(100) ,
‘index’ int(11),

‘systemType  varchar (50) ,
‘macAddress’ varchar (20) ,
"installedSize” int(11),
‘driverName' wvarchar(100) ,
“subsystemDeviceId ™ varchar(4) ,
‘internalDesignator” varchar(60) ,

[J
ub 123

//Verweis auf Device Configtabelle
//Verweis auf host-Tabelle
//Verweis auf Device Tabelle
//Device

//

//l=aktuell O=nicht mehr aktuell



12. opsi data storage (backend)

‘currentUsage” varchar (20) ,

“extClock™ int(11l),

“heads”™ int(11),

‘autoSense’ wvarchar (20) ,

“currentClockSpeed™ bigint(20),

"netConnectionStatus’ wvarchar (20) ,

‘partitions” tinyint(4),

‘maxSpeed” int(11),

‘busId’ varchar (60) ,

‘name’ varchar (100) ,

"sectors’ bigint(20),

“level’ wvarchar(10) ,

“serialNumber  varchar (50) ,

“screenHeight™ int(11),

"startingOffset” bigint(20),

“externalDesignator” varchar(60) ,

"filesystem varchar (50) ,

“cylinders” int(11),

‘model’ wvarchar (100) ,

‘revision® varchar(4) ,

‘devicelocator’ varchar (100) |,

“adapterType  varchar(20) ,

‘deviceld’ varchar(4) ,

PRIMARY KEY ('config _id’, "host_id’, "hardware class’, hardware_id’)
)

Which field name in the database is corresponding to which reported and localized
name in the opsi management interface is defined in a configuration file. Example
(/etc/opsi/hwaudit/locales/de_DE):

DEVICE ID.deviceType = Geratetyp

DEVICE_ID.vendorId = Hersteller-ID

DEVICE ID.deviceId = Gerate-ID
DEVICE_ID.subsystemVendorId = Subsystem-Hersteller-ID
DEVICE ID.subsystemDeviceld = Subsystem-Gerate-ID
DEVICE ID.revision= Revision

BASIC INFO.name = Name

BASIC_INFO.description = Beschreibung

HARDWARE DEVICE.vendor = Hersteller

HARDWARE DEVICE.model = Modell

HARDWARE DEVICE.serialNumber = Seriennummmer

COMPUTER SYSTEM = Computer

COMPUTER_SYSTEM. systemType = Typ

COMPUTER SYSTEM. totalPhysicalMemory = Arbeitsspeicher
BASE BOARD = Hauptplatine

BASE BOARD.product = Produkt

BIOS = BIOS

BIOS.version = Version

SYSTEM SLOT = System-Steckplatz

SYSTEM SLOT.currentUsage = Verwendung

SYSTEM SLOT.status = Status

SYSTEM SLOT.maxDataWidth = Max. Busbreite
PORT_CONNECTOR = Port

PORT_CONNECTOR.connectorType = Attribute

PORT CONNECTOR. internalDesignator = Interne Bezeichnung
PORT_ CONNECTOR. internalConnectorType = Interner Typ

ljb 124 EY =)



PORT_CONNECTOR.externalDesignator
PORT CONNECTOR.externalConnectorType
Prozessor
architecture

PROCESSOR
PROCESSOR.
PROCESSOR.
PROCESSOR.
PROCESSOR
PROCESSOR.
PROCESSOR.
PROCESSOR.
PROCESSOR.
PROCESSOR.voltage
MEMORY BANK

family =

extClock

12. opsi data storage (backend)

Externe Bezeichnung
Externer Typ

= Architektur
Familie

currentClockSpeed = Momentane Taktung
.maxClockSpeed = Maximale Taktung

Externe Taktung

processorld = Prozessor-ID
addressWidth = Adress-Bits
socketDesignation

Zugehoriger Sockel
Spannung

Speicher-Bank
MEMORY BANK.location

Position

MEMORY BANK.maxCapacity = Maximale Kapazitat

MEMORY BANK.slots
MEMORY MODULE
MEMORY MODULE .
MEMORY MODULE .
MEMORY MODULE.
MEMORY MODULE .
MEMORY MODULE
MEMORY MODULE .
MEMORY MODULE .
CACHE MEMORY

.memoryType
dataWidth = Datenbreite
tag =

Zwischenspeicher
CACHE MEMORY.installedSize

Steckplatze

Speicher-Modul
devicelocator
capacity = Kapazitat
formFactor
speed = Taktung

Zugehoriger Sockel

Bauart

Speichertyp

Bezeichnung

Installierte GroBe

CACHE MEMORY.maxSize = Maximale GréBe

CACHE MEMORY.location

CACHE_MEMORY . level
PCI_DEVICE
PCI_DEVICE.busId =
NETWORK CONTROLLER

NETWORK_CONTROLLER.
NETWORK_CONTROLLER.
NETWORK_CONTROLLER.
NETWORK_CONTROLLER.
NETWORK_CONTROLLER.

AUDIO_ CONTROLLER =
IDE CONTROLLER =

Position
Level

PCI-Gerat

Bus-ID

= Netzwerkkarte

adapterType = Adapter-Typ

maxSpeed = Maximale Geschwindigkeit
macAddress MAC-Adresse
netConnectionStatus = Verbindungsstatus
autoSense auto-sense

Audiokarte

IDE-Controller

SCSI_CONTROLLER = SCSI-Controller

FLOPPY CONTROLLER =

Floppy-Controller

USB_CONTROLLER = USB-Controller
1394 CONTROLLER = 1394-Controller

PCMCIA CONTROLLER =

VIDEO CONTROLLER =

VIDEO_ CONTROLLER.videoProcessor

PCMCIA-Controller
Grafikkarte

Video-Prozessor

VIDEO CONTROLLER.adapterRAM = Video-Speicher

DRIVE.size
FLOPPY DRIVE
TAPE_DRIVE
HARDDISK DRIVE
HARDDISK DRIVE.
HARDDISK DRIVE.
HARDDISK DRIVE.
HARDDISK DRIVE
DISK PARTITION
DISK_PARTITION.

Grofe

ub

Floppylaufwerk
Bandlaufwerk
Festplatte
cylinders
heads
sectors
.partitions
Partition
size

Cylinder
Heads
Sektoren

Partitionen

Grofe

125 9€}9



12. opsi data storage (backend)

DISK PARTITION.startingOffset = Start-Offset

DISK PARTITION.index = Index

DISK PARTITION.filesystem = Dateisystem

DISK PARTITION.freeSpace = Freier Speicher

DISK PARTITION.drivelLetter = Laufwerksbuchstabe
OPTICAL DRIVE = Optisches Laufwerk

OPTICAL DRIVE.driveLetter = Laufwerksbuchstabe
MONITOR = Monitor

MONITOR.screenHeight = Vertikale Aufldsung
MONITOR.screenWidth = Horizontale Aufldsung
KEYBOARD = Tastatur

KEYBOARD . numberOfFunctionKeys = Anzahl Funktionstasten
POINTING DEVICE = Zeigegerat

POINTING DEVICE.numberOfButtons = Anzahl der Tasten
PRINTER = Drucker

PRINTER.horizontalResolution = Vertikale Aufldsung
PRINTER.verticalResolution = Horizontale Aufldsung
PRINTER.capabilities = Fdhigkeiten
PRINTER.paperSizesSupported = Unterstiitzte Papierformate
PRINTER.driverName = Name des Treibers

PRINTER.port = Anschluss

Examples for queries:

Complete hardware inventory ordered by clients and devices:

select

HOST.hostId,HARDWARE_INFO.*

from

HOST,HARDWARE_INFO

where

(HOST .host_id = HARDWARE INFO.host id)

ORDER BY
HOST.hostId,HARDWARE INFO.hardware class,HARDWARE INFO.config id

Complete hardware inventory of one client ordered by devices:

select

HOST.hostId,HARDWARE INFO.*

from

HOST, HARDWARE INFO

where

(HOST.host_id = HARDWARE INFO.host id)

and HOST.hostId = 'pcuwb03.uib.local'

ORDER BY
HOST.hostId,HARDWARE INFO.hardware class,HARDWARE INFO.config id

Listing of all harddrives:

SELECT * FROM HARDWARE_DEVICE_HARDDISK_DRIVE D
LEFT OUTER JOIN HARDWARE_CONFIG_HARDDISK_DRIVE H ON
D.hardware_ id=H.hardware id ;

ljb 126 2©e



12. opsi data storage (backend)
12.3.2. Initializing the MySQL-Backend

First, the mysql-server has to be installed (if not done yet):

apt-get install mysql-server

In the next step the administrative password for the mysql-server has to been set:

mysqgladmin --user=root password linux123

Using the script /usr/share/opsi/init-opsi-mysql-db.py you may now initialize the MySQL-
Backend.

A example session:

svmopside: /usr/share/opsi# ./init-opsi-mysql-db.py
Kkkkkdkkhkkhdkkdkhkkhkkhkkhdkkhkhkkhdkkhkhkkhkhkkkhkkhkhkkhkhhkkhkkhkhkkkhkkhkhkkhkhdk
This tool will create an initial mysql database for use as opsi backend.
The config file /etc/opsi/backendManager.d/21 mysql.conf will be recreated.

=>>> Press <CTRL> + <C> to abort <<=

* % * F * X F

khkkhkkkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkx
*

Database host [localhost]:

Database admin user [root]:
Database admin password [password]:
Opsi database name [opsi]:

Opsi database user [opsi]:

Opsi database password [opsi]:

Connecting to host 'localhost' as user 'root'

Creating database 'opsi' and user 'opsi'

Testing connection

Connection / credentials ok!

Creating mysql backend config file /etc/opsi/backendManager.d/21 mysql.conf
Creating opsi base

Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50

Using type varchar (100) for property 'name'

Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
60

Using type varchar (100) for property 'name'

Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50

Using type varchar (100) for property 'name'

Got duplicate property 'location' of same type 'varchar' but different sizes:
50, 10

Using type varchar (50) for property 'location'

Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50

Using type varchar (100) for property 'name'

‘j!, 127 EY =)



12. opsi data storage (backend)

At all questions (beside the password) you may accept the defaults by pressing ENTER.
Warnings at the end of the script should be ignored.

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend is used
for which part of opsi. In order to use the MySQL backend, the inventory of hard- and
software has to be assigned to BACKEND_MYSAQL in this file, no matter which backend
is used otherwise.

self.swinventBackend
self . hwinventBackend

BACKEND MYSQL
BACKEND MYSQL

After changing the backend configurationthe opsiconfd must be restarted:
/etc/init.d/opsiconfd restart

12.4. Conversion between different backends

The command opsi-convert converts the opsi configuration files from one backend
to another. The target or the source can be assigned in different ways:

e Backend name
A backend on the current server can be addressed with just the backend name.
The command 'opsi-convert File File31' converts the data base of the
current server from File-Backend to File31-Backend.

e Service address
Providing a full qualified service address allows access to a remote servers data
base (after passing the users password). The service address looks like:
https://<username>@<ipadresse>:4447/rpc
The conversion command looks like that:
opsi-convert -s -1 /tmp/log https://uib@192.168.2.162:4447/rpc \
https://opsi@192.168.2.42:4447/rpc

e Configuration directories
With a declaration of a configuration directory for the specified backend manager
configuration source or target can be described in detail.

ljb 128 2©e



12. opsi data storage (backend)

12.5. Boot files

'/tftpboot/linux' contains the boot files needed for the system start with the PXE-
Bootproms.

12.6. Securing the shares with encrypted passwords

The installation software 'opsi preLoginLoader' accesses the shares provided by the
depot server in order to install software and to write configuration information and log
files. This is done with the privileges of the system user 'pcpatch’. Securing these
shares and therefore the authentication data of 'pcpatch' is important for two reasons:

e general system security and data integrity
e meet the license agreements of special software packets

To give the client task 'preLoginLoader' access to authentication data, the server task
'relnstallationManager' creates a specific key when preparing a client re-installation
request. This key is stored in the file '/etc/pckeys' and is passed to the PC with the
reinstallation request. The client PC will store this key in the local file
'c:\opsi\cfg\locked.cfg' during system installation (access rights limited to the
administrators). Also, on the server, the file '/etc/pckeys' is only accessible by user root.
This way every PC has got an unique key only known to the client itself and the depot
server, not accessible by client standard users. The key is used to encrypt the password
of the user 'pcpatch’. The encrypted password will be transferred to the client at boot
time via webservice. Hence the servers 'pcpatch' password can be changed any time.
The new encrypted password will be sent to every client at the next reboot.

ljb 129 2©e



13. Adapting the opsi preloginLoader to your Corporate Identity (CI)

13. Adapting the opsi preloginLoader to your Corporate Identity (Cl)

Since opsi-winst version 4.6 it is possible to manipulate the graphical skin of this
program by changing the file bg.png in the subdirectory 'winstskin'. After any change at
this file in the directory opt/pcbin/install/opsi-winst/files/opsi-winst/winstskin you should
execute the command touch /opt/pcbin/install/opsi-winst/files/opsi-winst/winst32.exe
which canges the timestamp of this file. As result of this operation the preloginloader will
see a 'changed' winst at the next startup and copy the winst and all it files (including
bg.png) to the client.

If you want to cange the oultfit of the preloginloader agent itself we recommend to use
the prloginloader version 3.4. In this Version it is possible to manipulate the skin files
notifie\action.omp and notifier\event.omp according to your needs.

u‘b 130 E.E



14. Overview: A PC boots from the network

14. Overview: A PC boots from the network

PC/Client network-boot
Depot-server

dhcp-request
from hosts,

dhcpd.conf

PXE-Bootprom active

\ PC gets IP, server and

TFTP-request bootfilename
for bootfile

T defaut = hdboot:

.

Linux-Bootimage

dhcp-request starting Win2k
from hosts,
dhcpd.conf \
PC gets IP... ‘
smb-request: Service prelogin.exe
from opsi-config-file “*path Jopt/pcbiny... starts pcptch.exe
Ws Winst (installation?)
/opt/pcbin/...

User is allowed to login.

Figure 21: Flowchart for a ‘regular' PXE-boot without re-installation, but with the start of
the opsi preLoginLoader

Again the first action is the bootprom sending its DHCP-request to the network.

In case of a boot without an OS (re)installation the bootimage cannot get a PC-specific
'01-<MAC>"file, instead the default file is loaded and initiates a local boot. During the

startup of the OS, the OS will again request an IP and the usual network configuration
information from the DHCP-server.

‘jb 131 9.9



15. Important files on the depot servers

15. Important files on the depot servers

15.1. Configuration files

15.1.1. Configuration files in /etc

15.1.1.1. /etc/hosts

The hosts file stores all IP addresses and IP names known to the network. The IP
addresses and names of all clients have to be entered here. The names have to be 'full
qualified', including the domain name. There might be aliases (additional names) and
comments (starting with '#').

Example:

192.168.2.104 1laptopl.uib.local 1laptopl

192.168.2.106 laptop2.uib.local 1laptop2 # you can enter comments here
192.168.2.153 desktopl.uib.local desktopl
192.168.2.178 test pcl.uib.local test pcl # Test-PC PXE-bootprom

15.1.1.2. /etc/group

The required opsi groups are 'pcpatch’ and 'opsidamin’. All users who are administrating
opsi packets need to be member of the 'pcpatch' group. Membership of the group
‘opsiadmin’ allows users to connect to the opsi web service (for instance using the opsi--
Configed or the applet).

15.1.1.3. /etc/opsi/pckeys

In this file the keys for the re-Installation manager, specified for each computer, are
stored.

Example:

laptopl.uib.local:fdc2493aced4b372£d39dbba3£fcd62182
laptop2:c397c280£fc2d3db81d39b4a4329b5£65
desktopl.uib.local:61149e£f590469f765albe6cfbacbf491

l.ib 132 EY )



15. Important files on the depot servers

15.1.1.4. /etc/opsi/passwd

Here the passwords encrypted with the server key of the server (e.g. for pcpatch) are
kept.

15.1.1.5. /etc/opsi/backendManager.conf

Deprecated since opsi 3.1 and replaced by '/etc/opsi/backendManager.conf.d/*,

Configuration file for the opsiconfd specifying which backend (File/LDAP) will be used,
where the data storage is and what commands are bound to what actions.

15.1.1.6. /etc/opsi/backendManager.conf/*
Since opsi version 3.1

Configuration files for the 'opsiconfd' service defining
- which backend (File/LDAP) to use,

- where to store the data files,

- which commands are bound to what action,

- the list of available service requests.

The *.conf files of this directory in alphabetic order will be combined to one single file at
run time to build the backendManager.conf. Also custom specific files can be included
to override the default settings (without losing this information at the next update).

15.1.1.7. letc/opsi/hwaudit/*

Since opsi V3.2

Here the configuration files for the hardware inventory are to be found. The directory
'locales' holds the language specifications. The file 'opsihwaudit.conf specifies the
mapping of WMI classes to the opsi data management.

15.1.1.8. /etc/opsilopsiconfd.conf

Since opsi V3

u‘ b 133 E.E



15. Important files on the depot servers

Configuration file for the 'opsiconfd’ service including configurations like ports,
interfaces, logging.

15.1.1.9. /etc/opsi/lopsiconfd.pem

Since opsi version 3.0

Configuration file for the 'opsiconfd' holding the ssl certificate.

15.1.1.10. /etc/opsi/opsipxeconfd.conf

Configuration file for the 'opsipxeconfd' in charge for writing the startup files for the
Linux-bootimage. You can configure directories, defaults and log level here.

15.1.1.11. /etc/opsilversion

Holds the version number of the installed opsi.

15.1.1.12. /etclinit.d/

Start and stop scripts for
e oOpsi-atftpd
v3 opsiconfd

v.3.1 opsipxeconfd

15.2. Boot files

15.2.1. Boot files in /tftpboot/linux

15.2.1.1. pxelinux.0

Bootfile which will be loaded first by the PXE-bootprom.

db 134 9.9



15. Important files on the depot servers

15.2.1.2. install und miniroot.gz

Installation bootimage which will be loaded by the client (per tftp) during a re-installation.

15.2.2. Boot files in /tftpboot/linux/pxelinux.cfg

15.2.2.1. 01-<MAC address> or <IP-NUMBER-in-Hex>

Files named by the clients hardware address (prefix 01-) are stored on the depot server
as client-specific boot files. Usually they are named pipes created by the re-
InstallationManager as to initiate the (re)installation of clients.

15.2.2.2. default

The file 'default’ is loaded if no client-specific file is found. This initiates a local boot.

15.2.2.3. install

Information for the boot of the install boot image which will be used by the opsi-re-
installationManager to create the named pipe.

15.3. Files of the File-Backend

Attention: opsi can be configured in many ways. The file locations as documented here
are the opsi defaults. The actual locations are to be found in the
letc/opsi/backendManager.conf.d/* configuration files.

15.3.1. File3.1-Backend

15.3.1.1. Overview

The files of the 'File31 backend' are in '/var/lib/opsi', which is the home directory of the
opsiconf-daemons. The following schema gives an overview of the directory structure.

u‘ b 135 E.E



15. Important files on the depot servers

/var/lib/opsiq
[—depot/
Flog/
futils/
-config/-
f—clientgroups.ini
-global.ini

depotshare)
logshare)
utilsshare)

use:
use:
use:

(for future
(for future
(for future
configshare
Client groups

network and additional config

f—clients/ (<pcname.ini> files)
[—templates/ (templates for <pcname.ini>
[—depots/-
—<depotid>/-
[—depot.ini
—products/-
—localboot/A
|  (product control
| files)
Lnetboot/
(product control
files)

e Logging and hard- and software inventory
The hardware information sampled by the product 'hwaudit' or the bootimage are
saved as '<configshare>/pclog/<pcname>.hw'.

The software information sent from the product 'swaudit' is saved as

'<configshare>/pclog/<pcname>.sw'.

15.3.1.2. Configuration files in '/var/lib/opsi/config'

15.3.1.2.1. clientgroups.ini

This file holds information on the client-groups.

[groupname]
membername

membername

(....)

Example
[group 3]
pca26

pca39
pcmeyer

15.3.1.2.2. global.ini

136



15. Important files on the depot servers

This file contains the default settings of the sections [networkconfig] and
[generalconfig] for the client configuration. Client specific values from
'<pcname>.ini' will override these default values. The inner structure of these sections is
the same as described in the next chapter for '<pcname>.ini'.

15.3.1.3. Configuration files in /var/lib/opsi/config/clients

15.3.1.3.1. <pcname>.ini

In these files the client specific configuration is set. This information will be combined
with the 'global.ini' values whereas the settings from '<pcname>.ini' overrides the
'global.ini' setting.

These files can have the following sections:

15.3.1.3.1.1. [generalconfig]

In this section are the general client entries. Values from this section will be transferred
by the service request 'getGeneralConfig_hash' and the bootimage to patch the

configuration files entries.

Example:

pcptchbitmapl wInstl.bmp
pcptchbitmap2 wInst2.bmp
pcptchlabell = opsi
pcptchlabel2 = uib gmbh

Icons and labeling of the pcpatch.exe 'netmount’ window

SecsUntilConnectionTimeOut = 120

Timeout of pcptch.exe ('netmount’ window) — if no server connection is available

button_stopnetworking=immediate

The 'netmount’ window should present the 'cancel'-button right from the start
test = 123

any user defined keys

O0s = winxppro

Default value for operating system installation

‘jl’ 137 QG}E



15. Important files on the depot servers

15.3.1.3.1.2. [networkconfig]

depoturl=smb://<smbhost>/<sharename>/<path>
configurl=smb://<smbhost>/<sharename>/<path>
utilsurl=smb://<smbhost>/<sharename>/<path>

The URL consists of three parts:

1. Protocol: Currently only the 'smb' protocol is supported.

2. Share name (for instance "\laptop\opt_pcbin'): This share will be mounted. In case of
a drive letter given further down in this file, the share is mounted as this drive.

3. The path where the installation software is stored.

depotdrive=<drive letter the depoturl will be mounted as>

Example: P: (including the colon)

configdrive=<drive letter the configurl will be mounted as>

Example: P: (including the colon)

utilsdrive=<drive letter the utilsurl will be mounted as>
Example: P: (including the colon)

nextbootservertype = service

The client can work with the opsi-service or with direct data access (‘classic' mode).
Classic mode is available with the 'File' backend only, but not with the 'File31' or 'LDAP’
backend. The client will retrieve that value and save it as

'HKEY LOCAL MACHINE\SOFTWARE\opsi.org\pcptch] opsiServerTyp'.

nextbootserviceurl = https://192.168.1.14:4447

This is the URL the client connects to the opsi service running on the server. Attention:
If there is a name and not an IP-number, the name must be resolvable by the client.
The value will be retrieved by the client and saved as

'HKEY LOCAL MACHINE\SOFTWARE\opsi.org\pcptch] opsiServiceUrl'.

windomain = dplaptop

This is the name of the Samba(Windows)-domain

‘jl’ 138 QGDE



15. Important files on the depot servers

15.3.1.3.1.3. [localboot_product_states]
Replaces the deprecated section [products-installed] and looks like:

<productid> = <installation state> : <required action>

e.g.

firefox = installed:setup

15.3.1.3.1.4. [netboot_product_states]

<productid> = <installation state> : <required action>

e.g.

winxppro = installed:none

15.3.1.3.1.5. [<product>-state]

This section holds information on every software packet installed on the client including

time stamp of installation.

laststatechange = <timestamp>

packageversion = <value>
productversion = <value

e.g.

laststatechange = 20070525105058
packageversion

=1
productversion = 2.0.0.3

15.3.1.3.1.6. [<product>-install]

product property = value

e.g.

viewer = off

15.3.1.3.1.7. [info]

The client information from the opsi-configed will be saved to the 'info' section. Also will
be recorded here the last time the client connected the 'opsiconfd' service.

[info]

notes =

description = detlef
lastseen = 20070105090525

‘jl’ 139 QGDE



15. Important files on the depot servers

15.3.1.4. Configuration files in /var/lib/opsi/config/templates

In this directory are the template files like 'pcproto.ini', which is the standard template for
creating a new <pcname>.ini file. It has the same internal structure as the <pcname>.ini
file.

15.3.1.5. Configuration files in /var/lib/opsi/config/depots/<depotid>

In this place is the file 'depot.ini', which is the configuration file of the opsi depot (where
on the server the depot is located and how to connect it).

[depotShare]
urlForClient = smb://dplaptop/opt pcbin/install
urlForConfigServer = file:///opt/pcbin/install

[depotServer]
operatingSystem = Linux

15.3.1.6. Product control files in /var/lib/opsi/config/depots/<depotid>/products

This directory contains the subdirectories 'localboot' and 'netboot’, where the control-
files of the respective products are located. The subdirectories contain the product meta
data, which is the product name, properties, default values and dependencies.

The control files are the kind of control files, that are generated by creating new opsi-
products in the directory '<product name>/OPSI/control'.

The control files have the following sections:

e Section [Package]
Description of the package version and whether this is an incremental package.

e Section [Product]
Description of the product

e Optional section(s) [ProductProperty]
Description of variable product properties

e Optional section(s) [ProductDependency]
Description of product dependencies

ljb 140 2©e



15. Important files on the depot servers

Example:

[Package]

version: 1
depends:
incremental: False

[Product]

type: localboot

id: thunderbird

name: Mozilla Thunderbird
description: Mail client of Mozilla.org
advice:

version: 2.0.0.4

priority: O

licenseRequired: False
productClasses: Mailclient
setupScript: thunderbird.ins
uninstallScript:
updateScript:

alwaysScript:

onceScript:

[ProductProperty]

name: enigmail

description: Install encryption plugin for GnuPG
values: on, off

default: off

[ProductDependency]
action: setup
requiredProduct: mshotfix
requiredStatus: installed
requirementType: before

e [Package]-'Version' is for different package versions from the same product
version. This helps to distinguish packages build from the same product version

but with different winst-script for instance.

e [Package]-'depends' refers to the base package of an incremental package.

e [Package]-'Incremental' specifies whether this is an incremental package.

e [Product]-'type' marks the product type as localboot or netboot.

e [Product]-'Id" is the general name of that product (like 'firefox'), independent from
the product version (with opsi 2 this is called the 'product name').

e [Product]-'name’ is the full name of the product.

[J
ub 141



15. Important files on the depot servers

[Product]-'Description' is an additional description for the product as shown in the
opsi-Configeditor as 'Description'.

[Product]-'Advice' is an additional hint for handling the product (caveats etc.) as
to be shown in the opsi-Configeditor as 'Note'.

[Product]-'version' is the version of the original software.
[Product]-'Priority' is for future use (regarding the installation order).
[Product]-'class' is for future use.

[ProductProperty]-'name': Name of a properties.

[ProductProperty]-'description': Description of the properties (shown as tool tip in
opsiconfiged).

[ProductProperty]-'values' : List of allowed values. If empty, the value is free
editable.

[ProductProperty]-'default' : Default value of the property.

[ProductDependency]-'Action’ : To which product action this dependency entry
belongs (setup, deinstall ...).

[ProductDependency]-'Requiredproduct': Product ID of the product a dependency
exists.

[ProductDependency]-'Required action": The required action of the product,
which the dependency entry refers to. Actions could be setup, deinstall, update...

[ProductDependency]-'Required installation status': The required status of the
product, which the dependency entry refers to. Typically this is 'installed’, which
results in setting this dependency product to setup, if it isn't installed on the client
yet.

[ProductDependency]-'Requirement type': this is regarding the installation order.
If the product, which the dependency entry refers to, has to be installed before
the actual product installation starts, the 'Requirement type' must be 'before’. If

142 «®-



15. Important files on the depot servers

the dependency product has to be (re-)installed after the actual product, the
'Requirement type' is set to 'after'. If there is no entry, the installation order is of
no relevance.

15.4. Files of the LDAP-backend

The opsi-LDAP schema is located in the directory

/etc/ldap/schema/opsi.schema.

15.5. Opsi programs and libraries

15.5.1. Python library

The opsi python modules are located at:
/usr/lib/python2.3/site-packets/OPSI/
or

/usr/share/python-support/python-opsi/0OPSI

15.5.2. Programs in /usr/sbin

v3 opsiconfd
opsi configuration daemon

v-3.1 opsipxeconfd
opsi daemon to administrate the files required for the PXE-boot of the clients.

15.5.3. Programs in /usr/bin

e opsi-admin
Starts the command line interface for the opsi python library

e opsi-configed
Command to start the opsi-management interface

e opsi-convert
Script for converting between different backends.

|jl’ 143 2©e



15. Important files on the depot servers

e opsideinst
(deprecated - replaced by opsi-package-manager) Script for deleting products

e opsiinst (opsiinstv2)
(deprecated - replaced by opsi-package-manager) Script to unpack and install
opsi packets on the server

e opsi-makeproductfile (opsi-makeproductfilev2)
Script for packing the opsi-packet (opsiV2 compatible Version)

e oOpsi-newprod
Script for creating a new opsi product

e oOpsi-package-manager
Script to unpack, install, remove, list opsi packets on one ore more servers.

e makeproductfile (makeproductfilev2) (deprecated)
Replaced by opsi-makeproductfile
Script for packing the opsi-packet (opsiV2 compatible Version)

e newprod (deprecated)
Replaced by opsi-newprod
Script for creating a new opsi product

e sysbackup
System backup (to tape or disc)

e winipatch
Script for patching INI-files

15.6. opsi-log files

15.6.1. /var/log

The opsi relnstallationManager logs to '/var/log/syslog'.

ub 144



15. Important files on the depot servers
15.6.2. /var/log/opsi/opsiconfd

In this directory are the log-files of the opsiconfd and the clients. The client log files will
be named 'log.<IP-number>' and (if available) a symbolic link named 'log.<IP-name>' to
'log.<IP-number>' is created.

15.6.3. /var/log/opsi/bootimage

In this directory are the log-files of the opsi-bootimage. These log files will be named
'log.<IP-number> If the boot image couldn't connect the webservice, the logs are written
to '/tmp/log' at the bootimage.

15.6.4. /var/log/opsi/opsipxeconfd

This is the log file of the opsipxeconfd, that administrates the tftp files for the PXE boot
of the clients.

15.6.5. Software installation (c:\tmp)

The logging of the opsi preloginloader service 'prelogin.exe' is managed by the registry
entry [HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\preloginloader] DebugOutput'.
Usually it is set to '0', which means 'no logging'. For debugging it can be set to 1 (some
logging), 2, 3 or 4 (verbose logging). The logs are shown in the Windows event viewer
in the opsi section.

The netmount program 'pcptch.exe’ logs to 'c:\tmp\logonlog.txt'.

The opsi-winst writes a detailed log of its current activities to 'c:\\tmp\instlog.txt'. This will
be overwritten at the next start. The cumulative error log file is 'c:\tmp\instlog.err' and
can be configured to under the name instlog.txt in c:\tmp. The error log can be
configured to be written to the config share as '<configshare>/pclog/<pcname>.err' or to
transfer the error logs per syslog protocol to a log server.

ljb 145 2©e



16. Registry entries

16. Registry entries

16.1. Registry entries for the opsi-preLoginLoader

16.1.1. opsi.org/general

The following entries will be found in the registry at [HKLM/Software/opsi.org/general].
configlocal = <0/1> (dword)

If ‘configlocal=0' all the following keys are updated at every boot with information from
the sysconf files. The sysconf files are retrieved by the client at every boot from the
server via tftp. So the client needs to know the address of the tftpserver:

tftpserver = <server to get the configuration files from>

16.1.2. opsi.org/shareinfo

The following registry entries are stored in [HKLM/Software/opsi.org/shareinfol]:

user = <user to mount the shares>

Example for user: pcpatch

pcpatchpass = <blowfish encrypted password for user pcpatch>
depoturl = <URL for installation packets>
; depoturl pattern: <protocol>:\\<server>\<share>\<dir>

Example for depoturl: smb:\\laptop\opt_pcbin\install

The URL consists of three parts:

1. Protocol (smb): Currently only smb is supported.

2. Share (\\laptop\opt_pcbin): This is the share to be mounted. If a drive letter is given
for this share the share is mounted to this drive letter.

3. Directory in which the software packets are stored.

Configurl = <URL to the configuration files>
; the configuration files are the <pcname>.ini files
; configurl pattern: <protocol>:\\<server>\<share>\<dir>

ljb 146 2©e



16. Registry entries

Example for configurl: smb:\\laptop\opt_pcbin\pcpatch
Description: (same structure as depoturl)

utilsurl = <URL to the utils directory>

; the utils directory contains the client opsi utilities
; like Winst.exe

; utilsurl pattern: <protocol>:\\<server>\<share>\<dir>

Example: smb:\\laptop\opt_pcbin\utils

Description: (same as depoturl)

depotdrive = <drive letter the depoturl will be mounted to>

Example: P: (including the colon)

configdrive = <drive letter the configurl will be mounted to>

Example: P: (including the colon)

utilsdrive = <drive letter the utilsurl will be mounted to>

Example: P: (including the colon)

Configuration values for 'pcptch.exe’ in [HKLM/Software/opsi.org/pcptch]

e mountdrive (DWORD) O=false, 1=true (default 1)

e label1 (String) caption for first image (if empty defaults to "PC-Server-Integration")
e label2 (String) caption for second image (if empty defaults to “uib”)

e Bitmap1 (String) is the name of the first image (BMP file, relative to the path of
pcptch.exe, default is 'winst1.bmp')

e Bitmap2, same as bitmap1for the second image (default is 'winst2.bmp')

16.1.3. opsi.org/preloginloader

The registry key [HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\preloginloader]
has the following values:

"PcPCallMode"=dword:00000001 (deprecated)

"DebugOutput"=dword:00000004
- Eventlog: O=errors only >=4 = verbose

db 147 9.9



16. Registry entries

"RebootOnBootmodeReins"=dword:00000001
- Reboot if bootmode=REINS

"RebootOnServicePackChange"=dword:00000001
- reboot if servicepack changed

"WaitForPcpEXxit"=dword:00000000 (deprecated)

"RemoveMsginaOnDeinst"=dword:00000001
- on uninstall restore the default login handler

"UtilsDir"="C:\\opsi\\utils"
- path to the preloginloader files

"PcptchExe"="C:\\opsi\lutils\\pcptch.exe"
- task to start (default is 'pcptch.exe’)

"WinstRegKey"="SOFTWARE\\Hupsi\\wInst"
- where to look for winst registry reboot requests

"LoginBlockerStart"=dword:00000001
- pgina waits for READY from the named pipe
(if set to 0, the user is allowed to logon during software installation)

"LoginBlockerTimeout"=dword:00000300
- Timeout in minutes for 'wait for ready' (then allow login)

"LoginBlockerTimeoutConnect"=dword:00000005
- Timeout in minutes for pipe-connect

opsi.org/pcptch
Key [HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\pcptch]

“SecsUntilConnectionTimeOut“=“10“
- wait 10 seconds for a network connection, otherwise continue
- value = 0 -> deactivated

ljb 148 2©e



16. Registry entries

If the entry “button_stopnetworking” is set to “immediate”, the button to cancel the
network connection will be shown immediately. Laptops (which are most of the time
offline) should be configured as “immediate”, so the installation task (which is trying to
connect the installation share) can be stopped immediately.

v opsiServerType
Defines whether 'pcptch.exe’ (in opsi 2 mode) should operate file based or
connect to the opsi service.
Possible values are:
classic -> opsi 2 mode
service -> opsi 3 mode

v3 opsiServiceURL
The URL to connect the opsi service
e.g. https://bonifax.uib.local:4447

v3 repeatServiceConnectNo
Number of retries for connecting the service (default 3).

16.2. Registry-entries for opsi-winst

16.2.1. Controlling the logging via syslog protocol
The relevant registry section is [HKLM\Software\opsi.org\syslogd]

the value of 'RemoteErrorLogging' (DWORD) is evaluated:
RemoteErrorLogging = (O=trel_none, 1=trel_filesystem, 2=trel_syslog);

If logging is set to syslog protocol ("remoteerrorlogging"=dword:00000002), the string
variable 'sysloghost' gives the IP-name of the LogHost.

The DWORD variable 'syslogfacility' defines the source of the syslog messages (default
is ID_SYSLOG_FACILITY_LOCALO).

The logging source can be:

ID_SYSLOG FACILITY _KERNEL = 0; // kernel messages
ID_SYSLOG_FACILITY_USER =1; // user level messages

ljb 149 2©e



16. Registry entries

ID_SYSLOG_FACILITY_MAIL = 2; // mail system
ID_SYSLOG_FACILITY_SYS DAEMON = 3; // system daemons
ID_SYSLOG_FACILITY_SECURITY1 =4, // security/authorization messages (1)
ID_SYSLOG _FACILITY_INTERNAL =5; //internal mess. generated by syslogd

ID_SYSLOG FACILITY_LPR = 6; // line printer subsystem
ID_SYSLOG_FACILITY_NNTP =7; Il network news subsystem
ID_SYSLOG_FACILITY_UUCP = 8; // UUCP subsystem

ID_SYSLOG FACILITY_CLOCK1 =9; // clock daemon (1)
ID_SYSLOG_FACILITY_SECURITY2 = 10; // security/authorization messages (2)
ID_SYSLOG_FACILITY_FTP =11; // FTP daemon
ID_SYSLOG_FACILITY_NTP =12; // NTP subsystem
ID_SYSLOG_FACILITY_AUDIT =13; // log audit
ID_SYSLOG_FACILITY_ALERT =14; // log alert

ID_SYSLOG _FACILITY_CLOCK2 = 15; // clock daemon (2)
ID_SYSLOG_FACILITY_LOCALO =16; // local use 0 (localO)
ID_SYSLOG_FACILITY_LOCALA1 =17; Il local use 1 (local1)
ID_SYSLOG_FACILITY_LOCALZ2 =18; // local use 2 (local2)
ID_SYSLOG_FACILITY_LOCAL3 =19; /[ local use 3 (local3)
ID_SYSLOG_FACILITY_LOCAL4 = 20; // local use 4 (local4)
ID_SYSLOG_FACILITY_LOCAL5 = 21; //local use 5 (local5)
ID_SYSLOG_FACILITY_LOCALG6 = 22; // local use 6 (local6)
ID_SYSLOG_FACILITY_LOCAL7 = 23; // local use 7 (local7)

l.ib 150 e



17. Supplement: Update of a opsiserver

17. Supplement: Update of a opsiserver

17.1. Update 3.3.1 to 3.4

17.1.1. Documentation

Please read the opsi 3.4 changes documentation in the opsi-manual.

17.1.2. Backup

It is always a good idea to make a backup before relevant changes to the system

At this release there are major changes at the MySQL-Backend. So a backup of the
existing data base is strongly recommended.

This is a possible command to do this job:

/etc/init.d/mysql stop
cp -a /var/lib/mysql /var/lib/mysql.backup
/etc/init.d/mysql start

17.1.3. Debian / Ubuntu

17.1.3.1. Register of the opsi 3.4 repository

In order to avoid that an update to 3.4 happens accidentally, the debian package for
opsi 3.4 is in a specific repository. Delete in /etc/apt/sources.list the entry:

deb http://download.uib.de/debian etch opsi3.3.1

and put in:

For Debian Etch, Ubuntu Dapper/Edgy/Feisty (i386/amd64):
deb http://download.uib.de/debian lenny opsi3.4
For Debian Lenny, Ubuntu Hardy (i386/amd64):

deb http://download.uib.de/debian lenny opsi3.4

Remark: Ubuntu Jaunty isn't supported yet.

ub 151



17. Supplement: Update of a opsiserver

Execute aptitude update.

17.1.3.2. Put in the opsi debian packages

Put in the packages with following order:
aptitude safe-upgrade

If you be asked on upgrading which version of a configuration file you wish to apply you
should choose the newest version. If not you should know exactly what you do e.g. you
don't choose the newest version because you want an other as the default File31-
Backend.

17.1.4. Suse

Important: Please do not upgrade from opsi3.3 to opsi3.4 directly. If you are using
opsi3.3 please upgrade to opsi3.3.1 first or contact uib-opsi-support.

In order to update execute the following commands:

zypper rr opsi3.3.1
zypper ar http://download.uib.de/suse/opsi3.4 opsi3.4
zypper update

17.1.5. Checking the backend configuration

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend manage
of opsi be used (BACKEND FILE31, BACKEND MYSQL, BACKEND LDAP).

The default backend is BACKEND FILE31.

The backend BACKEND _FILE is deprecated - it is not supported anymore .

In the entry clientManagingBackend may be controlled if opsi also assume the local
DHCP configuration. This is sensible if the DHCP-server of the opsiserver will be used
(default). The accordant entry is:

self.clientManagingBackend = [ BACKEND DHCPD, BACKEND FILE31l ]

lil’ 152 9{:}9


http://download.uib.de/suse/opsi3.4

17. Supplement: Update of a opsiserver

If the local DHCP isn't used also the BACKEND DHCPD not required:
self.clientManagingBackend = BACKEND FILE31l

For the hard- and software inventory you have since opsi 3.3 two possibilities:
BACKEND_FILE31 or BACKEND_MYSQL. One of these you have to enter
independent which backend is used normally:

BACKEND FILE31l
BACKEND FILE31l

self.swinventBackend
self . hwinventBackend

The license management module only works with the MYSQL-Backend and need also
this Backend for harware and software inventory. In order to use the license
management insert:

self.swinventBackend
self . hwinventBackend
self.licenseBackend

BACKEND MYSQL
BACKEND MYSQL
BACKEND MYSQL

For the logging there is since opsi 3.3 a own Backend: BACKEND_FILE31. These you
have to enter independent which backend is used normally:
self.loggingBackend = BACKEND FILE31l

After adapting the backend configuration the 'opsiconfd' has to be restarted:

/etc/init.d/opsiconfd restart

17.1.6. MySQL Inventory Backend

If you use the MySql-Backend for inventory and license management you should call
/usr/share/opsi/init-opsi-mysql-db.py

Perhaps you need to install the mysql-server before you can run this script:

aptitude install mysqgl-server

u‘ b 153 E.E



17. Supplement: Update of a opsiserver
17.1.7. Download of the new opsi products

Fetch the actual necessary opsi packages:

cd /home/opsiproducts
mkdir opsi34
cd opsi34

wget -r -11 -nc -nd -A '*.opsi' http://download.uib.de/opsi3.4/produkte/essential

17.1.8. Import of the new opsi products

The downloaded packages has to be installed on the server to be available for the
clients. The interactive installation of an opsi package happen with the aid of the order:

opsi-package-manager -i <package file name>

The following order install the downloaded packages successive:

opsi-package-manager -i *.opsi

17.1.9. Install and check the activation file

The use of non free components of the opsi installation is controlled by the activation
file /etc/opsi/modules .(See also Chapter Fehler: Referenz nicht gefunden Fehler:
Referenz nicht gefunden at page Fehler: Referenz nicht gefunden in this manual).

While the Release Candidate phase you will find a activation file which is valid until
31.8.2009 at http://download.uib.de/opsi3.4/modules . You should copy these file to
/etc/opsi using the root account. You may do this with:

cd /etc/opsi
wget http://download.uib.de/opsi3.4/modules

You may check your activation state with:
opsi-admin -d method getOpsiInformation hash

With this activation file you have the possibility to test our license management as well
as our Vista / Win7 Support with the new opsiclientd from the prelogloader 3.4. If you
are testing the opsiclientd but don't want to buy it, so please remember to change all
clients before the evaluation time ends to the legacy prelogin mode. Which mode of the

lil’ 154 9{:}9


http://download.uib.de/opsi3.4/modules
http://download.uib.de/opsi3.4/modules

17. Supplement: Update of a opsiserver

preloginloader should be installed is controlled by the product property
'client_servicetype' and the file
opt/pcbin/install/preloginloader/files/opsi/cfg/config.ini with the
entry:

[installation]
;client servicetype=prelogin
client servicetype=opsiclientd

You may check the server default for the product property 'client_servicetype' with:
opsi-admin -d method getProductProperties hash preloginloader

You may set the server default of product property 'client_servicetype' to 'prelogin' with:

opsi-admin -d method setProductProperty preloginloader "client_ servicetype" "prelogin"

If you have no activation for 'vista', you should work with the 'prelogin' mode.The
opsiclientd will not work without the 'vista' activation.

17.1.10. Final 'check’ and rollout of the new preloginloader to the clients

All parts of a opsi release are designed to work together. It is no good idea to try
running opsi with packages that are mixed from different releases. So you should make
a final check if all your packages (Linux-Packages as well as opsi packages) have at
least the release version that was published in the release mail on forum.opsi.org or in
the announce mailing list.

To avoid running in mixed environments you should rollout the new preloginloader to all
your clients soon. If you forget this task, you will perhaps find your self in the situation,
that the clients can't connect to the server any more after the next server upgrade.

17.2. Update 3.3 to 3.3.1

17.2.1. Documentation

Please read the opsi 3.3.1 changes documentation in the opsi-manual.

17.2.2. Backup

It is always a good idea to make a backup before relevant changes to the system

u‘ b 155 E.E



17. Supplement: Update of a opsiserver

If you already have a gina.dll installed which is different from the original msgina (e.g.
Novells nwgina) and chained this gina with the opsi-pgina, so note that the Registry
entrys of the opsi pgina now located under
HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\preloginloader

Regarding the major changes in the structure of the OS-Installation products like
winxppro, a backup of the directories of these products below /opt/pcbin/install is
strongly recommended.

This is a possible command to do this job:

cd /opt/pcbin/install
tar cvf /home/opsiproducts/winxppro-pre333l.tar winxppro

17.2.3. Debian / Ubuntu

17.2.3.1. Register of the opsi 3.3.1 repository

In order to avoid that an update to 3.3.1 happens accidentally, the debian package for
opsi 3.3.1 is in a specific repository. Delete in /etc/apt/sources.list the entry:

deb http://download.uib.de/debian etch opsi3.3

and put in:

For Debian Etch, Ubuntu Dapper/Edgy/Feisty (i386/amd64):
deb http://download.uib.de/debian etch opsi3.3.1
For Debian Lenny, Ubuntu Hardy (i386/amd64):

deb http://download.uib.de/debian lenny opsi3.3.1

Execute apt-get update.

17.2.3.2. Put in the opsi debian packages

Put in the packages with following order:
apt-get upgrade

u‘b 156 E.E



17. Supplement: Update of a opsiserver

If you be asked on upgrading which version of a configuration file you wish to apply you
should choose the newest version. If not you should know exactly what you do e.g. you
don't choose the newest version because you want an other as the default File31-
Backend.

17.2.4. Suse

In order to update execute the following commands:

zypper rr opsi3.3

zypper ar http://download.uib.de/suse/opsi3.3.1 opsi3.3.1

mkdir /tmp/opsi3.3.1

cd /tmp/opsi3.3.1

wget -Arpm -nH -nd -np -r http://download.uib.de/suse/opsi3.3.1/RPMS/noarch
rm opsi-depotserver* opsi-atftp*

zypper install python-twisted-web python-twisted-conch

rpm -U --nopostun *.rpm

rcopsiconfd restart

rcopsipxeconfd restart

17.2.5. Checking the backend configuration

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend manage
of opsi be used (BACKEND FILE31, BACKEND FILE, BACKEND LDAP).

The default backend is BACKEND FILE31.

The backend BACKEND_FILE is deprecated - you should change to
BACKEND FILE31l.

In the entry clientManagingBackend may be controlled if opsi also assume the local
DHCP configuration. This is sensible if the DHCP-server of the opsiserver will be used
(default). The accordant entry is:

self.clientManagingBackend = [ BACKEND DHCPD, BACKEND FILE31l ]

If the local DHCP isn't used also the BACKEND_DHCPD not required:

self.clientManagingBackend = BACKEND FILE31l

‘jl’ 157 9@}9



17. Supplement: Update of a opsiserver

For the hard- and software inventory you have since opsi 3.3 two possibilities:
BACKEND_FILE31 or BACKEND_MYSQL. One of these you have to enter
independent which backend is used normally:

self.swinventBackend
self . hwinventBackend

BACKEND FILE31l
BACKEND FILE31l

For the logging there is since opsi 3.3 a own Backend: BACKEND_FILE31. These you
have to enter independent which backend is used normally:
self.loggingBackend = BACKEND FILE31l

After adapting the backend configuration the 'opsi-confd' has to be restarted:

/etc/init.d/opsiconfd restart
17.2.6. MySQL Inventory Backend

If you use the MySql-Backend for inventory you should call
/usr/share/opsi/init-opsi-mysql-db.py

in order to reconfigure your database according to the new hwaudit.conf.
17.2.7. Download of the new opsi products (all users)

Fetch the actual necessary opsi packages:

cd /home/opsiproducts

mkdir opsi331l
cd opsi33l

wget -r -11 -nc -nd -A '*.opsi' http://download.uib.de/opsi3.3.1/produkte/essential

17.2.8. Download of the new opsi products (opsi-vista support customers only)

This chapter concerns only to customers of the opsi support for vista and preloginloader
3.4 which have an account to the opsi vista repository.

ub 158



17. Supplement: Update of a opsiserver

Fetch the actual necessary opsi packages from
http://download.uib.de/abo/vista/opsi3.3.1 using your account user name and password:

cd /home/opsiproducts/opsi331l

#the next command is one line

wget -r -11 -nc -nd --http-user=<user> --http-passwd=<password> -A '*.opsi'
http://download.uib.de/abo/vista/opsi3.3.1

#the same comman again not readable but for cuté&paste
wget -r -11 -nc -nd --http-user=<user> --http-passwd=<password> -A '*.opsi' http://download.uib.de/abo/vista/opsi3.3.1

The new opsi-preloginloader 3.4-x replaces the legacy preloginvista product which
should be deleted from the server with the following command:

opsi-package-manager -r preloginvista

The new preloginloader 3.4 replaces also the preloginloader 3.3.1 which have been
downloaded before from the general repository. So please delete this package.

The new preloginloader 3.4 is described in the opsi-vista installation manual:
http://download.uib.de/opsi3.3.1/doku/opsi_v331_vista_installation_en.pdf

17.2.9. Import of the new opsi products

The downloaded packages has to be installed on the server to be available for the
clients. The interactive installation of an opsi package happen with the aid of the order:

opsi-package-manager -i <package file name>

The following order install the downloaded packages successive:

opsi-package-manager -i *.opsi

The defaults of the javam package have changed (only 1.5 and 1.6 will be installed). In
order to install this package with the changed defaults you should execute for this
package:

opsi-package-manager -i javavm 1.6.0.12-2.opsi --properties package
17.2.10. Activating the new support for the USB and HD-Audio driver

In order to activate the support for USB and HD-Audio drivers you should execute the
create driver links.py scriptin every OS installation product directory (e.g
/opt/pcbin/install/winxppro)

u‘b 159 E.E


http://download.uib.de/abo/vista/opsi3.3.1

17. Supplement: Update of a opsiserver

17.3. Update 3.2 to 3.3

17.3.1. Documentation

Please read the opsi 3.3 changes documentation in the opsi-manual.

17.3.2. Register of the opsi 3.3 repository

In order to avoid that an update to 3.3 happens accidentally the debian package for opsi
3.3 is in a specific repository. Delete in /etc/apt/sources.list the entry:

deb http://download.uib.de/debian etch opsi3.2

and put in:

For Debian sarge: (no update available. Upgrade to Etch)
For Debian Etch, Ubuntu Dapper/Edgy/Feisty (i386/amd64):
deb http://download.uib.de/debian etch opsi3.3

Execute apt-get update.

17.3.3. Put in the opsi debian packages

Put in the packages with following order:
apt-get install opsi-depotserver opsi-configed

apt-get upgrade

If you be asked on upgrading which version of a configuration file you wish to apply you
should choose the newest version. If not you should know exactly what you do e.g. you
don't choose the newest version because you want an other as the default File31-
Backend.

The installation of the opsipxeconfd package may abort with a error which is caused by
the old installation, not by the new package. In this case please execute:

apt-get install opsi-depotserver

If there are still errors, it should help to issue an

u‘b 160 E.E



17. Supplement: Update of a opsiserver

apt-get install -f

17.3.4. Checking the backend configuration

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend manage
of opsi be used (BACKEND FILE31, BACKEND FILE, BACKEND LDAP).

The default backend is BACKEND FILE31.

The backend BACKEND FILE is deprecated - you should change to
BACKEND FILE31l.

The backend BACKEND LDAP is is not supported by opsi 3.3 yet - you should change to
BACKEND FILE31 until LDAP-support is available.

In the entry clientManagingBackend may be controlled if opsi also assume the local
DHCP configuration. This is sensible if the DHCP-server of the opsiserver will be used
(default). The accordant entry is:

self.clientManagingBackend = [ BACKEND DHCPD, BACKEND FILE31l ]

If the local DHCP isn't used also the BACKEND_DHCPD not required:

self.clientManagingBackend = BACKEND FILE31l

For the hard- and software inventory you have since opsi 3.3 two possibilities:
BACKEND_FILE31 or BACKEND_MYSQL. One of these you have to enter
independent which backend is used normally:

self.swinventBackend = BACKEND FILE31l
self hwinventBackend = BACKEND FILE31l

For the logging there is since opsi 3.3 a own Backend: BACKEND_FILE31. These you
have to enter independent which backend is used normally:
self.loggingBackend = BACKEND FILE31l

ub 161 «@e



17. Supplement: Update of a opsiserver

After adapting the backend configuration the 'opsi-confd' has to be restarted:

/etcl/init.d/opsiconfd restart

17.3.5. Import of the new opsi products

Fetch the actual necessary opsi packeges in the new package format:

cd /home/opsiproducts

wget -r -11 -nc -nd -A '*_ opsi' http://download.uib.de/opsi3.3/produkte/essential/upgrade

The downloaded package has to be installed on the server to be available for the
clients. The interactive installation of an opsi package happen with the aid of the order:

opsi-package-manager -i <package file name>

The following order install the downloaded packages successive:

opsi-package-manager -i *.opsi

17.4. Update 3.1 to 3.2

17.4.1. Register of the opsi 3.2 repository

In order to avoid that a update to 3.2 happen accidentally the debian package for opsi
3.2 is in an own repository. Delete in /etc/apt/sources.list the entry:

deb http://download.uib.de/debian etch opsi3.1

and put in:

For Debian sarge: (no update available. Upgrade to Etch)
For Debian Etch, Ubuntu Dapper/Edgy/Feisty (i386/amd64):
deb http://download.uib.de/debian etch opsi3.2

Execute apt-get update.

l.ib 162 2©e



17. Supplement: Update of a opsiserver
17.4.2. Put in the opsi debian packages

Put in the packages with following order:
apt-get install opsi-depotserver; apt-get upgrade

If you be asked while the upgrade which version of a configuration file you will apply you
should choose the newest version. If not you should know exactly what you do e.g. you
don't choose the newest version because you want an other as the default File31-
Backend.

17.4.3. Import of the new opsi products

Fetch the actual necessary opsi packages in the new package format:

cd /home/opsiproducts

wget -r -11 -nd -A '*.opsi' http://download.uib.de/opsi3.2/produkte/essential/upgrade

The downloaded package has to be installed on the server to be available for the
clients. The interactive installation of an opsi package happen with the aid of the order:

opsiinst <paketname>.opsi

The following order install the downloaded packages successive:
for paket in *.opsi; do opsiinst -f -q -k $paket; done

17.4.4. Checking the backend configuration

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend manage
of opsi be used (BACKEND_ FILE31, BACKEND FILE, BACKEND LDAP). The default
backend is BACKEND FILE31l. Inthe entry clientManagingBackend may be
controlled if opsi also assume the local DHCP configuration. This is sensible if the
DHCP-server of the opsiserver will be used (default). The accordant entry is:
self.clientManagingBackend = [ BACKEND DHCPD, BACKEND FILE31l ]

If the local DHCP isn't used also the BACKEND_DHCPD not required:

self.clientManagingBackend = BACKEND FILE31l

‘jl’ 163 QGDE



17. Supplement: Update of a opsiserver

For the hard- and software inventory you have to enter the FILE31-backend
independent which backend is used normally:

self.swinventBackend = BACKEND FILE31l
self hwinventBackend = BACKEND FILE31l

After adapting the backend configuration the 'opsi-confd' has to be restarted.

17.5. Update 3.0 to 3.1

17.5.1. Register of the opsi3.1 repository

In order to avoid that a update to 3.1 happen accidentally the debian package for opsi
3.1 is in an own repository. Delete in /etc/apt/sources.list the entry:

deb http://download.uib.de/debian sarge opsi3.0

and put in:

For debian sarge (only i386):

deb http://download.uib.de/debian sarge opsi3.1
For debian Etch, Ubuntu Dapper/Edgy (i386/amd64):

deb http://download.uib.de/debian etch opsi3.1

Execute apt-get update.

17.5.2. Put in the opsi debian packages

Put in the packages with following order:
apt-get install opsi-depotserver; apt-get upgrade

If you be asked while the upgrade which version of a configuration file you will apply you
should choose the newest version; if not you should know exactly what you do.

db 164 9.9



17. Supplement: Update of a opsiserver
17.5.3. Adapt the configuration

Opsi 3.1 used per default the new backend “File31“. So you either adapt your
configuration that your previous backend will used or the data base from th eold to the
new backend convert. The classification of the opsi-backends to the different
»functions” will be defined in the file /etc/opsi/backendManager.d/30_vars.conf. If you
want to use the file-backend further the corresponding section has to look like these:

self.defaultBackend
self.clientManagingBackend
self.pxebootconfBackend
self.passwordBackend

self .pckeyBackend

self . hwinventBackend

BACKEND_ FILE
BACKEND_ FILE
BACKEND OPSIPXECONFD
BACKEND_ FILE
BACKEND_ FILE
BACKEND_ FILE

In these case it's important that the file-backend further on be loaded. In order to
achieve this the line in the file /etc/opsi/backendManager.d/10_file.conf:

'load': False
has to adapted in:

'load': True

After changing the configuration the services opsiconfd and opsipxeconfd has to be
started new. Execute the following order:

/etc/init.d/opsiconfd restart; /etc/init.d/opsipxeconfd restart

Should you decide to use the File31-backend the files has to be converted. Before you
convert your system make a backup of your system! For the conversion of files the
program opsi-convert will used. The order for a conversion from File- to File31-backend
is:

opsi-convert File File3l

After a conversion between the two file based backends the file /etc/opsi/pckeys should
be corrected manually because both backends are using this file but the File31-
backend requires entries with fully qualified domain names, e.g.:

clientname.domain.tld:1lbad67e3c6955ccac891f58ca3led37e

In contrast, the classic File-backend has lines with simple host names, e.g.:

clientname:lbad67e3c6955ccac891£f58ca3led37e

ub 165



17. Supplement: Update of a opsiserver

17.6. Update 2.5 to 3.0

17.6.1. Register of the opsi 3-repository

In order to avoid that an update to 3.0 happens accidentally the debian package for opsi
3.0 is in a special repository. Delete in /etc/apt/sources list the entry

deb http://download.uib.de/debian sarge main

and put in:

deb http://download.uib.de/debian sarge opsi3.0

Execute apt-get update.

17.6.2. Put in the opsi Debian package

Put in the package with the order
apt-get install opsi-depotserver opsi-configed opsi-linux-

bootimage

These order should create the following output

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:
opsi-reinstmgr opsi-utils opsiconfd python python-crypto python-json
python-ldap python-newt python-opsi python-pam python-pyopenssl
python-twisted python2.3 python2.3-crypto python2.3-ldap python2.3-pam
python2.3-pyopenssl python2.3-twisted python2.3-twisted-bin sun-j2rel.6

Suggested packages:
python-doc python-tk python-profiler slapd python-gtk2 python-glade-1.2
python-glade2 python-gqt3 libwxgtk2.4-python python2.3-doc python2.3-profiler
python-ldap-doc pyopenssl-doc

Recommended packages:
python-serial python2.3-iconvcodec python2.3-cjkcodecs
python2.3-japanese-codecs

The following NEW packages will be installed:
opsi-configed opsi-reinstmgr opsi-utils opsiconfd python python-crypto
python-json python-ldap python-newt python-opsi python-pam python-pyopenssl
python-twisted python2.3 python2.3-crypto python2.3-ldap python2.3-pam
python2.3-pyopenssl python2.3-twisted python2.3-twisted-bin sun-j2rel.6

The following packages will be upgraded:
opsi-depotserver opsi-linux-bootimage

2 upgraded, 21 newly installed, 0 to remove and 0 not upgraded.

Need to get 88.0MB of archives.

After unpacking 120MB of additional disk space will be used.

Do you want to continue? [Y/n] Y

‘jl’ 166 QGDE



17. Supplement: Update of a opsiserver

The package opsiconfd need some entries to create a SSL-certificat:

Setting up opsiconfd (0.9-1)
Generating a 1024 bit RSA private key
................................................................ ++++++

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:de

State or Province Name (full name) [Some-State]:Rheinland-Pfalz

Locality Name (eg, city) []:Mainz

Organization Name (eg, company) [Internet Widgits Pty Ltd] :uib
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []: opsidepot.uib.local

Email Address []:infoQRuib.de

The user "pcpatch' is already a member of "shadow'.
Starting opsi config service... (done) .

(.))

After you finished these chapter go on with 'Inspect the configurations' to 'Put in the
minimal opsi-products’.

17.7. Update 2.4 to 2.5

The Update is easy

# Informationen iiber neue Pakete holen

apt-get update

# altes depotserver paket removen

apt-get remove opsi-depotserver

# neue pakete installieren

apt-get install opsi-depotserver

apt-get install opsi-webconfigedit

apt-get install opsi-inied

# Notwendige opsi-Pakete holen

wget -r -1 1 -nd -nH --cut-dirs=5 -np -N -R "* _html*" \
www.uib.de/www/download/download/opsi-pakete/essential
# notwendige opsi-Pakete installieren

opsiinst win2k.cpio.gz

opsiinst winxppro.cpio.gz

opsiinst opsi-winst.cpio.gz

opsiinst preloginloader.cpio.gz

opsiinst softinventory.cpio.gz

opsiinst opsi-adminutils.cpio.gz

opsiinst javavm.cpio.gz

ljb 167 2®©¢


mailto:info@uib.de

17. Supplement: Update of a opsiserver

17.8. Update 2.x to 2.4

The update is time-consuming because the versions before 2.4 working not with debian-
packages (or only in parts) and some things have to be installed new.

Specially it's a system software update from 'Debian Woody (3.0)' to 'Debian Sarge
(3.1)"' and from 'Kernel 2.4' to 'Kernel 2.6". If you don't know an update with 'apt-get dist-
upgrade' and haven't possibilities for testing, it will be better to reinstall the server or to
ask some experts (for example uib).

After warning you now the important facts:

Adapt the file '/etc/apt/sources.list' to install the debian-package out of 'stable' and get
extra sources.

Here an example

#Standard debian Quellen:

deb http://sunsite.informatik.rwth-aachen.de/ftp/pub/Linux/debian/ stable main
non-free contrib

deb-src http://sunsite.informatik.rwth-aachen.de/ftp/pub/Linux/debian/ stable

main non-free contrib

deb http://non-us.debian.org/debian-non-US stable/non-US main contrib non-free
deb http://security.debian.org/ stable/updates main

#Hier gibts den FreeNX-Server:

deb http://www.linux.lk/~anuradha/nx/ ./

#Alternative Samba Quelle:

deb http://ftp.sernet.de/pub/samba/ debian/

#fopsi-Pakete:

deb http://www.uib.de/www/download/download/debian sarge main

Update with 'apt-get' the databank package. If this isn't possible, you may have to put a
proxy in the file '/etc/apt/apt.conf' or delete one.

Before you can start 'dist-upgrade’, you have to correct some dependencies:

apt-get install libcrypt-blowfish-pp-perl
apt-get install apache-common

Update now the system software:

‘jl’ 168 QGDE



17. Supplement: Update of a opsiserver

apt-get dist-upgrade

Edit the '/etc/login.defs' and put '/opt/bin' in the path.

To proceed on:

apt-get install kernel-image-2.6.8-2-686
apt-get install kernel-source-2.6.8
apt-get remove opsi-depotserver
#foptional (bei Neuinstallation vorhanden)
apt-get install xfce4

apt-get install wget

apt-get install traceroute

apt-get install nxserver

#-> configuration: custom keys

apt-get install mozilla-firefox

Now you have done the most work and could go to chapter 'Installation of a
debian (Sarge) system with apt-get'.

[J
ub 169



18. History

18. History

18.1. Difference between opsi version 3.3.1 and version 3.3

18.1.1. What's new at opsi 3.3.1
e Support for Debian Lenny

e Redesigned packages for OS installation
containing:

e unified structure
e Support for HD-Audio and USB driver at the simplified driver integration
e Support for multiple i386 directories
e For customers of the opsi vista support:
e Enhanced support for 64 bit versions of Vista/2008
e New preloginloader 3.4 not only for Vista
e Vista service packs and hotfixes products
e The required action 'alwas' is now also supported at netboot products
e New Virtual Machine based on Debian Lenny
e topical manuals
e diverse bug fixes
e The support for the opsi 2.x/3.0 File-Backend has ended

e User of the File-Backend should convert their configuration data to the
File31-Backend before updating to opsi 3.3.1

ljb 170 2©e



18. History
18.1.2. What you should read in case of a upgrade to opsi 3.3.1

At this manual.

e 3.4 Tool: opsi-package-manager: (de-)installs opsi-packages on page 28

e 6.1 opsi standard products on page 59

e 7.1.8 Structure of the unattended installation products on page 70

e 7.1.9 Simplified driver integration with symlinks on page 70

e 13 Adapting the opsi preloginLoader to your Corporate Identity (Cl) on page 130
At the opsi vista installation manual:

e preloginloader 3.4

18.2. Difference between opsi version 3.3 and version 3.2

18.2.1. Overview
e support of multiple depot-servers

e The multi-depotshare extension gives you the opportunity of a central
administration for different locations

e At every location an opsi depot-server provides the shares and the
TFTP/PXE bootserver functionality, while the administration and the
configuration data backend is still handled by the central opsi-server.

e A decentral opsi depot-server can be easily installed and integrate with the
central configuration server.

e Up to now, these new functions are only implemented for the 'File31-
Backend'. The new LDAP-Backend is coming soon.

e The multi-depotshare extension is part of the 'Professional Edition'. It is
open source, but for getting support you will need a professional support
contract.

ub 71



18. History

opsi-package-manager: The new package administration tool

Install and deinstall opsi packages on one ore more opsi depot-servers.
(Replacing the deprecated commands opsiinst and opsiuninst)

Lists which packages installed on which server
Shows installation differences between different depot-servers

Extracts opsi packages for modification purpose.

opsi-configed enhancement

support of multiple depots
client MAC-address now editable

enhanced client creation dialog

MySQL-backend for inventory data with history function

opsi-winst extensions

opsi-winst now has a new skin, and has become skinnable: other skins
may be easily constructed without programming, e.g. for integration in a Cl
concept.

New Command 'ExitWindows /ShutdownWanted' for shutdown after all
installations have finished

New copy option suppressing automatic reboots if the target file was in
use

New function for retrieving the system locales
New function for retrieving the version informations of windows files
New function for catching the exit code of called programs

New secondary section for the execution of scripts with arbitrary external
interpreters

172 9'9



18. History

New function for retrieving strings from a map (string list with elements
key=value)

Easier building of partials lists

Run time debugging support for script execution

e Enhanced opsi-agent 'preloginloader’

no reboot on preloginloader rollout with the opsi-preloginloader-deploy
script.

Faster reaction if the opsi-server is missing

inital installation of the login blocker as default
no more permanent local user pcpatch
Automatic and enhanced MAC-address detection

enhanced installation program

e extended automatic driver integration used for the OS-Installation

e extended opsi-admintools functionality

Up-to-date opsi-configed as application

Extracting opsi-packages under Windows:: 7-zip

Editor (not only) with opsi-winst syntax-highlightning: jedit
SSH-Terminal: Putty

Compare and merger text files:: WinMerge.

XML-Editor: Pollo

XML-Diff-Tool

LDAP-Explorer: JXplorer

173 9'9



18. History

e Tool for interactive setups with recorded answers: Autohotkey.
e Setup Switch detector: Ussf
e new linux bootimage
e Up-to-date kernel
e NTFS write support
e Enhanced WakeOnLAN function
e some bugfixes
e opsi 2.x/3.0 File-Backends are now deprecated
e users of this Backend should change to the File31-Backend

o New documentations and installation media

Vocabulary:

config-server the functionality which provides management and storage of
opsi configuration data

depot-server the functionality which provides software depot shares and
tftpservice for opsi based PXE boot.

opsi-server a server which provides opsi functionality most times ->

config-server and -> depot-server.

18.2.2. What you should read in case of a upgrade to opsi 3.3

At this manual.
e 3.2.3 Depot selection on page 17

e 3.2.5 Client processing / WakeOnLan / Create a Client / Move a Client on page
19

db 174 9.9



18. History
e 3.4 Tool: opsi-package-manager: (de-)installs opsi-packages on page 28
e 7.1.9 Simplified driver integration with symlinks on page 70
e 10 opsi-server with multiple depots on page 111
e 12.3 MySQL-backend for inventory data on page 121
In the opsi-winst manual:

e ExitWindows /ShutdownWanted

18.2.3. Migration to opsi V3.3.1

The migration of the opsi environment from opsi V3.3 to opsi 3.3.1 is described in the
opsi depot server installation handbook.

18.3. Difference between opsi version 3.2 and version 3.1

18.3.1. Overview
e Upgraded hardware inventory

e The opsi-product 'hwaudit' detects hardware information per WMI and
reports it to the opsi depot server

e opsi-configed displays the current hardware inventory sorted by device
classes

e Selection of clients by certain hardware criteria like e.g. the size of main
storage

e Provides server-sided extensions to transfer hardware inventory data via
the web service and save it to the backend data base

e Ability of the opsi-winst to execute python scripts out of a winst-section

e Upgraded software inventory

ljb 175 2©e



18. History

e The opsi-product 'swaudit' collects software information from the client
registry and reports it to the opsi depot server

e opsi-configed displays the current software inventory

e Provides serversided extensions to transfer the software inventory data via
the web service and save it to the backend data base

e Accelerated performance of the unattended installation of WinXP/2k (without
using DOS anymore)

e Upgraded process to save and restore NTFS-images
e Other netboot products:
e wipedisk: Fast or very secure data deletion from the hard disk
e memtest: Test the client memory
e Several bugfixes
e Updated documentation and installation media:
e opsi V3.2 installation handbook
e opsi V3.2 handbook
e opsi-winst handbook
e opsi-winst quick reference
e Virtual opsi V3.2 opsi depot server for Vmware

e Installation CD for opsi V3.2 opsi depot server

18.3.2. What you should read
Opsi V3.2 brings along some news you should be familiar with. Please first read

this chapter and then refer for further information:

ljb 176 2©e



18. History
e Chapter: 'swaudit' and 'hwaudit": Products for the hard- and software inventory
e Chapter about netboot products like ntfs-image, wipedisk and memtest
e The opsi integration handbook: opsi V3.2 has been added to this handbook

e Updated winst-handbook

18.3.3. Migration to opsi V3.2

The migration of the opsi environment from opsi V3.x to opsi 3V.2 is described in the
opsi depot server installation handbook.

18.4. Difference between opsi Version 3.1 and Version 3.0

18.4.1. Overview
e Integration of boot image based products into the standard data management

e Boot image products like OS-installation, hardware inventory, create
images or restore images are now integrated in the normal data
configuration like other products and can be administrated the same way

e The opsi-reinstmgr is replaced by the opsipxeconfd, which gets a direct
access to the opsi configuration by the opsi-Python-Library.

e Extensions of the opsi-configed

e Information about installed software and package versions of a product
are displayed and evaluated

e Basic opsi configurations (Generalconfig) are now editable
e New scripts for the initial rollout of the opsi-preloginloader

e opsi-deploy-preloginloader
Starts the installation of the opsi-preloginloader from the server side. The
admin password of the client and an open C$- and admin file share are
required

db 177 9.9



18. History

e setup_service.cmd
If the requirements for the script opsi-deploy-preloginloader aren't met, the
administrator can start a script on the client side to generate the client
entry per opsi-service and install the preloginloader on the client side (by
providing username/password of an opsi-admin in the script)

e Simplified driver integration based on the PCI Vendor- and Device-IDs

e A new script passes just the required additional drivers to the Windows
installation process, so it doesn't need to scan all the available drivers
anymore

e Improvements of the opsi-preloginloader / opsi-winst

e The opsi-preloginloader now is more stable in situations with a broken
name resolution

e Budgfix regarding the support of English systems

e opsi-wlinst function for identification of the system language at run time for
supporting multilingual packages.

e opsi-winst support request of the opsi-Service from within winst-scripts

e Data conversion between different backends, e.g. from file-backend to the LDAP-
backend

e Some more adaptations on the linux standard base with the new file3.1-backend

18.4.2. What you should read

Opsi V3.1 brings along some news you should be familiar with. As an introduction
please first read this chapter.

And further on refer to:
e Chapter 4.1.3 Subsequent installation of the opsi-preloginloader

e Description of the backend you are using

ljb 178 2©e



18. History

e Description of the opsi-configed
e Chapter Driver integration in a Windows installation

e wlinst-hand book

18.4.3. Backend
opsi V3.1 supports the following backends:

e File
Data based backend. This is backward compatible with opsi V2.x and being
located in /opt/pcbin/pcptch it is not conform to the 'Linux Standard Base'.

e File3.1
Data based backend. This is incompatible to opsi2.x and being located in
/var/lib/opsi it is conform to the 'Linux Standard Base'.
The essentially differences to the 'file'-backend are:

e Aggregation of the product administration of 'normal’ products and
bootimage based (localboot- and netboot products) in one data file per
client

e Separation of current status and requested action for each software
product

e LDAP
Standard Open-LDAP opsi-Backend

e Univention-LDAP
Backend of the opsi special edition opsi4ucs

The default backend for a new opsi installation is: File3.1

18.4.4. Migration to opsi V3.1

The migration of the opsi environment from opsi V3.0 to opsi V3.1 is described in the
opsi depot server installation handbook.

ljb 179 2©e



18. History

18.5. Differences of opsi version 3 to version 2

18.5.1. Overview (What you should read)

The essentials about new features and technologies of opsi V3 are described in the
following chapters:

This one: 18.5 Differences of opsi version 3 to version 2

Chapter Fehler: Referenz nicht gefunden Fehler: Referenz nicht gefunden
Chapter 3.2 Tool: opsi V3 opsi-Configed

Chapter 3.3Fehler: Referenz nicht gefunden Tool: opsi V3 opsi-Webconfiged
Chapter 3.5 Tool: opsi V3 opsi-admin

For the new distribution packet format in opsi V3 read the chapter 10.2 in the opsi
integration hand book.

18.5.2. Conceptual

In opsi V2 the complete data storage has been file based. All opsi components
operated directly on these text files.

winst32.exe pcptch.exe configeditor bootimage

produkte.txt pcname.iniJM pcname.J_u global
sysconf sysconf

Figure 22: Legacy opsi V2 direct data access

[J
ub 180 e



18. History

In opsi V3 the opsi components don't operate directly on the data storage but insteaad
use a web service which is provided by a opsi configuration daemon. Only this daemon
reads and writes to the data storage.

winst32.exe pcptch.exe configeditor bootimage

opsi configuration daemon

‘ I
‘ I
| m | J—H
. pcname. global
produkte.txt| | pcname.ini sysconf sysconf

Figure 23: opsi V3 using the web service for data access

Using this daemon makes it quite easy to use different types of data storage. So
opsi V3 comes with an optional LDAP based data storage.

winst32.exe pcptch.exe configeditor bootimage

opsi configuration daemon

LDAP-database

Figure 24: use of different storage systems (LDAP) by the daemon

ub 181 «@e



18. History

For backward compatibility reasons opsi winst.exe and pcptch.exe also have a 'classic'
mode with direct access to a text file based data storage.

The realization of this concept is done in opsi V3 via a new opsi-Python-Library. This
python based library provides an opsi configuration API which is independent from the
actual type of data storage. This APl is also provided by a web service which uses the
JSON standard. This web service is implemented as part of the program opsi-configed.
The program opsi-admin provides a command line interface to the API for shell
scripting.

Another part of the opsi-Python-Library implements the concrete access to the different
types of data storage (backends) which is configured by the backend manager.

18.5.3. Improvement of the handling

Beside the technical changes there are a lot of improvements of the handling of opsi
V3.

e Configuration Editor: opsi-configed
e Group management:
e Multiple selection and configuration of clients
e Save and load different groups of clients for configuration

e Using filters for selecting groups of clients on the fly (by criteria like
installed software)

e WakeOnLAN for selected client groups from within the configuration editor
e Client list may be sorted by name, description and 'last seen by opsi'

e Changed the opsi V2 installation switches into separate status
informations for the actual installation status and the requested action

e Product list may be sorted by installation status and requested action

e The opsi-configed is also provided as web applet

l.ib 182 2©e



18. History

e Improved view on the hardware information
e Simple creation or deletion of clients

e New packet format for installation of opsi products on the opsi depot servers
e Easy menu driven creation of new packets

e Informations about software version, packet version and custom additions
are stored in the packet. They are also shown by the packet name and in
the destination directory on the depot server. This will help you in your
product life cycle management.

e Creation and installation of opsi packets is now possible without root rights

e The commands for handling legacy packets are still available as opsiinstv2
and makeproductfilev2

e command line tool 'opsi-admin' for script driven opsi configuration
e opsiducs: opsi for the Univention Corporate Server (UCS)
e Integration of opsi data storage to the UCS-LDAP
e Integration of opsi configuration to the 'Univention Admin Interface'

e There is a special manual: 'opsi4ucs'

18.5.4. Vocabulary
For opsi V3 some new definitions are used and some have changed since opsi V2.

Here are some of the important definitions:

action request Action which will be executed next. something like: 'setup’,

'deinstall' or 'update’. -> installation status

backend opsi V3 may use different types of data storage (backends) like File
or LDAP. Which and how these backends are used is configured by

the -> backend manager.

u‘ b 183 E.E



backend manager

clientld

hostld

installation status

LastSeen
localboot product
netboot product
opsi-admin
opsiHostKey
opsi-Configed

opsiconfd

product properties

productld

product name

server product

18. History

Program / configuration file to configure the different backends

unique identifier for a client using the 'full qualified hostname'
e.g. dpvmO02.uib.local

unique identifier for a computer using the 'full qualified hostname'

e.g. dpvmO02.uib.local

actual installation status of a product on a specific client,

typically something like: 'installed’ or 'not installed'. -> action request
Time stamp of the last client call to the opsi web service

An opsi packet which will be installed by the opsi-preloginloader

An opsi packet which will be handled by starting a boot image

opsi V3 command line interface for opsi-Configuration

see pckey

opsi V3 graphical configuration tool as Java Application and Applet

Daemon that provides the opsi configuration APl as JSON based

web service
additional client specific product configuration

unique identifier for an opsi product. Special characters (beside '-')

are not allowed. Example: acroread

Full name of the software product. Example: 'Adobe Acrobat

Reader'

An opsi product which installs something on the server which is no

client software

184 «®-



18. History

18.5.5. Migration to opsi V3

The migration of the opsi environment from opsi V2 to opsi V3 is described in the
opsi depot server installation handbook.

[J
ub 185



19. Glossary

action request

backend

backend manager

bootp

bootprom

clientld

DHCP

ftpd

19. Glossary

Since opsi V3 the installation status and the next scheduled action
(action request) are handled as separate. Typical action requests
are 'setup’, 'deinstall' and 'update'. -> installation status.

opsi V3 may use different types of data storage (backends) like
'File' or 'LDAP'. These backends are managed by the

-> backend manager.

Program / configuration file for handling the actual data storage
(backend).

Bootstrap protocaol, first used to boot terminals in Unix
environments. Allows a client to request configuration data (i.e.

network address), often via -> Bootprom from a server.

Read only memory installed on a -> NIC or main board (PROM:
Programmable Read Only Memory). The BIOS of a PC can execute
the code stored in the bootprom at boot time. The purpose is to
load configuration data from a server on the network. The protocol
for this usually is ->bootp or ->DHCP.

Unique client name as the 'full qualified hostname', which is the

client's IP-name including the domain (e.g. 'dpvm02.uib.local').

Dynamic Host Configuration Protocol: an extension of the ->bootp-

protocol allowing dynamic IP address assignment.

File Transfer Protocol-Daemon: Daemon for both ends of the ftp-
protocol. Allows remote logins and file transfer from and to remote
hosts.

telnetd (Telnet-Daemon) provides (insecure) terminal connections
from remote machines.

186 «®-



GINA

GNU

GUI

hostld

inetd

Installation status

IP address

19. Glossary

Graphical Identification and Authentication

is a Microsoft Windows program handling the user login. The
default is 'msgina.dll'. For modifying the login process, additional
GINAs can extend the msgina. The opsi-loginblocker (for preventing
the user login during software installation) is a GINA extension

based on the source of 'pgina.dll' (http://pgina.xpasystems.com).

The recursive abbreviation GNU stands for "GNU's not Unix".

The GNU-project was initiated in 1983 by Richard Stallman, founder
of the Free Software Foundation, to develop a free Unix like OS.
This project is still in progress and originated a lot of GNU-tools,
that allowed the development of LINUX. Therefore Linux is often

referred to as GNU/Linux.
Graphical User Interface.

Unique ID of a computer by using the 'full qualified hostname',

which is the 'lP-name' including the domain (e.g. 'dpvm02.uib.local')

Internet Daemon: is the master service of some other daemons,
which are for instance bootpd, ftpd, tftpd and telnetd. These
daemons are started on request by the inetd according to the inetd

configuration file '/etc/inetd.conf'.

Since opsi V3 the installation status and the next scheduled action
(action request) are handled as separate. The installation status is

usually 'installed' or 'not installed'. -> action request

IP (Internet Protocol) address is an unique address within the
internet or subnet.

The IP address is a 32-bit number composed of the network
address and second the machine-address within the network.
Usually the 32-bit number is written as four decimal numbers
(0..255) separated by a dot (e.g. 194.31.284.12).

187 9'9



JSON

LastSeen
localboot product

MAC address

netboot product

ub

19. Glossary

Dependent on the network size the network is classified as class A,
B or C. In class A networks (for very large networks) the first
number (1..126) addresses the network itself and the three
remaining segments represent the machine's address.

Class B networks use the first two numbers to address the network
(the first number must be 128..191) and the last two numbers to
specify the machine.

In a class C network three numbers address the network and just
the last segment is used to specify the machine.

All three classes have an address range (i.e. 192.168. for private
networks) which is not routed to the internet. This class structure is
somehow outdated since classless inter domain routing became
practice to make better use of the limited resources of IPv4
addresses.

JSON short for JavaScript Object Notation is a compact data
exchange format. The data are easy to read for people and for
machines. Source: http://de.wikipedia.org/wiki/lJSON and

WWW.jSoNn.org
Time stamp of the last client connect to the opsi service.
An opsi packet which is installable by the opsi-preloginloader.

The 'Media Access Control address' is an unique identifier attached
to the network adapter and is transferred with every data packet.
With this address the computer (respectively its network card) can
be identified worldwide and can be mapped to an —IP-number. The
MAC address is composed from 6 hexadecimal numbers (0..FF)
separated by colon (e.g. 00-08-74-4C-7F-1D). The first 3 numbers

identify the manufacturer of the network adapter.

An opsi packet which is installable by a bootimage.

188 «®-



NIC
opsi-admin

opsi-Configed

19. Glossary

Network Interface Controller — hardware to connect the network
opsi V3 command line interface for opsi configuration

opsi V3 configuration tool (Java application and applet)

opsi-preLoginLoader - opsi service on Windows clients to install software packets.

opsiconfd

opsiHostKey

pckey

PDC

pgina
preloginloader

product properties

product ID

opsi configuration daemon - provides the opsi configuration API as
a JSON based web service.

see pckey

A string assigned to the client during the (preloginloader-)
installation, which is also saved on the server. The pckey is used for
client authentication and not accessible for standard users.
—opsiHostKey

Primary Domain Controller: primary authentication server of a

Microsoft network.
-> GINA
-> opsi-preLoginLoader

A product can be configured at installation time by evaluating the
product properties, which are client specific settings. These could
for instance indicate, whether some additional modules should be
installed on that client. Or the property could specify an attribute to

patch the installation in some way or another.

Unique name of an opsi-product (A..Z, numbers and hyphen, no
spaces allowed). In opsi V2 this is often used as a synonym for ->
product name, which has a different meaning with opsi V3.

Example for a product Id: acroread

189 «®-



product name

PXE

SAMBA

Server product

SMB

Subnets

TCP/IP

tftpd

19. Glossary

In opsi V3 this is the full name of a product (allowing blanks).

Example for a product name: 'Adobe Acrobat Reader'.

Preboot eXecution Environment: common standard for bootproms.
Usually ->DHCP (not ->bootp) is used with PXE bootproms.

Open source software to provide services on Unix/Linux servers for
the ->SMB protocol (used by Microsoft clients).

An opsi product which is executing installations on the server only
(containing no installable client software).

Server Message Block: Protocol by Microsoft to support network
shares and authentication. Recently also named CIFS (Common

Internet File System).

In case of large local networks it often makes sense to divide it into
subnets. To do this, an arbitrary sized part of the machine address
within the IP is defined to be the subnet. In this case the IP address
has three parts: network, subnet and machine. The subnet mask
determines which part of the IP remains machine specific by setting
these bits in the subnet mask to zero and the bits for the network

and subnetwork to one.

Transmission Control Protocol / Internet Protocol: is originated from
the Unix world and has become the base protocol for all kinds of
internet communication. All the services for web, email, file transfer
etc. are based on TCP/IP.

tftp (Trivial File Transfer Protocol) is a file transfer protocol (based
on -> TCP/IP) without interactive login. The file transfer is managed
by the tftpd (tftp daemon). For security reasons tftpd has limited
access to the file system and may only transfer files from a

dedicated directory (usually '/tftboot'). The files to be transferred

190 e@-



19. Glossary

must be fully accessible for all users. The opsi clients are using tftp

to fetch boot menus and bootimages from the server.

191 99



20. Table of Figures

20. Table of Figures

Table of Figures

opsi-Configed: login mask 17

opsi-Configed: client selection mask 18
opsi-Configed: mask: group setting 19
creating a client 20

change the depot of a client 21

opsi-Configed: product configuration mask 22

opsi-Configed: mask to start the bootimage 24

opsi-Configed: Hardware informations for the selected client 25
opsi-Configed: Software information for the selected client 25
Display of the log file in the opsi-configed 26

opsi-Configed: network and additional configuration 27

Display of activation state in opsi-configed 39

Automatic software distribution on a client. An opsi server provides configuration information and
installable software packets. 41

Step 1 during PXE-Boot 62
Step 2 PXE-Boot 64
PXE-Boot loaded with bootimage preparing hard disk for operating system installation 66

After preparation of the bootimage the computer starts from local disk and installs the operating system
and the opsi-PreLoginLoader 67

Webmin-input mask for groups 109
Startup screen of the tool Webmin 109
Components and communication of a multi depot installation 113

Flowchart for a 'regular' PXE-boot without re-installation, but with the start of the opsi preLoginLoader
131

Legacy opsi V2 direct data access 180
opsi V3 using the web service for data access 181

use of different storage systems (LDAP) by the daemon 181

I.ib 192 2©e



21. Additions and Changes

21. Additions and Changes

Additions and changes in this hand book.

21.1. opsi 2.4 to opsi 2.5

Usage of https in the web configuration editor

Chapter on driver integration for the automatic software OS installation

Chapter for subsequent installation of the preloginloader

e References to opsi-wiki
e References to the opsi bootimage handbook

e List of the opsi log files

21.2. Additions opsi 2.5 (9/25/06)

e Option 'askBeforelnst' in 'global.sysconf' has been moved from the [general]
section to the product section

Description of the switch 'textcolor' (winst customizing)

21.3. Additions opsi 2.5 / opsi 3.0 (12/8/06)

Registry entry 'button_stopnetworking' is in 'opsi.org/pcptch’

21.4. Additions opsi 3.0 (1.2.07)

v3 Chapter: Differences between opsi Version 3 to Version 2
v3 Chapter: Programs in /opt/bin

v3 Extension: Configuration files in /etc/opsi

v3 New entries in the registry

v3 Extensions: Configuration files for the software distribution: <pcname>.ini

u‘ b 193 E.E



21. Additions and Changes
v3 Chapter: *.sysconf-files
v3 Chapter: files in /etc/init.d
v3 Chapter: /etc/group
v3 Chapter: Tool: opsi-admin
v3 Chapter: Tool: opsi V3 opsi-Configed
v3 Chapter: Tool: opsi V3 opsi-Webconfigedit
v3 Chapter: Tool: opsi V3 opsi-admin
v3 Chapter: Log files in /var/log and /var/log/opsi
v3 Additions to the glossary

v3 Extension: Subsequent installation of the opsi-PreLoginLoader: Every client
needs an entry in /etc/opsi/pckeys

21.5. Additions opsi 3.0

¥312.4.07: LDAP chapter

21.6. Additions opsi 3.1 (15.6.07)

v3.1 Chapter differences 3.1

v3.1Chapter File31 Backend

v3.1 Deleted: Tool reinstmanager

v3.1 opsi-admin task setPcpatchPassword

v3.1 opsi-admin client bootimage activate

v.3.1 Actualized: description of the opsi-configed

v.3.1 Actualized: chapter on the preloginloader rollout

‘jb 194 9,9



21. Additions and Changes

v3.1 Actualized: chapter on driver integration

v3.1 opsi-admin: new methods:
method authenticated
method checkForErrors
method deleteProductProperties productld *objectld
method deleteProductProperty productld property *objectld
method deleteServer serverld
method getHost _hash hostld
method getNetBootProductlds_list
method getPossibleProductActionRequests_list
method setPXEBootConfiguration hostld *args
method setPcpatchPassword hostld password
method unsetPXEBootConfiguration hostld

21.7. Additions opsi 3.2 (21.11.07)

Actualized: the chapter 'Simplified driver integration with symlinks' for driver
integration ( download driver_ pack.py and preferred)

[J
ub 195



	1.  Introduction
	1.1.  Who should read this manual? 
	1.2.  Notations

	2.  Overview of opsi
	2.1.  Experience
	2.2.  opsi features
	2.3.  What's new at opsi 3.4
	2.4.  What you should read in case of a upgrade to opsi 3.4

	3.  opsi configuration and tools
	3.1.  Overview
	3.2.  Tool: opsi V3 opsi-Configed
	3.2.1.  Requirements and operation
	3.2.2.  Login
	3.2.3.  Depot selection
	3.2.4.  Single client selection and batch selection
	3.2.5.  Client processing / WakeOnLan / Create a Client / Move a Client
	3.2.6.  Product configuration
	3.2.7.  Netboot products
	3.2.8.  Hardware information
	3.2.9.  Software inventory
	3.2.10.  Logfiles: Logs from client and server
	3.2.11.  Server configuration: network and additional settings

	3.3.  Tool: opsi V3 opsi-Webconfiged
	3.4.  Tool: opsi-package-manager: (de-)installs opsi-packages
	3.5.  Tool: opsi V3 opsi-admin
	3.5.1.  Overview
	3.5.2.  Typical use cases
	3.5.2.1.  Delete product
	3.5.2.2.  Set a product to setup for all clients which have this product installed
	3.5.2.3.  Client delete
	3.5.2.4.  Client create
	3.5.2.5.  Client boot image activate
	3.5.2.6.  Attach client description
	3.5.2.7.  Set pcpatch password

	3.5.3.  List of methods


	4.  Activation of non free modules: 
opsiclientd, license management, VPN-support
	5.  preloginloader 3.4
	5.1.  Overview
	5.2.  Two modes: opsiclientd and prelogin
	5.3.  The new mode: opsiclientd
	5.3.1.  Installation
	5.3.2.  opsiclientd
	5.3.3.  opsiclientd_notifier
	5.3.3.1.  opsiclientd_event_notifier
	5.3.3.2.  opsiclientd_action_notifier

	5.3.4.  opsi-loginblocker
	5.3.5.  Configuration
	5.3.5.1.  Configuration via configuration file
	5.3.5.2.  Configuration via web service (general config)
	5.3.5.3.  Configuration of different events

	5.3.6.  Logging
	5.3.7.  control server
	5.3.8.  Push Installation: opsi-fire-event.py

	5.4.  The old mode: prelogin
	5.5.  Blocking the user login with the opsi-Loginblocker
	5.5.1.  opsi loginblocker under Windows 2000 to XP (prelogin and opsiclientd)
	5.5.2.  opsi loginblocker under Vista & Co (only opsiclientd)

	5.6.  Subsequent installation of the opsi-preloginloaders

	6.  Localboot products: automatic software distribution with opsi
	6.1.  opsi standard products
	6.1.1.  opsi-preloginloader
	6.1.2.  opsi-wInst
	6.1.3.  Javavm: Java Runtime Environment
	6.1.4.  opsi-admin
	6.1.5.  Swaudit and hwaudit: Products for hardware and software inventories
	6.1.6.  opsi-template
	6.1.7.  python
	6.1.8.  xpconfig

	6.2.  Integration of new software packets into the opsi software deployment.

	7.  Netboot products: Automated OS installation and more
	7.1.  Unattended automated OS installation
	7.1.1.  Overview
	7.1.2.  Preconditions
	7.1.3.  PC-client boots via the network
	7.1.3.1.  Loading pxelinux

	7.1.4.  Boot from CD
	7.1.5.  The linux bootimage prepares for reinstallation
	7.1.6.  Installation of OS and opsi-preLoginLoader
	7.1.7.  How the patcha program works
	7.1.8.  Structure of the unattended installation products
	7.1.9.  Simplified driver integration with symlinks

	7.2.  Ntfs image (write and restore)
	7.3.  memtest
	7.4.  hwinvent
	7.5.  wipedisk

	8.  opsi license management
	8.1.  The opsi license management module - a co-financed opsi extension
	8.1.1.  Overview
	8.1.2.  Acquisition and Installation

	8.2.  License pools
	8.2.1.  License pools and opsi products
	8.2.2.  License pools and software IDs

	8.3.  Setting up licenses
	8.3.1.  Some aspects of the license concept
	8.3.2.  Registering a license contract
	8.3.3.  Configuring the license model
	8.3.4.  Saving the data

	8.4.  Editing licenses
	8.4.1.  Example downgrade option 

	8.5.  Assignment and release of licenses
	8.5.1.  opsi service calls for requesting and releasing a license
	8.5.2.  wInst script calls for requesting and releasing of licenses
	8.5.3.  Manual administration of licensing
	8.5.4.  Preservation and deletion of license usages

	8.6.  Reconciliation with the software inventory
	8.7.  Overlook the license status
	8.7.1.  In case of downgrade option

	8.8.  Service methods for license management
	8.8.1.  Licence contracts
	8.8.2.  Licenses (software licenses)
	8.8.3.  License pools
	8.8.4.  Examples for using the methods from scripts

	8.9.  Example products and templates

	9.  opsi-Module: depot server
	9.1.  Overview
	9.2.  Installation and initial operation
	9.3.  Access to the graphic user interface of the depot server via VNC
	9.4.  Shares for software packets and configuration files
	9.4.1.  Samba Configuration
	9.4.2.  Required administrative user accounts and groups
	9.4.2.1.  User opsiconfd
	9.4.2.2.  User pcpatch
	9.4.2.3.  Group pcpatch
	9.4.2.4.  Group opsiadmin

	9.4.3.  Depot share with software packets (install)
	9.4.4.  Config share with configuration and logging (pcpatch)
	9.4.5.  Utils share: Utilities (utils)

	9.5.  Administration of PCs via DHCP
	9.5.1.  What is DHCP?
	9.5.2.  Dhcpd.conf
	9.5.3.  Tools: DHCP administration with Webmin

	9.6.  opsi V3: opsi configuration API, opsiconfd and backend manager

	10.  opsi-server with multiple depots
	10.1.  Support
	10.2.  Concept
	10.3.  Creating a (slave) depot-servers
	10.4.  packetmangment with the opsi-package-manager
	10.5.  configuration files

	11.  DHCP and name resolving (DNS)
	12.  opsi data storage (backend)
	12.1.  File backend
	12.1.1.  File3.1-Backend (opsi 3.1)

	12.2.  LDAP backend
	12.2.1.  Integrating the LDAP-backend
	12.2.2.  Configuring the LDAP-backend
	12.2.3.  Assign the LDAP-backend to methods

	12.3.  MySQL-backend for inventory data
	12.3.1.  overview and datastructure
	12.3.2.  Initializing the MySQL-Backend

	12.4.  Conversion between different backends
	12.5.  Boot files 
	12.6.   Securing the shares with encrypted passwords

	13.  Adapting the opsi preloginLoader to your Corporate Identity (CI)
	14.  Overview: A PC boots from the network
	15.  Important files on the depot servers
	15.1.  Configuration files
	15.1.1.  Configuration files in /etc
	15.1.1.1.  /etc/hosts
	15.1.1.2.  /etc/group
	15.1.1.3.  /etc/opsi/pckeys
	15.1.1.4.  /etc/opsi/passwd
	15.1.1.5.  /etc/opsi/backendManager.conf
	15.1.1.6.  /etc/opsi/backendManager.conf/*
	15.1.1.7.  /etc/opsi/hwaudit/*
	15.1.1.8.  /etc/opsi/opsiconfd.conf
	15.1.1.9.  /etc/opsi/opsiconfd.pem
	15.1.1.10.  /etc/opsi/opsipxeconfd.conf
	15.1.1.11.  /etc/opsi/version
	15.1.1.12.  /etc/init.d/


	15.2.  Boot files
	15.2.1.  Boot files in /tftpboot/linux
	15.2.1.1.  pxelinux.0
	15.2.1.2.  install und miniroot.gz

	15.2.2.  Boot files in /tftpboot/linux/pxelinux.cfg
	15.2.2.1.  01-<MAC address> or <IP-NUMBER-in-Hex>
	15.2.2.2.  default
	15.2.2.3.  install


	15.3.  Files of the File-Backend
	15.3.1.  File3.1-Backend
	15.3.1.1.  Overview
	15.3.1.2.  Configuration files in '/var/lib/opsi/config'
	15.3.1.2.1.  clientgroups.ini
	15.3.1.2.2.  global.ini

	15.3.1.3.  Configuration files in /var/lib/opsi/config/clients
	15.3.1.3.1.  <pcname>.ini
	15.3.1.3.1.1.  [generalconfig]
	15.3.1.3.1.2.  [networkconfig]
	15.3.1.3.1.3.  [localboot_product_states]
	15.3.1.3.1.4.  [netboot_product_states]
	15.3.1.3.1.5.  [<product>-state]
	15.3.1.3.1.6.  [<product>-install]
	15.3.1.3.1.7.  [info]


	15.3.1.4.  Configuration files in /var/lib/opsi/config/templates
	15.3.1.5.  Configuration files in /var/lib/opsi/config/depots/<depotid>
	15.3.1.6.  Product control files in /var/lib/opsi/config/depots/<depotid>/products


	15.4.  Files of the LDAP-backend
	15.5.  Opsi programs and libraries
	15.5.1.  Python library
	15.5.2.  Programs in /usr/sbin
	15.5.3.  Programs in /usr/bin

	15.6.  opsi-log files
	15.6.1.  /var/log
	15.6.2.  /var/log/opsi/opsiconfd
	15.6.3.  /var/log/opsi/bootimage
	15.6.4.  /var/log/opsi/opsipxeconfd
	15.6.5.  Software installation (c:\tmp)


	16.  Registry entries 
	16.1.  Registry entries for the opsi-preLoginLoader
	16.1.1.  opsi.org/general
	16.1.2.  opsi.org/shareinfo
	16.1.3.  opsi.org/preloginloader

	16.2.  Registry-entries for opsi-wInst
	16.2.1.  Controlling the logging via syslog protocol


	17.  Supplement: Update of a opsiserver  
	17.1.  Update 3.3.1 to 3.4
	17.1.1.  Documentation
	17.1.2.  Backup
	17.1.3.  Debian / Ubuntu
	17.1.3.1.  Register of the opsi 3.4 repository
	17.1.3.2.  Put in the opsi debian packages

	17.1.4.  Suse
	17.1.5.  Checking the backend configuration
	17.1.6.  MySQL Inventory Backend
	17.1.7.  Download of the new opsi products
	17.1.8.  Import of the new opsi products
	17.1.9.  Install and check the activation file
	17.1.10.  Final 'check' and rollout of the new preloginloader to the clients

	17.2.  Update 3.3 to 3.3.1
	17.2.1.  Documentation
	17.2.2.  Backup
	17.2.3.  Debian / Ubuntu
	17.2.3.1.  Register of the opsi 3.3.1 repository
	17.2.3.2.  Put in the opsi debian packages

	17.2.4.  Suse
	17.2.5.  Checking the backend configuration
	17.2.6.  MySQL Inventory Backend
	17.2.7.  Download of the new opsi products (all users)
	17.2.8.  Download of the new opsi products (opsi-vista support customers only)
	17.2.9.  Import of the new opsi products
	17.2.10.  Activating the new support for the USB and HD-Audio driver

	17.3.  Update 3.2 to 3.3
	17.3.1.  Documentation
	17.3.2.  Register of the opsi 3.3 repository
	17.3.3.  Put in the opsi debian packages
	17.3.4.  Checking the backend configuration
	17.3.5.  Import of the new opsi products

	17.4.  Update 3.1 to 3.2
	17.4.1.  Register of the opsi 3.2 repository
	17.4.2.  Put in the opsi debian packages
	17.4.3.  Import of the new opsi products
	17.4.4.  Checking the backend configuration

	17.5.  Update 3.0 to 3.1
	17.5.1.  Register of the opsi3.1 repository
	17.5.2.  Put in the opsi debian packages
	17.5.3.  Adapt the configuration

	17.6.  Update 2.5 to 3.0
	17.6.1.  Register of the opsi 3-repository
	17.6.2.  Put in the opsi Debian package 

	17.7.  Update 2.4 to 2.5
	17.8.  Update 2.x to 2.4

	18.  History
	18.1.  Difference between opsi version 3.3.1 and version 3.3
	18.1.1.  What's new at opsi 3.3.1
	18.1.2.  What you should read in case of a upgrade to opsi 3.3.1

	18.2.  Difference between opsi version 3.3 and version 3.2
	18.2.1.  Overview
	18.2.2.  What you should read in case of a upgrade to opsi 3.3
	18.2.3.  Migration to opsi V3.3.1

	18.3.  Difference between opsi version 3.2 and version 3.1
	18.3.1.  Overview
	18.3.2.  What you should read
	18.3.3.  Migration to opsi V3.2

	18.4.  Difference between opsi Version 3.1 and Version 3.0
	18.4.1.  Overview
	18.4.2.  What you should read
	18.4.3.  Backend
	18.4.4.  Migration to opsi V3.1

	18.5.  Differences of opsi version 3 to version 2
	18.5.1.  Overview (What you should read)
	18.5.2.  Conceptual
	18.5.3.  Improvement of the handling
	18.5.4.  Vocabulary
	18.5.5.  Migration to opsi V3


	19.  Glossary
	20.  Table of Figures
	21.  Additions and Changes
	21.1.  opsi 2.4 to opsi 2.5
	21.2.  Additions opsi 2.5 (9/25/06)
	21.3.  Additions opsi 2.5 / opsi 3.0 (12/8/06)
	21.4.  Additions opsi 3.0 (1.2.07)
	21.5.  Additions opsi 3.0
	21.6.  Additions opsi 3.1 (15.6.07)
	21.7.  Additions opsi 3.2 (21.11.07)


