
opsi documentation

PC Software Installation
using wInst

- the opsi Windows Installer -

Manual for software developers

Revision date: 25/05/09

uib gmbh (www.uib.de)

Content

1 Windows Installer...8

2 Command Line Parameters...9

3 Additional Configurations...12

3.1 Central Logging of Error Messages..12

3.2 Skinnable wInst...13

4 The wInst Script..14

4.1 An Example..14

4.2 Primary and Secondary Subprograms of a wInst script..16

4.3 String Expressions in a wInst Script ..17

5 Definition and Use of Variables and Constants in a wInst Script ...19

5.1 Overview ..19

5.2 Global Text Constants..20

5.2.1 Usage...20

5.2.2 Example..20

5.2.3 List of Existing Constants...20

(i) System Paths...21

(ii) wInst Paths..22

(iii) Network Information..22

(iv) Data for opsi service...23

5.3 String (or Text) Variables...23

5.3.1 Declaration..23

5.3.2 Value Assignment...24

5.3.3 Use of variables in String expressions..25

5.3.4 Secondary vs. primary sections...25

5.4 Stringlist Variables ..26

6 Syntax and Meaning of Primary Sections of a wInst Script ...27

6.1 Primary Sections...27

6.2 Parametrizing wInst..28

6.2.1 Example ...28

6.2.2 Specification of Logging Level...28

6.2.3 Required wInst Version..29

- 2 -

6.2.4 Reacting on Errors..29

6.2.5 Staying On Top ..30

6.3 String Expressions, String Values, and String Functions...31

6.3.1 Elementary String Values..31

6.3.2 Strings in Strings (Nested String Values)...31

6.3.3 String Concatenation ..32

6.3.4 String Variables..32

6.3.5 String Functions which Return the OS Type...32

6.3.6 String Functions for Retrieving Environment or Command Line Parameters..33

6.3.7 Reading Values from the Windows Registry and Transforming Values into Registry Format......................34

6.3.8 Reading Property Values..34

6.3.9 Retrieving Data from etc/hosts..36

6.3.10 String processing...36

6.3.11 Additional String Functions..38

6.3.12 (String-) functions for licence management..38

6.4 String List Functions and String List Processing..39

6.4.1 Info Maps..39

6.4.2 Producing String Lists from Strings..42

6.4.3 Loading the Lines of a Text File into a String List...42

6.4.4 Simple String Values generated from String Lists..43

6.4.5 Producing String Lists from wInst Sections..44

6.4.6 Transforming String Lists...45

6.4.7 Iterating through String Lists..45

6.5 Special Commands..46

6.6 Commands for User Information and User Interaction ..47

6.7 Conditional Statements (if Statements)...49

6.7.1 Example..49

6.7.2 General Syntax..49

6.7.3 Boolean Expressions...50

6.8 Subprogram Calls...52

6.8.1 Syntax of Procedure Calling...53

6.9 Controlling Reboot...54

6.10 Keeping Track of Failed Installations...57

7 Secondary Sections...59

7.1 Files Sections..59

7.1.1 Example ..59

7.1.2 Call Parameters...60

7.1.3 Commands...61

7.2 Patches-Sektionen ..63

7.2.1 Example..63

- 3 -

7.2.2 Call Parameter...64

7.2.3 Commands...64

7.3 PatchHosts Sections..65

7.4 IdapiConfig Sections...67

7.5 PatchTextFile Sections...67

7.5.1 Example..68

7.5.2 Call Parameter...68

7.5.3 Commands...68

7.6 LinkFolder Sections..70

7.6.1 Windows...70

7.6.2 Linux...72

7.7 XMLPatch Sections..76

7.7.1 Structure of a XML Document...77

7.7.2 Options for Selection a Set of Elements...79

(i) Explicit Syntax...79

(ii) Short Syntax..79

(iii) Selecting by Textual Content (only for explicit syntax)..80

(iv) Parametrizing Search Strategy..80

7.7.3 Patch Actions..81

7.7.4 Returning Lists to the Caller...82

7.8 ProgmanGroups Sections..83

7.9 WinBatch Sections..83

7.10 DOSBatch/ShellBatch Sections..84

7.10.1 Windows...84

7.10.2 Linux...85

7.11 DOSInAnIcon/ShellInAnIcon Sections...85

7.11.1 Windows...85

7.11.2 Linux...85

7.12 Registry Sections..86

7.12.1 Example..86

7.12.2 Call Parameters...86

7.12.3 Commands..87

7.12.4 Registry Sections to Patch "All NTUser.dat"...90

7.12.5 Registry Sections in Regedit Format...91

7.12.6 Registry Sections in AddReg Format..92

7.13 OpsiServiceCall Sections..92

7.13.1 Call Parameters...93

7.13.2 Section Format ...94

7.14 ExecPython Sections...95

7.14.1 Example..95

7.14.2 Interweaving a Python Script with the wInst Script..96

- 4 -

7.15 ExecWith Sections..97

7.15.1 Call Syntax..97

7.15.2 More Examples...98

8 Cook Book...99

8.1 Delete a File in all Subdirectories...99

8.2 Check if a Specific Service is Running...100

8.3 Script for Installations in the Context of a Local Administrator...101

8.4 XML File Patching: Setting Template Path for OpenOffice.org 2...108

8.5 Retrieving Values From a XML File..109

8.6 Inserting a Name Space Definition Into a XML File..111

9 No Connection with the opsi Service...113

- 5 -

Revison history of this manual
wInst version 4.8.6 (opsi version 3.4)

New Boolean function opsiLicenseManagementEnabled (cf. section 6.7.3)

New String functions DemandLicenseKey, FreeLicenseKey (section 6.3.12),

getLastServiceErrorClass, getLastServiceErrorMessage (section 6.3.13)

wInst version 4.8.4 (opsi version 3.3.1)

New version check option -V for copy actions, meaning version check only with
regard to files in the target directory (cf. section 7.1.2)

wInst version 4.8.1 (opsi version 3.3.1)

New constant %installingProduct% (section 5.2.3 (iv)).

For licence management: new String functions demandLicenseKey,
freeLicenseKey

wInst version 4.7.4 (opsi version 3.3.1)

New OS version functions GetMSVersionInfo (major + minor version info as given
by the WinApi)

GetSystemType (for XP and Vista, possible values '64 Bit System' or 'x86 System'

wInst version 4.6.0 (opsi version 3.3)

wInst got a new skin which is editable (cf. section 3.2)

wInst version 4.5.9 (opsi version 3.2 updated)

New StringList functions getLocaleInfoMap and getFileVersionMap (section 6.4.1)

New String function getValue($key, $map) for a String $key and Stringlist $map
(section 6.4.4)

New copy modifier -c (cf. section 7.1.3)

New constants %ipAddress%, %ipName% (cf. section 5.2.3).

New String function getLastExitCode. It returns the ExitCode – or ErrorLevel – of
the last winbatch call. (sections6.3.6)

New String function trim.

New commands for primary sections: sleepSeconds, markTime, diffTime (cf.
section 6.6)

New section type ExecWith (cf. section 7.15)

wInst version 4.5.6 (opsi version 3.2 updated)

New variant of the ExitWindows command (/ShutdownWanted, cf. section 6.9).

wInst version 4.5 (packed with opsi version 3.2)

- 6 -

New section type execPython (section 7.14). If python is installed on the system,
python.exe is called and the section interpreted as a python script. For
interweaving the python script with the winst script there are new constants
%opsiserviceURL%, %opsiserviceUser%, %opsiservicePassword%, %hostID%,
%logfile% (cf. 5.2.3) and a new String function getLoglevel (shortly loglevel; cf.
6.3.11).

wInst version 4.4 (packed with opsi version 3.1)

New section type opsiServiceCall (section 7.13) for connecting directly - or with an
interactively supplied password - to and communicating with an opsi service.

New functions XMLaddNamespace and XMLRemoveNamespace (cf. section 6.7.3
and cookbook 8.6)

wInst version 4.3 (required for opsi version 3.0)

New appendix (section 9.1) on error messages in the situation that the connect to
the opsi service fails.

Corrected description for the WaitForProcessEnding option for the winbatch section.

The opsi service (opsi Version 3.0) can inform on the PC configuration (Section 2
of this manual)

By the new function requiredWinstVersion (cf. section 6.3.3) a wInst script can
check if the installed wInst meets its requirements.

wInst version 4.2 (packed with opsi version 2.5)

Supports the state description "failed" (section 6.10)

New RandomStr function (cf. sections 6.2.9, 8.3)

Pseudo function EscapeString (section 6.3.2)

For Files sections with Option /allNtUserProfiles the new variable %UserProfileDir
% can be used (section 7.1.2)

wInst constants can now be used in sub sections (section 6.1)

A new LogLevel syntax can be used (section 6.1.2)

wInst version 4.1

New parameter /WaitForProcessEnding for WinBatch calls (section 7.9)
Parameter /ImmediateLogout for ExitWindows-Kommando eingefuehrt (section
6.9, 8.3)

Syntaxvariante /regedit fuer Registry-Sektionen (section 7.12)

New string list function loadUnicodeTextFile (section 6.4.1, 7.12.4)

A sub section can be called with a string list expression as parameter (section
6.8.1)

wInst version 4.0

- 7 -

Introduces a kind of string list processing (sections 5.4, 6.4, 8.2 ,...)

Capturing of the output of DosBatch/Shell calls as string lists (section 6.4.4)

Patches of XML files (section 7.7)

- 8 -

1 Windows Installer
The open source program wInst (or windows Installer) serves in the context
of opsi – open pc server integration (cf. www.opsi.org) – as the central
function for initiating and performing the automatic software installation. It may
also be used stand alone as a tool for setup programs for any piece of software.

wInst is basically an interpreter for a specific, rather simple script language
which can be used to express all relevant elements of a software installation.

A software installation that is described by a wInst script and performed by
executing the script has several advantages compared with installations that
are managed by a bunch of shell commands (e. g. copy etc.):

– wInst offers to log very thoroughly all operations of the installation
process. The support team can check the log files, and can easily
detect when errors occured or other problematic circumstances are
evolving.

– Copy actions can be configured with a great variety of options if
existing files shall be overwritten

– Especially, it may be configured that files are copied depending on
their internal version.

– There are different modi for writing to the Windows registry
(overwrite existing values/ write only when no value exists/ append a
value to an existing value).

– The Windows registry can be patched for all users which exist on a
work station (including the default user, who is used as prototype for
further users).

– There is a sophisticated syntax for an integrated patching of XML
configuration files.

wInst in dialog and test mode

- 9 -

file:///../bonifax/n/bsz/4all/hupsidoc/winst-handbuch/www.opsi.org

2 Command Line Parameters
wInst kann be started with different sets of parameters depending on context
and purpose of use.

There are the following syntactical schemata:

(1) Show usage:

wInst /?
wInst /h[elp]

(2) Execute a script:

wInst scriptfile [[/logfile] logfile]
 [/batch | /ini winstconfigfilepath]
 [/parameter parameterstring]

(3) Read the PC configuration from the opsi service and act accordingly, since
wInst 4.3
wInst /opsiservice [opsiserviceurl]
 [/clientid clientname]
 [/username username]
 [/password password]
 [[/logfile] logfile]
 [/parameter parameterstring]]

(4) Read the PC profile file and act accordingly (opsi classic)

wInst /pcprofil
 [PC_configuration_file [[/logfile] logfile]]
 [/parameter parameterstring]

In each case we have:

• Default name for the log file is C:\tmp\instlog.txt
• The parameterstring, which is marked by the option "/parameter", is

accessible for every called wInst script (via the string function ParamStr).

- 10 -

Explanations to (2):

• If option /batch is used, then wInst shows only its "batch surface" offering
no user dialogs. Without using option /batch we get into the interactive
mode where script file and log file can be chosen interactively (mainly for
testing purposes).

• The winstconfigfilepath parameter which is designated by /ini refers
to a file in ini file format that holds the last used (in interactive mode) script
file names. The dialog surface presents a list box that presents these file
names for choosing the next file to interpret. If winstconfigfilepath ends
with "\" it is assumed to be a directory name, and WINST.INI serves as file
name.

Explanations to (3):

• If a opsiserviceurl is missing the following URL is used:

https://DEPOTSERVER:4447
where DEPOTSERVER is the server name derived from the value of depoturl
in the Windows Registry.

• Default value for clientid is the computer name.

Explanations to (4):

• In opsi classic, wInst reads the PC specific data directly from the PC
configuration file - the so called PC profile file or "ini file" since it has ini file
format. If an explicit file name is missing the "classic" default P:\PCPatch\
%PCNAME%.ini is used where %PCNAME% is an appropriately set environment
variable.

• In particular, the PC configuration file informs which applications shall be
installed. The pathes of the wInst scripts that control the installations are
read from the file pathnams.ini that has as default location p:\pcpatch
steht.

• The not interactive mode is implied.

- 11 -

It is possible to overwrite the log file location by data from PC configuration file
or by the opsi service.

To do this we must a create a section in the PC configuration file that looks like
(if the log file shall be placed in the directory n:\tmp with file name xxx.log):

• [winst]

Logdateiname=n:\tmp\xxx.log

- 12 -

3 Additional Configurations

3.1 Central Logging of Error Messages

If wanted, wInst writes the error data to a second file on a network drive or
sends them to a syslog demon.

The feature can be configured in the Windows registry: :

In HKEY_LOCAL_MACHINE, we have in a standard installation the key
\SOFTWARE\opsi.org. We can create a subkey syslogd with a variable
remoteerrorlogging. Its value determines if and, if yes, by which method a
central logging shall take place.

Furthermore, in HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\syslogd we have
to observe three up to three variables:

• If remoteerrorlogging has value 0, no extra central logging takes place
(default).

• If remoteerrorlogging has value 1, wInst tries to open a $pcname$.err in
the configshare, subdirectory pcpatch\pclog, and write the data to it.

• If remoteerrorlogging has value 2, the error reports are sent to syslog
demon. The demon host name is read from the variable sysloghost (default
localhost) , the syslog channel number can be set from the value of the
variable syslogfacility (default 18, that is local2).
The following table shows the possible values for the facility:

- 13 -

ID_SYSLOG_FACILITY_KERNEL = 0; // kernel messages
ID_SYSLOG_FACILITY_USER = 1; // user-level messages
ID_SYSLOG_FACILITY_MAIL = 2; // mail system
ID_SYSLOG_FACILITY_SYS_DAEMON = 3; // system daemons
ID_SYSLOG_FACILITY_SECURITY1 = 4; // security/authorization messages (1)
ID_SYSLOG_FACILITY_INTERNAL = 5; // messages generated internally by syslogd
ID_SYSLOG_FACILITY_LPR = 6; // line printer subsystem
ID_SYSLOG_FACILITY_NNTP = 7; // network news subsystem
ID_SYSLOG_FACILITY_UUCP = 8; // UUCP subsystem
ID_SYSLOG_FACILITY_CLOCK1 = 9; // clock daemon (1)
ID_SYSLOG_FACILITY_SECURITY2 = 10; // security/authorization messages (2)
ID_SYSLOG_FACILITY_FTP = 11; // FTP daemon
ID_SYSLOG_FACILITY_NTP = 12; // NTP subsystem
ID_SYSLOG_FACILITY_AUDIT = 13; // log audit
ID_SYSLOG_FACILITY_ALERT = 14; // log alert
ID_SYSLOG_FACILITY_CLOCK2 = 15; // clock daemon (2)
ID_SYSLOG_FACILITY_LOCAL0 = 16; // local use 0 (local0)
ID_SYSLOG_FACILITY_LOCAL1 = 17; // local use 1 (local1)
ID_SYSLOG_FACILITY_LOCAL2 = 18; // local use 2 (local2)
ID_SYSLOG_FACILITY_LOCAL3 = 19; // local use 3 (local3)
ID_SYSLOG_FACILITY_LOCAL4 = 20; // local use 4 (local4)
ID_SYSLOG_FACILITY_LOCAL5 = 21; // local use 5 (local5)
ID_SYSLOG_FACILITY_LOCAL6 = 22; // local use 6 (local6)
ID_SYSLOG_FACILITY_LOCAL7 = 23; // local use 7 (local7)

3.2 Skinnable wInst
Since version 3.6 wInst has an adaptable skin. Its elements are located in a
subdirectory winstskin of the directory of the executed wInst. The definition
file which you may edit is skin.ini.

- 14 -

4 The wInst Script
On principle: wInst is an interpreter for a specific, easy to use scripting
language which is tailored for the requirements of software installations. A
script should be an integrated description, and a means of control, for the
installation of one piece of software.

The following section sketches the structure of a wInst script. The purpose is
to identify the book marks of a script: in which way we to have to look into it to
understand its processing.

All elements shall be described more in detail in the further section. The
purpose then will be to show how scripts can be modified or devoleped.

4.1 An Example

wInst scripts are roughly derived from .INI files. They are composed of
sections, which are marked by a title (the section name) which is written in
brackets [].

Schematically a wInst script looks like this one (here with a check which
operating system is installed):

[Initial]

Message "Installation of Mozilla"
LogLevel=2

[Aktionen]

;Determine the OS

DefVar $0S$

Set OS = GetOS

; Windows NT family (including Win2k, WinXP)

; or Win95 (including Win98, WinME)

; or Linux

;Which NT-Version?

DefVar $NTVersion$

if OS = "Windows_95"

 Sub_install_win95

else

 Set $NTVersion$ = GetNTVersion

- 15 -

 ; has values "NT4" or "Win2k" or "WinXP"

 ; or "Win NT " + majorVersion + "." + minorVersion

 if ($NTVersion$ = "NT4") or ($NTVersion$ = "Win2k")

 sub_install_winnt

 else

 if ($NTVersion$ = "WinXP")

sub_install_winXP

 else

stop "OS not supported"

 endif

 endif

else

 stop "OS not supported"

endif

[sub_install_win95]

Files_Kopieren_95

WinBatch_Setup

[sub_install_winNT]

Files_Kopieren_NT

WinBatch_Setup

[sub_install_winXP]

Files_Kopieren_XP

WinBatch_SetupXP

[Files_Kopieren_95]

copy "%scriptpath%\files_win95*.*" "c:\temp\installation"

[Files_Kopieren_NT]

copy "%scriptpath%\files_winnt*.*" "c:\temp\installation"

[WinBatch_Setup]

c:\temp\installation\setup.exe

[WinBatch_SetupXP]

c:\temp\installation\install.exe

How can we read the sections of this script?

- 16 -

4.2 Primary and Secondary Subprograms of a wInst
script

The script as a whole serves as a program, an instruction for an installation
process. Therefore each of its sections can be seen as a a subprogram (or
"procedure" or "method"). The script is a collection of subprograms.

The human reader as well as an interpreting software has to know at which
element in this collection reading must start.

Execution of a wInst script begins with working on the sections[Initial] and
[Aktionen] (in this order). All other sections are called as subroutines from
these two sections. This process is only recursive for Sub sections: Sub
sections have the same syntax as Initial and Aktionen sections and may
contain calls for further subroutines.

This gives reason to make the distinction between primary and secondary
subprograms:

The primary or general control sections comprise

– the Initial section (by convention the beginning of the script),

– the Aktionen section (should follow to Initial section), and

– Sub sections (0 to n subroutines called by the Aktionen section which are
syntactical and logical extensions of the calling section).

The procedural logic of the script is determined by the sequence of calls in
these sections.

The secondary or specific sections can be called from any primary section but
have a different syntax. The syntax is derived from the functional requirements
and library conditions and conventions for the specific purposes. Therefore no
further section can be called from a secondary section.

At this moment there are the following types of secondary sections:

– Files sections,

– WinBatch sections,

– DosBatch sections,

– DosInAnIcon/ShellInAnIcon sections,

– Registry sections,

- 17 -

– Patches sections,

– PatchHosts sections,

– PatchTextFile sections,

– StartMenu sections,

– ProgmanGroups sections (deprecated),

– IdapiConfig sections,

– XMLPatch sections.

Meaning and syntax of the different section types is treated in chapters 5 and
6.

4.3 String Expressions in a wInst Script

Textual values (string values) in the primary sections can be given in different
ways:

– A value can be directly cited, mostly by writing in into (double) citation
marks. Examples:

"Installation of Mozilla"

"n:\home\user name"

– A value can be given by a String variable or a String constant, that "contains"
the value:

The variable

$NtVersion$

may stand for "Windows_NT" – if it has been assigned beforedhand with
this value.

– A function retrieves or calculates a value by some internal procedure. E. g.

EnvVar ("Username")

fetches a value from the system environment, in this case the value of the
environment variable Username. Functions may have any number of
parameters, including zero:

GetOs

- 18 -

On a NT system, this function call yields the value "Windows_NT" (not as
with a variable this values has to be produced at every call again).

– A value can be constructed by an additive expression, where string values
and partial expressions are concatenated - theoretically "plus" can be seen
as a function of two parameters:

$Home$ + "\mail"

(More on this in section 6.3)

There is no analogous way of using string expressions in the secondary
sections. They follow there domain specific syntax. e.g. for copying commands
similar to the windows command line copy command. Up to this moment it is
no escape syntax implemented for transporting primary section logic into
secondary sections.

The only way to transport string values into secondary sections is the use of
the names of variables and constants as value container in these sections. Lets
have a closer look at the variables and constants of a wInst script:

- 19 -

5 Definition and Use of Variables and
Constants in a wInst Script

5.1 Overview

In a wInst script, variables and constants appear as "words", that are
interpreted by wInst and "contain" values. "Words" are sequences of
characters consisting of letters, numbers and some special characters (in
particular ".", "-", "_", "$", "%"), but not blanks, but no brackets, parentheses,
or operator signs ("+") .

wInst variables and constants are not case-sensitive.

There exist the following types of variables or constants:

• Global text constants, shortly constants,
contain values which are preset by the wInst program and cannot be
changed in a script. Before interpreting the script wInst replaces each
occurence of the pure constant name with its value in the whole script (textual
substitution).

An example will make this clear: The constant %ScriptPath% is the
predefined name of the location where wInst found and read the script that
it just executes. This location may be, e.g., p:\install\produkt. Then we
have to write

"%ScriptPath%"

in the script when we want do get the value

"p:\install\produkt"
- observe the citations marks which include the constant delimiter.

• Text or String variables, shortly variables,
have an appearance very much like any (String) variables in a common
programming language. They must be declared by a DefVar statement
before they can be used. In primary sections, values can be assigned to
variables (once ore more times). They can be used as elements in composed
expressions (like addition of strings) or as function arguments.

But they freeze in a secondary section to a phenomenon that behaves like a
constant. There, they appear as a non-syntactical foreign element. Their

- 20 -

value is fixed and is inserted by textual substitution for their pure names
(when a section is called, whereas the textual substitution for real constants
take place before starting the execution of the whole script).

• Stringlist variables
are declared by a DefStringList statement. In primary sections they can be
used for many purposes, e.g. collecting strings, manipulating strings,
building sections.

In detail:

5.2 Global Text Constants

Scripts shall work in a different contexts without manual changes. The contexts
can be characterized by system values as OS version or certain pathes. wInst
introduces such values as constants into the script.

5.2.1 Usage

The fundamental characteristics of a text constant is the way how the values
which it represents come intro the script interpretation process:

The name of the constant, that is the pure sequences of chars, is substituted by
its fixed value in the whole script before starting the script execution.

The replacement does not take into account any syntactical context in which
the name possibly occur (exactly like with variables in secondary sections).

5.2.2 Example

wInst implements constants %ScriptPath% for the location of the
momentarily interpreted script, and %System% for the name of the windows
system directory. The following (Files) subsection defines a command that
copies all files from the script directory to the windows system directory:

[files_do_my_copying]
copy "%ScriptPath%\system*.*" "%System%"

5.2.3 List of Existing Constants

At this moment the following constants are implemented:

- 21 -

(i) System Paths

– %AppdataDir%

The default value since Windows 2000 in a german context is:

C:\Dokumente und Einstellungen\%USERNAME%\Anwendungsdaten

– %AllUsersProfileDir%

Since Windows 2000:

C:\Dokumente und Einstellungen\All Users

– %CommonStartMenuPath%

Default:

C:\Dokumente und Einstellungen\All Users\Startmenü

– %ProfileDir%

Since Windows 2000:

C:\Dokumente und Einstellungen

Hint:

In Files sections that are called with option /AllNtUserProfiles there is a
pseudo variable

%UserProfileDir%

When the section is executed for each user that exists on a work station
this variable represents the name of the profile directory of the user just
treated.

– %ProgramFilesDir%

By default:

C:\Programme

– %Systemroot%
Denotes the root directory for Windows on the work station (without closing
backslash) - e.g.

c:\windows

c:\winnt

- 22 -

– %System%

Name of the Windows system directory (without backslash) e.g.

c:\windows\system

c:\winnt\system32

– %Systemdrive%
Denotes the drive on which the operating system is installed.

(ii) wInst Paths

– %ScriptPath%

represents the path of the current wInst script (without closing backslash).
Using this variable we can build path and file names in scripts that are
relative to the location of the script. So, everything can be copied, called
from the new place, and all works as before.

– %ScriptDrive%

The drive where the just executed wInst script is located (including the
colon).

– %WinstDir%
The location (without closing backslash) of the running wInst.

– %Logfile%
The name of the logfile which wInst is using.

(iii) Network Information

– %Host%
(Deprecated) The value of a environmental variable host (traditionally
meaning the opsi server name, not to confuse with %HostID% (meaning
the client network name).

– %PCName%
The value of the environmental variable PCName, when existing. Otherwise
the value of the environmental variable computername. (Should be the
netbios name of the PC)

– %IPName%

- 23 -

The dns name of the pc. Usually identical with the netbios name and
therefore with %PCName% besides that the netbios names uses to be
uppercase.

– %IPAddress%
The network IP address.

– %Username%
Name of the logged in user.

(iv) Data for opsi service

– %HostID%

Should be the fully qualified domain name of the opsi client as it is supplied
from the command line or otherwise.

– %opsiserviceURL%
The (usually https://) URL of the opsi service.

– %opsiserviceUser%
The user ID for which there is a connection to the opsi service.

– %opsiservicePassword%
The user password used for the connection to the opsi service. The
password is eliminated when logging by the standard wInst logging
functions.

– %installingProduct%
The name (productId) of the product for which the service has called the
running script. In case that there the script is not run via the service the
String is empty.

5.3 String (or Text) Variables

5.3.1 Declaration

String variables must be declared before they can be used. The syntax for the
declaration reads

- 24 -

DefVar <variable name>
e.g.

DefVar $NTVersion$

Explanation:

– Variable names do not necessarily start or end with a dollar sign, but this is
recommended as a convention to understand their functioning in secondary
sections.

– Variables can only be declared in primary sections (Initial section, Aktionen
section and sub sections).

– The declaration should not depend on a condition. That is it should not
placed into a branch of an if – else statement. Otherwise, it could happen
that the DefVar statement is not executed for a variable, but an evaluation
of the variable is tried in some if clause (such producing a syntax error).

– The variables are initialized with an empty string ("") .

5.3.2 Value Assignment

– As it is appropriate for a variable, it can take on one value resp. a series of
values while a script is progressing. The values are assigned by statements
with syntax

Set <Variablenname> = <Value>
<Value> means any (String valued) expression.

Examples (cf. section 6.3):

Set OS = GetOS
Set $NTVersion$ = "not determined"

if OS = "Windows_NT"
 Set $NTVersion$ = GetNTVersion
endif

DefVar $Home$
Set $Home$ = "n:\home\user name"
DefVar $MailLocation$
Set $MailLocation$ = $Home$ + "\mail"

- 25 -

5.3.3 Use of variables in String expressions

– In primary sections of a wInst script, a variable "holds" a value. When it is
declared it is initialized with the empty String "". When a new value is
assigned to it via the set command, it represents this value.

– In a primary section a variable can replace any String expression resp. can
be a component of a String expression, e.g.

Set $MailLocation$ = $Home$ + "\mail"

In a primary section the variable name denotes an object that represents a
string, If we add the variable we mean that the underlying string shall be added
somehow.

This representational chain is shortcut in a secondary section. Just the variable
name now stands for the string.

5.3.4 Secondary vs. primary sections

When a secondary section is loaded and wInst starts its interpretation the
sequence of chars of a variable name is directly replaced by the value of the
variable.

Example:

A copy command in a files section shall copy a file to
"n:\home\user name\mail\backup"

We first set $MailLocation$ to the directory above it:
DefVar $Home$
DevVar $MailLocation$
Set $Home$ = "n:\home\user name"
Set $MailLocation$ = $Home$ + "\mail"

$MailLocation$ is now holding
"n:\home\user name\mail"

In a primary section we may now express the directory
"n:\home\user name\mail\backup"

by
$MailLocation$ + "\backup"

The same directory has to be designated in a secondary section as:

- 26 -

"$MailLocation$\backup"

A fundamental difference between the thinking of variables in primary vs.
secondary sections is that, in a primary section, we can form an assignment
expression like

$MailLocation$ = $MailLocation$ + "\backup"

As usual, this means that $MailLocation$ first has some initial value and takes
on a new value by adding some string to the initial value. The reference from
the variable is dynamic, and may have a history. In a secondary section any
such expression would be worthless (and eventually wrong), since
$MailLocation$ is bound to be replaced by some fixed string (at all occurences
virtually in the same moment).

5.4 Stringlist Variables

Variables for string lists must be declared in a DefStringList statement, e.g.
DefStringList SMBMounts

A string list can serve e.g. as container for the captured output of a shell
program. The collected strings can be manipulated in a lot of ways. In detail
this will be treated in the section on string list processing (section 6.3).

- 27 -

6 Syntax and Meaning of Primary Sections
of a wInst Script

As shortly presented in chapter 4 the Aktionen section of a script can be
regarded as a the main method of the wInst script and describes the global
processing sequence. It may call subroutines - the Sub sections which may
then recursively call Sub sections themselves.

The following sections explain syntax and use of the primary sections of a
wInst script.

6.1 Primary Sections

There are possibly three kinds of primary sections in a script

– an Initial section,

– an Aktionen section,

– any number of Sub sections

Initial and Aktionen section are syntactically equivalent (but Initial has to
keep the first place). By convention, in the Initial section some
parametrizations of the script execution (e.g. the loglevel) are made. The
Aktionen section can be regarded as the main program in a wInst script. It
contains the sequence of actions that are controlled by the script.

Sub sections are as well syntactically equivalent. But they are a called from the
Aktionen section. Then, they can call themselves Sub sections.

A Sub section is determined by creating a name that begins with "Sub", e.g.
Sub_InstallBrowser. By writing its name in the Aktionen section we
produce a call to the Sub section. The meaning of this call is defined by the
content of the section in the script that begins with the bracketed name, in the
example [Sub_InstallBrowser]
Sub sections of second and higher order (subs of subs and so on) can not have
any more internal sections but must refer to external sections (for this
distinction cf. 6.8).

- 28 -

6.2 Parametrizing wInst
Typical entries of an Initial section set some the wInst execution attributes.
The following example shows how error responses may be configured:

6.2.1 Example

[Initial]
LogLevel=2
ExitOnError=false
ScriptErrorMessages=on
TraceMode=off

This means that:

• logging level is set to 2,

• when an error occurs wInst shall try to continue script execution,

• if a script syntax error occurs it shall be communicated (this will be in a
special window), and

• we dont want to activate the trace mode for script execution (which would
mean that we asked if we want to continue after each program step).

The above values are the default values, wInst will assume them if these
statements are missing.

To the details of syntax and meaning:

6.2.2 Specification of Logging Level

There are two syntactical variants for specifying the logging level:

LogLevel = <number>
LogLevel = <String expression>

I.e. the number can be given as an integer value or as a string expression (cf.
section 6.3). In the second case, wInst tries to evaluate the string expression
as a number.

There exist six levels from -2 up to +3.

LogLevel = 0 (Error Level) has the meaning that only a summary of events is
produced. Only errors and extraordinary events are logged more in detail.

- 29 -

With LogLevel = 1 (Warning Level) we tell the program that we wish to
receive also warnings - meaning indications of events that were possibly not
intended and may lead to errors or misbehaviour.

At LogLevel = 2 (default) every operation shall be logged.

With Level = 3 some additional debugging information may be given.

Level = -1 reduces the logging to errors.

A possibly useful setting may be LogLevel = -2. Any logging (besides of
comments) is turned off.

6.2.3 Required wInst Version

The statement

– requiredWinstVersion <RELATIONSSYMBOL> <ZAHLENSTRING>
e.g.

requiredWinstVersion >= "4.3"

makes wInst check if the desired version state is given. Otherwise an error
message windows pops up.

This feature exists since wInst version 4.3. For an earlier version, the
statement is unknown, and the statement itsself is a syntactical error which will
be indicated by syntax error window (cf. the following section). Therefore the
statement can be used independently of the actual used wInst version as
long as the required version is at least version 4.3.

6.2.4 Reacting on Errors

There are two kinds of errors which are treated in different ways:

1. illegal statements which cannot be interpreted by wInst (syntactical errors),

2. failing statements which cannot be executed because of external, objective
reasons (execution errors).

In principal, syntactical errors are indicated by a pop up window for immediate
correction, execution errors are logged in a log file to be analyzed later.

The behaviour of wInst when it recognizes a syntactical error is defined by the
configuration statement

- 30 -

ScriptErrorMessages = <boolean value>

If the value is true (default), syntactical errors trigger a pop up window
with some informations on the error. This kind of errors is not recorded in
the log file. The log file shall keep informations on the real execution of a
syntactical correct script.

The boolean value may be true or false. Delimiters on or off can be
used as well.

There two configuration options for execution errors.

ExitOnError = <boolean value>

This statement defines if the script execution shall terminate when an
error occurs. If the value is true or yes the program will stop execution,
otherwise errors are just logged (default).

TraceMode = <boolean value>

In TraceMode (default false) every log file entry will additionally be shown
in message window with an O.K. button.

6.2.5 Staying On Top

StayOnTop = <boolean value>

With StayOnTop = true (or = on) we request, that - in batch mode - the
wInst window be on top on the windows which share the screen. That
means it should be visible in the "foreground" as long as no other window
having the same status wins.

Observe: According to the system manual the value cannot be changed
while the proram is running. But it seems that we can give a new value to
it once.

StayOnTop has default false in order to avoid that some other process raises
an error message which eventually can not be seen if wInst keeps staying on
top.

- 31 -

6.3 String Expressions, String Values, and String
Functions

A String expression can be

– an elementary String value

– a nested String value

– a String variable

– the concatenation of other String expressions

– a String valued function call

6.3.1 Elementary String Values

An elementary String value is any sequence of characters that is enclosed in
double or single citations marks, formally:

"<sequence of characters>"
or

'<sequence of characters>:
We have e.g.

DefVar $ExampleString$
Set $ExampleString$ = "my text"

6.3.2 Strings in Strings (Nested String Values)

If the sequence of chars itself contains citation marks we have to use the other
kind of citation marks to enclose it:

DefVar $citation$
Set $citation$ = 'he said "Yes"'

If the sequence of chars is containing both kinds of citation marks we must use
the following special expression:

– EscapeString: <sequence of characters>
E.g. we can write:

DefVar $Meta_citation$
Set $Meta_citation$ = EscapeString: Set $citation$ = 'he said "Yes"'

- 32 -

Then the variable $Meta_citation$ will exactly contain the complete
sequence of chars that follows the colon after "EscapeString" (including the
blank). Such, $Meta_citation$ will contain the complete statement

Set $citation$ = 'he said "Yes"'

6.3.3 String Concatenation

String concatenation is written using the addition sign ("+")

<String expression> + <String expression>
Example:

DefVar $String1$
DefVar $String2$
DefVar $String3$
DefVar $String4$
Set $String1$ = "my text"
Set $String2$ = "and"
Set $String3$ = "your text"
Set $String4$ = $String1$ + " " + $String2$ + " " + $String3$

$String4$ then has value "my text and your text".

6.3.4 String Variables

A String variable in a primary section "contains" a String value. In an String
expression, it can always substitute an elementary string. For how to define
and set String variables cf. section 5.3.

The following sections present the variety of string functions.

6.3.5 String Functions which Return the OS Type

– GetOS
The function tells which type of operating system is running. It returns one
of the following values:
"Windows_16"
"Windows_95" (including Windows 98 and ME)
"Windows_NT" (including Windows 2000 and XP)
"Linux"

– GetNtVersion
A Windows NT operating system is characterized by a the Windows type
number and a subtype number. GetNtVersion returns the precise subtype
name. Possible values are

- 33 -

"NT3"
"NT4"
"Win2k" (Windows 5.0)
"WinXP" (Windows 5.1)
"Windows Vista" (Windows 6)

If the NT operating system has higher versions as 6 or there are version not
explicitly known the function returns "Win NT" and the complete version
number (5.2, ... resp. 6.0 ..) . E.g. for Windows Server 2003 R2 Enterprise
Edition, we get

"Win NT 5.2"
If the operating system is no Windows NT system the function returns the
error value

"No OS of Windows NT type"
– GetMsVersionInfo

returns for systems of type Windows NT the Microsoft version info as
indicated by the API, e.g. a Windows XP system produces the result

"5.1"
– GetSystemType

checks for a Windows NT System if it can be assumed that the system is 64
Bit. In this case the value is "64 Bit System" otherwise "x86 System".

6.3.6 String Functions for Retrieving Environment or Command Line
Parameters

– EnvVar (<String expression>)
The function reads and returns the momentary value of a system
environment variable.

E.g., we can retrieve which user is logged in by EnvVar ("Username").
– ParamStr

The function passes the the parameter string of the wInst command line
i.e. the command line parameter which is indicated by /parameter. If there
is no such parameter ParamStr returns the empty string.

- 34 -

– GetLastExitCode
returns the exit code (also called ErroLevel) of the last Winbatch call.

6.3.7 Reading Values from the Windows Registry and Transforming
Values into Registry Format

– GetRegistryStringValue (<String expression>)
tries to interpret the passed String value as an expression of format

[KEY] X

Then, the function tries to open the registry key KEY , and, in case it
succeeds, to read and return the String value that belongs to the registry
variable name X .

E.g.

GetRegistryStringValue ("[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] Shell")

usually yields "Explorer.exe", the default Windows shell program.

If there is no registry key KEY or the variable X does not exist the function
produces a warning message in the log file and returns the empty string.

The function

– RegString (<String expression>)
is useful for transforming path names into the format which is used in the
Windows registry. That is, any backslash is duplicated.

E. g.,
RegString ("c:\windows\system\")
yields
"c:\\windows\\system\\"

6.3.8 Reading Property Values

For historical reasons, there are three functions for reading values from
configuration files which have ini file format. Since opsi 3.0 the specific product
properties are retrieved from the opsi configuration demon (that may fetch it
from a configuration file or from any other backend data container).

- 35 -

In detail:

Ini file format means that the file is a text file and is composed of "sections"
each containing key value pairs:

[section1]
Varname1=Value1
Varname2=Value2
...
[section2]
...

The most general function reads the value belonging to some key in some
section of some ini file. Any parameter can be given as an arbitrary String
expression:

– GetValueFromInifile (FILE, SECTION, KEY, DEFAULTVALUE)
The function tries to open the ini file FILE, retrieve the requested SECTION
and find the value belonging to the specified KEY which the function will
return. If any of these operations fail DEFAULTVALUE is returned.

The second function borrows its syntax from the ini file format itself, and may
sometimes be easier to use. But since this syntax turns complicated in more
general circumstances it is deprecated. The syntax reads:

– GetIni (<String expression> [<character sequence>] <character sequence>)

The <String expression> is interpreted as file name, the first <character
sequence> as section name, the second as key name. I.e.,

GetIni ("MYINIFILE" [mysection] mykey)

returns the same value as

GetValueFromInifile ("MYINIFILE", "mysection", "mykey", "")

E.g.

GetIni ("%Systemroot%\win.ini" [Interbase] RootDirectory)

yields the entry of section [Interbase] of the Windows main inifile.

The third function returns a PC specific property of the product which is just
being installed (wInst running in pcprofile mode). Its syntax reads

– IniVar (<String Expression>)
E.g.

- 36 -

IniVar ("switch")
is in "opsi classic" – with default configuration paths and if the product just
being installed is named PRODUCT – short for

GetValueFromIniFile ("p:\pcpatch\%PCNAME%.ini", "PRODUCT-install", "switch",
"")

If wInst is connected to the opsi configuration service (opsi 3.0) the
product property is retrieved from the service (no matter if it is
permanently saved in an ini file or somewhere else).

The product properties can be used to configure variants of an installation.

E.g. the opsi UltraVNC network viewer installation may be configured using
the options

viewer = <yes> | <no>

policy = <factory_default> |

The installation script branches according to the chosen values for these
options which can be retrieved by

IniVar ("viewer")

resp.

IniVar ("policy")

6.3.9 Retrieving Data from etc/hosts

– GetHostsName (<String expression>)
returns the host name to a given IP address as it is declared in the local
hosts file. If the operating system is "Windows_NT" (according to
environment variable OS) "%systemroot%\system32\drivers\etc\" is
assumed as host file location, otherwise "C:\Windows\".

Inversely, backed by the same files,

– GetHostsAddr (<String expression>)
tells the IP address to a given host or alias name.

6.3.10 String processing

– ExtractFilePath (<String expression>)

- 37 -

interprets the passed String value as file or path name and returns the path
part (the string up to the last "\", including it).

StringSplit (String1, String2,index)

is deprecated. The expression is equivalent to

takeString(INDEX, splitString (String1, String2)

(cf. the section String list processing, section 6.4).

The result is produced by slicing String1 where each slice is delimited by
an occurrence of String2, and then taking the slice with index index
(where counting starts with 0).

E. g. ,

takeString(3, splitString ("\\server\share\directory", "\"))

produces the String value

"share"

For, numbering the parts of the string sliced by "\" we get

index 0: "" (empty string before the first occurrence of "\"
index 1: "" (empty string between the first and second "\")
index 2: "server"
index 3: "share"
takestring counts downward, if the index is negative, starting with the
number of elements. Therefore,

takestring(-1, list1)

denotes the last element of String list list1.

– SubstringBefore (stringValue1, stringValue2)
yields the sequence of characters of stringValue1 up to the beginning of
stringValue2 ,

E. g.

SubstringBefore ("C:\programme\staroffice\program\soffice.exe",

"\program\soffice.exe")

returns

"C:\programme\staroffice"

- 38 -

– Trim(stringValue)
cuts leading and trailing white space from stringValue.

6.3.11 Additional String Functions

– RandomStr
returns a random String of length 10 where upper case letters, lower case
letters and digits are mixed (for creating passwords).

6.3.12 (String-) Functions for Licence Management

– DemandLicenseKey (poolId [, productId [,windowsSoftwareId]])
asks the opsi service via the function getAndAssignSoftwareLicenseKey
for a reservation of a licence for the client.

The pool from which the licences is taken may be explicitly given by its ID
or is identified via an associated product ID or Windows Software Id
(possible, if these associations are defined in the licences configuration).

poolId, productId, windowsSoftwareId are Strings (resp. String
expressions).

If no licensePoolId is explicitly given the first parameter has to be an
empty String "". The same procedure is done with other not explicit given
Ids.

The function returns the licence key that is taken from the pool.

Examples:

set $mykey$ = DemandLicenseKey ("pool_office2007")

set $mykey$ = DemandLicenseKey ("", "office2007")

set $mykey$ = DemandLicenseKey ("", "", "{3248F0A8-6813-11D6-A77B}")

– FreeLicense (poolId [, productId [,windowsSoftwareId]])
asks the opsi service via the function freeSoftwareLicenseKey to release
the current licence reservation.

The syntax is analogous to the syntax for DemandLicenseKey.

- 39 -

6.3.13 Retrieving Error Infos from Service Calls

The String function

getLastServiceErrorClass
returns, as its name says, the class name of the error information of the last
service call. If the last service call did not produce an error the function returns
the value "None".

Similarly the function

getLastServiceErrorMessage
returns the message String of the last error information resp. "None". Since the
message String is more likely to be changed, it is recommended to base script
logic on the class name.

Example:

if getLastServiceErrorClass = "None"

 comment "kein Fehler aufgetreten"

endif

6.4 String List Functions and String List Processing

A String list (or a String list value) is a sequence of String values. For this kind
of values we have the variable of type String list. They are defined by the
statement

– DefStringList <VarName>
A String list value may be assigned to String list variable:

– Set <VarName> = <StringListValue>
String list values can be given only as results of String expressions. There are
many ways to create or capture String lists, and many options for processing
them, often yielding new String lists. They are presented in the following
subsections.

For the following examples we declare a String list variable:
DefStringList list1

If we refer to variables named like String0, StringVal, .. it is meant that
these represent any String expressions.

- 40 -

We start with a special and rather useful kind of String lists: maps – also called
hashes or associative arrays – which consist of a lines of the form KEY=VALUE.
In fact, each map should establish a function which associates a VALUE to a
KEY, and any KEY should occur at most once as the first part of a line (whereas
different KEYs may be associated with identical VALUE parts).

6.4.1 Info Maps

– getFileInfoMap(FILENAME)
retrieves the version infos built into the file FILENAME and writes it to a
Stringlist map.

At this moment, there exist the keys,

Comments
CompanyName
FileDescription
FileVersion
InternalName
LegalCopyright
LegalTrademarks
OriginalFilename
PrivateBuild
ProductName
ProductVersion
SpecialBuild

Usage: If we define and call
DefStringList FileInfo
DefVar $InterestingFile$
Set $InterestingFile$ = "c:\program files\my program.exe"
set FileInfo = getFileInfoMap($InterestingFile$)

we get the value associated with key "FileVersion" from the call
DefVar $result$
set $result$ = getValue("FileVersion", FileInfo)

(for the function getValue cf. section 6.4.4).

– getLocaleInfoMap
retrieves the system informations on the locale and writes it to a Stringlist
map.

At this moment, there exist the keys

- 41 -

file:///C:/program

language_id_2chars (two-letter version of the system default language name)
language_id (three-letter version of it, including subtype of language)
localized_name_of_language
English_name_of_language
abbreviated_language_name
native_name_of_language
country_code
localized_name_of_country
English_name_of_country
abbreviated_country_name
native_name_of_country
default_language_id
default_country_code
default_oem_code_page
default_ansi_code_page
default_mac_code_page

Usage: If we define and call
DefStringList languageInfo
set languageInfo = getLocaleInfoMap

we get the value associated with key "language_id_2chars" from the call
DefVar $result$
set $result$ = getValue("language_id_2chars", languageInfo)

(for the function getValue cf. section 6.4.4). We may now write scripts using a
construct like

if getValue("language_id_2chars", languageInfo) = "DE"
 ; install German version
else
 if getValue("language_id_2chars", languageInfo) = "EN"
 ; install English version
 endif
endif

The function GetLocaleInfoMap is meant to replace the older GetLocaleInfo
is where the delivered values were difficult to interpret:

– GetLocaleInfo (DEPRECATED)

retrieves the (supposedly) most interesting data from the locale data,
namely (at this moment)

- the two-letter version of the system default language name
- the three-letter version of it (including subtypes of language)
- the english language name
- the english country name
- the language code (hexadezimal value as String)

- 42 -

Usage: If we define and call
DefStringList $languageInfo$
set $languageInfo$ = getLocaleInfo

we have a 5 elements String list. In the log file, with the appropriate log level,
we get

 retrieving strings from getLocaleInfo:
 (string 0)DE
 (string 1)DEU
 (string 2)German
 (string 3)Germany
 (string 4)0407

We may now construct scripts for conditional statements (cf. section 6.7) like
if takeString(0, $languageInfo$) = "DE"
 ; install German version
else
 if takeString(0, $languageInfo$) = "EN"
 ; install English version
 endif
endif

6.4.2 Producing String Lists from Strings

– createStringList (String0, String1 ,...)
forms a String list from the values of the listed String expressions. For
example, by

set list1 = createStringList ('a','b', 'c', 'd')

we get a list of the first four letters of the alphabet.

The following two functions produce a String list by splitting some string:

– splitString (String1, String2)
generates the list of partial strings of String1 (including empty strings)
before resp. between the occurences of String2. E.g.,

set list1 = splitString ("\\server\share\directory", "\")

defines the list

"", "", "server", "share", "directory"

– splitStringOnWhiteSpace (StringVal)

- 43 -

slices StringVal by the "white spots" in it. E. g.

set list1 = splitString ("Status Lokal Remote Netzwerk")

produces the list

"Status", "Lokal", "Remote", "Netzwerk"

no matter how many blanks or tabs constitute the white space between the
words.

6.4.3 Loading the Lines of a Text File into a String List

– loadTextFile (filename)
reads the file filename and generates the String list that contains all lines
of the file.

If the file has unicode format the function

– loadUnicodeTextFile (filename)
should be used. By this call, the strings are converted into the system
default 8 bit code.

6.4.4 Simple String Values generated from String Lists

E.g. a spliced string or any transformation of it can be recombined by the
function

– composeString (stringList, linkString)
E.g. if list1 represents the list 'a', 'b', 'c', 'd', 'e' by

line = composeString (list1, " | ")

we set the String variable line to the value "a | b | c | d | e".

A String value can be retrieved from a list by

– takeString (index, list1)
E. g., if list1 represents the list of the first five letters of the alphabet by

takeString (2, list1)

we get string 'c' (since the index is counted from 0).

Negative values of index go downwards from the list count value. E.g.,

- 44 -

takeString (-1, list1)

return the last list element, that is 'e'.

The following function tries to interpret a String list list1 as list of lines of the
form

key=value

Such,

– getValue (key, list1)
looks for the first line, where the String key is followed by the equality sign,
and returns the remainder of the line (the String that starts after the
equality sign). If there is no fitting line, it returns the String 'NULL'.

The function is required for using the getLocaleInfoMap and
getFileVersionMap String list functions (cf. Section 6.4.1 and 6.4.2).

6.4.5 Producing String Lists from wInst Sections

– retrieveSection (sectionName)
gives the lines of the specified section as String list.

– getOutStreamFromSection (sectionName)
invokes the section and – at this moment implemented only for DosBatch,
DosInAnIcon (ShellBatch) and ExecPython calls – captures the output to
standard out and standard error of the invoked commands writing them
into a String list. For example:

We declare

[DosInAnIcon_netuse]
net use

Then the result of

getOutStreamFromSection ('DosInAnIcon_netuse')

contains among some surrounding stuff the list of all mounted shares of a
PC

– getReturnListFromSection (sectionName)
For some section types - at this moment implemented only for XMLPatch
sections and opsiServiceCall sections - there is a specific return statement

- 45 -

which yields some result of the execution of the section (assumed to be of
String list type). E.g. we may use the statement

set list1 = getReturnListFromSection ('XMLPatch_mime "c:\mimetypes.rdf"')

to get a specific knot list of the XML file mimetypes.rdf (where
XMLPatch_mime is defined as in section 7.7 in this manual).

Or the list of opsi clients is produced by the reference to the following opsi
service call (cf. Section 7.13)

DefStringList $result$

Set $result$=getReturnListFromSection("opsiservicecall_clientIdsList")

where

[opsiservicecall_clientIdsList]

"method":"getClientIds_list"

"params":[]

6.4.6 Transforming String Lists

A partial list of a given list is produced by the function:

– getSubList (startIndex, endIndex, list)
E.g., if list represents the list of letters 'a', 'b', 'c', 'd', 'e', by the
statement:

set list1 = getSubList(1 : 3, list)

we get the partial list 'b', 'c', 'd' . Begin index as well as end index
have to be interpreted as the index of the first and last included list
elements. The counting starts with 0.

Default start index is 0, default end index is the index of the last element of
the list.

Therefore, (for the above defined list1) the command

set list1 = getSubList(1 : , list)

yields the list 'b', 'c', 'd', 'e'.
set list1 = getSubList(:, list)

- 46 -

produces a copy of the original list. It is possible to count backwards in
order to determine the last index:

set list1 = getSubList(1 : -1, list)

defines the list of elements starting with the first and ending with the
second to last element of the list – in the above example we again get list
'b', 'c', 'd'.

– reverse (list)
produces the inverted list, if list1 is 'a', 'b', 'c', 'd', 'e', by

set list1 = reverse (list)

we get the list 'e', 'd', 'c', 'b', 'a'.

6.4.7 Iterating through String Lists

An important application of String lists is based on the device that the script
runs through all elements of a list executing some operation on each.

The syntax to define this repetition is:

– for %s% in list do statement
This expression locally defines a String variable %s% that takes one by one the
values of the list elements.

statement can be any single statement that can exist in a primary section
type. In particular (and most interestingly) it may be a subsection call. The
locally defined iteration index %s% exists in the whole context of statement, in
particular in the subsection if statement is a subsection call.

The replacement mechanism for %s% always works like that for constants: The
name of the variable is replaced by the element values. If we iterate through a
list 'a','b','c' and the iteration index is named %s%, we get for %s% one by
one a, b, c – not the String values. To reproduce the original list elements we
have to enclose %s% in citation marks.

Example: Let list1 be the list 'a', 'b', 'c', 'd', 'e', and line a String
variable. The statement

for %s% in list1 do set line = line + '%s%'

iterates through the list elements internally executing

set line = line + 'a'

- 47 -

set line = line + 'b'

set line = line + 'c'

set line = line + 'd'

set line = line + 'e'

Such, finally line has value 'abcde' . If we omitted the citation marks around
%s% we would get a syntax error for each iteration step.

For further examples cf. the cook book chapter, e.g. section 8.2.

6.5 Special Commands

– Killtask <String expression>
tries to stop all processes that execute the program named by the String
expression.

E.g.

killtask "winword.exe"

6.6 Commands for User Information and User
Interaction

– Message <String expression>
or

– Message = <sequence of characters>
lets wInst display the value of the String expression resp. the sequence
of chars in the batch window in the top information line. The text is kept as
long as no new message is set.

Example:

Message "Installing Mozilla Firefox"

On the other hand, the command

– ShowMessageFile <String expression>

- 48 -

interprets the String expression as text file name, tries to read the text und
show it in a user information window. Execution stops until the user
confirms reading. E.g. by a command like

ShowMessageFile "p:\login\day.msg"

one can realize a "Message of the Day" mechanism.

The statement

– ShowBitMap [/<location index>] [<image name>] [<inscription>]
places the image denoted by the image name (in BMP or PNG format, size
160x160 pixel) at the position denoted by the location index and
subtitled by the inscription .

<location index> is a <sequence of digits> - in fact at this time there
are only positions 1, 2, 3.

<image name> and <inscription> are String expressions.

E.g. we may call

ShowBitmap /3 "%scriptpath%\" + $ProductName$ + ".bmp" "$ProductName$"

for producing a product specific image at window position 3.

If the name parameter is missing the image at the referred position is
cleared.

– comment <String expression>
or

– comment = <sequence of characters>
writes the value of the String expression resp. the sequence of characters
into the log file.

Additional error messages or warnings can be written to the log file by the
statements

– LogError <String expression>
or

– LogError = <sequence of characters>
resp.

- 49 -

– LogWarning <String expression>
or

– LogWarning = <sequence of characters>

The following statements are mainly intended for debugging purposes:

– Pause <String expression>
or

– Pause = <sequence of characters>
display the text given as a String expression or as a sequence of chars in a
information window waiting until the user confirms the continuation.

On the contrary, the statements

– Stop <String expression>
or

– Stop = <sequence of characters>
are able to end program execution if the user confirms it. The String
expression resp. the (possibly empty) sequence of chars explain to the user
what is going to be stopped.

– sleepSeconds <Integer>
lets the program execution stop for <Integer> seconds

– markTime
Sets a time stamp for the current system time and logs it.

– diffTime
Logs the time passed since the last marked time.

6.7 Conditional Statements (if Statements)

In primary sections, the execution of a statement or a sequence of statements
can be made dependent on some condition.

- 50 -

6.7.1 Example

Recall the example where the script branches dependent on the OS running:
DefVar OS
Set OS = GetOS
DefVar $NTVersion$

if OS = "Windows_NT"
 Set $NTVersion$ = GetNTVersion

 if ($NTVersion$ = "NT4") or ($NTVersion$ = "Win2k")
 sub_install_winnt
 else
 if ($NTVersion$ = "WinXP")
 sub_install_winXP
 else
 stop "OS version not supported"
 endif
 endif

endif

6.7.2 General Syntax

The syntax of the complete if statement reads

if <condition>
 <sequence of statements>
else
 <sequence of statements>
endif

The else part may be omitted.

if statements may be nested. That is, in the sequence of statements that
depend on an if clause (no matter if inside the if or the else part) another
if statement may occur.

<condition> is a <Boolean expression> . A Boolean (or logical) expression
can be constructed as a (String) value comparison, by Boolean operators, or by
certain function calls which evaluate to true or false. Up to now these Boolean
values cannot be explicitly represented in a wInst script).

6.7.3 Boolean Expressions

The String comparison (which is a Boolean expression) has the form

- 51 -

<String expression> <comparison sign> <String expression>
where <comparison sign> is one of the signs

< <= = >= >
String comparisons in wInst are case independent.

Inequality must be expressed by a NOT() expression which is presented below.

There is as well a comparison expression for comparing Strings as (integer)
numbers. If any of them cannot be converted to a number an error will be
indicated.

This number comparison expression has the same form as the String
comparison but for an INT prefix of the comparison sign:

<String expression> INT<comparison sign> <String expression>
Such, we can build expressions as

if $Name1$ <= $Name2$

or
if $Number1$ >= $Number2$

For additional examples and some special comparison functions cf. section
6.3.12.

Boolean operators are AND, OR, and NOT() (case does not matter). If b1, b2
and b3 are Boolean expressions the combined expressions

b1 AND b2
b1 OR b2
NOT(b3)

are Boolean expressions as well denoting respectively the conjunction (AND),
the disjunction (OR) and the negation (NOT).

A Boolean expression can be enclosed in parentheses (such producing a new
Boolean expression with the same value).

The common rules of Boolean operator priority ("and" before "or") are at this
moment not implemented. An expression with more than one operator is
interpreted from left to right. For clarity, in a Boolean expression that combines

- 52 -

AND and OR operators parentheses should be employed, e.g. we should explicitly
write

b1 OR (b2 AND b3)
or
(b1 OR b2) AND b3

The second example describes what would be executed if there were no
parentheses - whereas the common interpretation would run as the other line
indicates.

Boolean operators can be conceived as special Boolean valued functions (the
negation operator demonstrates this very clearly).

There are some more Boolean functions implemented. Every call of such a
function constitutes a Boolean expression as well:

– FileExists (<String expression>)
returns true if the denoted file or directory exists otherwise false.

– LineExistsIn (line, filename)
returns true if the text file denoted by filename contains a line as specified
in the first parameter where each parameter is a String expression.
Otherwise (or if the file does not exist) it returns false.

– LineBeginning_ExistsIn (stringval, filename)
returns true if there is line that begins with stringval in the text file
denoted by filename (each parameter being a String expression).
Otherwise (or if the file does not exist) it returns false.

– XMLAddNamespace(XMLfilename, XMLelementname, XMLnamespace)
inserts a XML namespace definition into the first XML element with the
given name (if not existing). It gives back if an insertion took place. (The
wInst XML patch section need the definitions of namespace.)
The file must be formatted that an element tag has no line breaks in it.
For an example, cf. cookbook section 8.6.

– XMLRemoveNamespace(XMLfilename, XMLelementname, XMLnamespace)
removes the XML namespace definition from the XML element. It gives
back if an removal took place. We need this to simulate that an original file
is unchanged. For an example, cf. cookbook section 8.6.

– HasMinimumSpace (drivename, capacity)
returns true if at least a capacity capacity is left on drive drivename.
capacity as well as drivename syntactically are String expressions. The

- 53 -

capacity may be given as a number without unit specification (then
interpreted as bytes) or with unit specifications "kB", "MB", or "GB" (case
independent).

Example of use:

if not (HasMinimumSpace ("%SYSTEMDRIVE%", "500 MB"))

 LogError "Not enough Space on drive %SYSTEMDRIVE%, required 500 MB"

 isFatalError

endif

Helpful for the implementation of the delivery of license keys is the function

– opsiLicenseManagementEnabled
It may be used to branch a script depending on the source of a licence key:

if opsiLicenseManagementEnabled
set $mykey$ = DemandLicenseKey ("pool_office2007")

else

set $mykey$ = IniVar("productkey")

6.8 Subprogram Calls

Statements in primary sections which refer to instructions declared elsewhere
are called sub program (or procedure) calls.

E.g., the statement
sub_install_winXP

"calls" the section titled [sub_install_winXP] which is placed somewhere else in
the script, as in the example

[sub_install_winXP]
Files_copy_XP
WinBatch_SetupXP

As long as a sub section, being yet a primary section, is called the chain of
reference may continue. In the example program execution jumps first to
section [Files_Kopieren_XP], then to [WinBatch_SetupXP].
Generally, there are three ways to place the referred instructions:

(1) The most common target of a sub program call is some other internal section
in the very script file where the calling statement is placed (as in the example).

- 54 -

(2) We may put the referred instructions into another file which serves as an
external section.

(3) Any String list can be used as list of instructions for a sub program call.

We describe the syntax of sub program calls in detail:

6.8.1 Syntax of Procedure Calling

Formally, the syntax can be given by
<proc. type>(<proc. name> | <External proc. file> | <String list function>)

This expression may supplemented by one ore ore parameters (procedure type
dependent).

That means: A procedure call consists of three main parts.

– The first part is the subprogram type specifier.

Examples of type names are Sub (we call a procedure of type sub that is a
again a primary section) or Files and WinBatch (calls of special
secondary sections). The complete overview of the existing sub program
types is given in chapter 6.

– The second part determines where and how the lines of sub program are to
be found.

Case (1): The subp rogram is a sequence of lines situated in the executed
wInst script as another internal section. Then a name (constituted from
letters, digits, and some special characters) has to be appended to the type
specifier (without space) in order to form an unique section name.

sub_install_winXP

or

files_copy_winXP

Section names are case independent as any other string.

Case (2): If the type specifier stands alone a String list expression or a
String expression is expected. If the expression following the type specifier
cannot be resolved as a String list expression (cf. case (3)) it is assumed to
be a String expression. The string is then interpreted as a file name. wInst
tries to open the file as a text file and interpret its line as an external
section of the specified type.

- 55 -

E.g.

sub "p:\install\opsiutils\mainroutine.ins"

tries to execute the lines of mainroutine.ins as statements of a sub
section.

Case (3): If the expression following a stand alone section type specifier is
resolvable as a String list expression then the string components of the list
are interpreted as the statements of the section.

This mechanism can e.g. be used to load a file that has unicode format and
then treat it by the usual mechanisms

registry loadUnicodeTextFile("%scriptpath%/opsiorgkey.reg") /regedit

Syntactically, this line is composed of three main parts:

registry, the core statement specifying the section type,
loadUnicodeTextFile(...), a String list expression specifying how to get
the lines of a registry section resp. its surrogate.
/regedit, parametrizing the registry call.

In this example, the call parameter already gives an example for the third
part of a subsection call:

– The third part of a procedure call comprises type specific call options.

For a reference of the call options cf. the descriptions of the section calls in
chapter 7.

6.9 Controlling Reboot

The statement ExitWindows offers to apply the whole diversity of the
underlying system command in a wInst script.

On principle, ExitWindows triggers a reboot (resp. an automatic log out or
shutdown) after the end of script execution. In the interactive mode the user is
asked if she or he agrees with rebooting (at once). If wInst works in pcprofil
mode then the specific ExitWindows request is written to the registry. In an
opsi environment, with installed preloginloader, the wInst process is a
subprocess of the execution of pcptch.exe. When wInst execution is finished,
pcptch.exe reads the registry entry and calls the system function
exitwindows. This call does not succeed in Windows XP, therefore the opsi

- 56 -

service process checks the registry again, and enforces the call to
exitwindows. In batch mode, wInst calls the system exitwindows command
itself.

There are variants of the ExitWindows command which trigger a reboot, a
logout or a shutdown.

There are two types of a reboot request plus a deprecated one. We list them in
the order of increasing urgency of the request:

– ExitWindows /RebootWanted
DEPRECATED: a reboot request is registered which should be executed
when all installations requests are treated, and the last script has finished.

In fact, this command is now treated as an ExitWindows /Reboot (since
otherwise an installation could fail because a required product is not yet
completely installed).

– ExitWindows /Reboot
triggers the reboot after wInst has finished the currently treated script.

– ExitWindows /ImmediateReboot
breaks the normal execution of a script anywhere inside it. When this
command is called wInst runs as directly as possible to its end entailing
the system exitwindows call. In the context of an installed preloginloader
it is guaranteed that after rebooting wInst runs again into the script that
was aborted. Therefore, the script has to take provisions that the execution
continues after the point where it was left the turn before (otherwise we may get
an infinite loop ...) Cf. the example in this section.

Logging out instead of rebooting is started – analogously to an
"ImmediateReboot" – by the command

– ExitWindows /ImmediateLogout
The normal execution of a script breaks at the point of the call, entailing a
system log out call.

This behaviour is needed if an automated user log in for some other user
shall take place (cf. cookbook, section 8.3).

Finally, we may demand a shut down at the end of all script executions. For this
purpose there is the /ShutdownWanted parameter:

- 57 -

– ExitWindows /ShutdownWanted
sets a flag in the registry that the PC shuts down when all installations
requests are treated, and the last script has finished.

How flags may be set to ensure that the script does not run into an infinite loop
when ExitWindows /ImmediateReboot is called we demonstrate by the
following code fragment:

DefVar OS
DefVar $Flag$
DefVar $WinstRegKey$
DefVar $RebootRegVar$

set OS=EnvVar("OS")

if OS="Windows_NT"

 Set $WinstRegKey$ = "HKLM\SOFTWARE\opsi.org\winst"
 Set $Flag$ = GetRegistryStringValue("["+$WinstRegKey$+"] "+"RebootFlag")

 if not ($Flag$ = "1")
 ;=========================
 ; Statements BEFORE Reboot

 Files_doSomething

 ; initialize reboot ...
 Set $Flag$ = "1"
 Registry_SaveRebootFlag
 ExitWindows /ImmediateReboot

 else
 ;=========================
 ; Statements AFTER Reboot

 ; set back reboot flag
 Set $Flag$ = "0"
 Registry_SaveRebootFlag

 ; the work part after reboot:

 Files_doMore

 endif

endif

[Registry_SaveRebootFlag]
openKey [$WinstRegKey$]
set "RebootFlag" = "$Flag$"

[Files_doSomething]
; a section executed before reboot

[Files_doMore]

- 58 -

; a section executed after reboot

6.10 Keeping Track of Failed Installations

If a product installation fails since errors occur, or if some circumstances
prevent the installation script from being successfully executed the script
execution should not, as usually in an opsi environment, lead to the product
state installed but the product state failed.

To indicate in a wInst script that regarding he circumstances the current
installation is not successful there is the statement

– isFatalError
If this statement is called wInst stops the normal execution of the script and
sets the product state to failed.

E. g. , a "fatal error" shall be triggered if there is as much space left as it is
needed for an installation:

DefVar $SpaceNeeded"
Set $SpaceNeeded" = "200 MB"

DefVar $LogErrorMessage$
Set $LogErrorMessage$ = "Not enough space on drive . Required "
Set $LogErrorMessage$ = $LogErrorMessage$ + $SpaceNeeded"

if not(HasMinimumSpace ("%SYSTEMDRIVE%", $SpaceNeeded"))
 LogError $LogErrorMessage$
 isFatalError
 ; finish execution and set ProductState to failed

 else
 ; we start the installation
 ; ...

 endif

It is also possible to state isFatalError depending on the number of errors
which occured in some critical part of an installation script. In order to do this
we initialize the error counting by the command

– markErrorNumber
The number of execution errors which occur after setting the counter can be
queried by the the number valued function

- 59 -

– errorsOccuredSinceMark

We can evaluate the result in a numerical comparison condition (that as yet is only
implemented for this expression). E. g. we may state

if errorsOccuredSinceMark > 0

and may, if this seems to make sense, then state
isFatalError

For increasing the number of counted errors depending on certain
circumstances (that do not directly produce an error) we may use the logError
statement.

We may test this device by the following script example:
markErrorNumber
; Erors occuring after this mark are counted and
; will possibly be regarded as fatal

logError "test error"
; we write "test error" into the log file
; and increase the number of errors by 1
; for testing, comment out this line

if errorsOccuredSinceMark > 0
 ; we finish script execution as quick as possible
 ; and set the product state to "failed"

 isFatalError
 ; but comment writing is not stopped

 comment "error occured"

else
 ; no error occured, lets log this:

 comment "no error occured"
endif

- 60 -

7 Secondary Sections
The secondary or specific sections can be called from any primary section but
have a different syntax. The syntax is derived from the functional requirements
and library conditions and conventions for the specific purposes. Therefore
from a secondary section, no further section can be called.

Secondary sections are specific each for a certain functional area. This refers to
the object of the functionality, e.g. file system in general, the Windows registry,
or XML files. But it refers even more to the apparatus that is internally applied.
This may be demonstrated by the the variants of the batch sections (which call
external programs or scripts).

The functional context is mirrored in the specific syntax of the particular
section type.

In detail:

7.1 Files Sections

A Files section mainly offers functions which correspond to copy commands
of the underlying operating system. The surplus value when using the wInst
commands is the detailed logging and checking of all operations when
necessary. If wanted overwriting of files can be forbidden if newer versions of a
file (e.g. an newer dll-file) are already installed on the system.

7.1.1 Example

A simple Files section could read:
[Files_do_some_copying]
copy -sv "p:\install\instnsc\netscape*.*" "C:\netscape"
copy -sv "p:\install\instnsc\windows*.*" "%SYSTEMROOT%"

These commands cause that all files of the directory
 p:\install\instnsc\netscape are copied to the directory C:\netscape, and
then all files from p:\install\instnsc\windows to the windows system
directory (its value is automatically inserted into the constant name
%SYSTEMROOT%).

Option -s means that all subdirectories are copied as well, -v activates the
version control for library files.

- 61 -

file:///C:/r/4uib/delphi32/winst32/winst_release_3-3-alpha/winstdoc.sdw

7.1.2 Call Parameters

In most cases a Files section will be called without parameters.

There are only some special uses of Files sections where the target of copy
actions is set or changed in a certain specified way. We have got the two
optional parameters

/AllNTUserProfiles resp.

/AllNTUserSendTo
Both variants mean:

– The called Files section is executed once for each local Windows NT user.

– Every copy command in the section is associated with an user specific
target directory.

– In case other we need to build other user specific path names we can use
the automatically set variable %UserProfileDir%.

With option /AllNTUserProfiles the user specific target directory for copy
actions is the user profile directory (that is usually denoted by the user name
and is by default situated as a subdirectory of the userappdata directory. In
case of option /AllNTUserSendTo the target directory is the path of the user
specific SendTo folder (for links of the windows explorer context menu).

The exact rule for determining the target path for a copy command has three
parts:

1. If only the source of a copy action is specified the files are copied directly
into the user target directory. We have syntax

copy sourcepath

It be equivalent as

copy sourcepath "%UserProfileDir%\"

2. If some targetdir is specified and targetdir is a relative path description
(starting neither with a drive name nor a backslash) then targetdir is
regard as the name of a subdirectory of the user specific directory. I.e.

copy sourcepath targetdir

is interpreted like:
copy sourcepath "%UserProfileDir%\targetdir"

- 62 -

3. If targetdir is an absolute path it is used as the static target path of the
copy action.

7.1.3 Commands

In a Files section the following commands are defined:

– Copy
– Delete
– SourcePath
– CheckTargetPath
– zip
Copy and Delete roughly correspond the the Windows shell commands xcopy
resp. del.

SourcePath and CheckTargetPath set origin and destination of the
forthcoming copy actions (as if we would open two explorer windows for copy
actions between them). If the target path does not exist it will be created.

zip is used to create an archive.

The syntax definitions are:

– Copy [-svdunxwnr] <source(mask)> <target path>
The source files can be denoted explicitly, using the wild card sign (”* ”) or
by a directory name. The target path is always understood as a
directory name. Renaming by copying is not possible. If the target path
does not exist it will be created (if needed a hierarchy of directories).

The optional modifiers of the Copy command mean (the ordering is
insignificant):

– s
We recurse into subdirectories.

– e
If there are empty subdirectories in the source path they will be
created in the source directory as well.

– v
With version checking:
A newer version of a windows library file is not overwritten by an

- 63 -

older one (according primarily to the internal version counting of
the file). If there are any doubts regarding the priority of the files
a warning is added to the log file.
It is checked if a newer version exists in the target directory as
well as in the windows and the window system directory.

– V

With version checking, but only with regard to a file the target
directory.

– d
With date check:
A newer .exe file is not overwritten by an older one.

– u
We are only updating files:
A file is not copied if there is a newer or equally old file of the
same name.

– x
If a file is a zip archive it will be unpacked (Xtracted) on copying.
Caution: Zip archives are not characterized by its name but by an
internal definition. E.g. a java jar file is a zip file. If it is unpacked
the application call will not work.

– w
We respect any write protection of a file such proceeding
"weakly" (in opposite to the default behaviour which is to try to
use administrator privileges and overwrite a write protected file).

– n
Existing files are not overwritten.

– c
If a system file is in use, then it can be overwritten only after a
reboot. The wInst default behaviour is therefore that a file in use
will be marked for overwriting after the next reboot, AND the
wInst reboot flag is set. Setting the copy modifier "-c" turns the
automatic reboot off. Instead normal processing continues, the
copying will be completed only when a reboot is otherwise
triggered.

– r
If a copied file has a read-only attribute it is set again (in
opposite to the default behaviour which is to eliminate read-only
attributs).

- 64 -

– Delete [-sfd[n]] <path>
– Delete [-sfd[n]] <source(mask)>

deletes files and directories. Possible options are (with arbitrary ordering)
– s

We recurse into subdirectories. Everything that matches the
path name or the source mask is deleted.

– f
forces to delete read only files

– d [n]
Only files of age n days or older are deleted. n defaults to 1.

– SourcePath = <source directory>
Sets <source directory> as default directory for the following Copy and (!)
Delete commands.

– CheckTargetPath = <Zieldirectory>
Sets <Zieldirectory> as default directory for Copy command . If the
specified path does not exist it will be created.

– zip [-s] <archive directory> <source mask>
The command produces a zip archive file for every file that corresponds to
the source mask and puts it in the archive directory. Option -s lets recurse
into the source subdirectories. (This command was used to produce a
special sort of archives when server space was scarce.)

7.2 Patches- Sektionen

A Patches section modifies a property file in ini file format. I. e. a file that
consists of sections which are a sequence of entries constructed as settings
<variable> = <value>. where sections are characterized by headings which
are bracketed names like [sectionname].

(Since a patched .ini file is similarly built from sections like the wInst script
we have to be careful to avoid a denotational mess.)

- 65 -

7.2.1 Example

In times when not everything was written to the registry a file named win.ini
played a central role. It can be edited via a Patches call: In a primary section,
we write

Patches_WIN.INI "%SYSTEMROOT%\WIN.INI"

and the called section may be defined e.g. for Acrobat Writer:
[Patches_WIN.INI]
set [Devices] Acrobat Distiller=winspool,Ne00:
set [Devices] Acrobat PDFWriter=winspool,LPT1:
set [PrinterPorts] Acrobat Distiller=winspool,Ne00:,15,45
set [PrinterPorts] Acrobat PDFWriter=winspool,LPT1:,15,45
set [Windows] Device=Acrobat PDFWriter,winspool,LPT1:

7.2.2 Call Parameter

As shown in the example the name of the property file to be patched is
specified as parameter of the sub program call.

7.2.3 Commands

For a Patches section, we have commands

– add
– set
– addnew
– change
– del
– delsec
– replace
Each command refers to some section of the file which is to be patched. The
name of this section is specified in brackets (which do here not mean
"syntactically optional"!!).

In detail:

– add [<section name>] <variable1> = <value1>
This command adds an entry of kind <variable1> = <value1> to section
<section name> if there is yet no entry for <variable1> in this section.

- 66 -

Otherwise nothing is written. If the section does not exist it will be created.

– set [<section name>] <variable1> = <value1>
If there is no entry for <variable1> in section <section name> the
setting <variable1> = <value1> is added. Otherwise, the first entry
<variable1> = <valueX> is changed to <variable1> = <value1>.

– addnew [<section name>] <variable1> = <value1>
No matter if there is an entry for <variable1> in section <section name>
the setting <variable1> = <value1> is added.

– change [<section name>] <variable1> = <value1>
Only if there is any entry for <variable1> in
section <section name> it is changed to <variable1> = <value1>.

– del [<section name>] <variable1> = <value1>
resp.

– del <section name>] <variable1>
removes all entries <variable1> = <value1> resp. all entries for
<variable1> in section <section name>.

– delsec [<Sektionsname>]
removes the section <section name>.

– Replace <variable1>=<value1> <variable2>=<value2>
means that <variable1> = <value1> will be replaced by <variable2> =
<value2> in all sections of the ini file. There must be no spaces in the
value or around the equal signs.

7.3 PatchHosts Sections

By virtue of a PatchHosts section we are able to modify a hosts file which is
to understand as any file with lines having format

IPadress hostName aliases # comment

Aliases and comment (and the comment separator #) are optional. A line may
also be a comment line starting with # .

The file which is to be modified can be given as parameter of a PatchHosts
call. If there is no parameter a file named HOSTS is searched in the directories
c:\nfs, c:\windows and %systemroot%\system32\drivers\etc. If no such
file is found the PatchHosts call terminates with an error.

- 67 -

In a PatchHosts section there are defined commands

– setAddr
– setName
– setAlias
– delAlias
– delHost
– setComment
E.g. by

[PatchHosts_MyHostsPatch]
setAddr ServerNo1 111.111.111.111
setAlias ServerNo1 myServer

we decide that the name ServerNo1 is resolved as 111.111.111.111, and
that any call to the alias myServer is directed to the same address.

In detail:

– setaddr <hostname> <IPaddress>
sets the IP address for host <hostname> to <IPaddress>. If there is no
entry for host name as yet it will be created.

– setname <IPaddress> <hostname>
sets the host name for the given IP address. If there is no entry for the IP
address as yet it will be created.

– setalias <hostname> <alias>
adds an alias for the host named <hostname>.

– setalias <IPadresse> <alias>
adds an alias name for the host with IP address <IPadress>.

– delalias <hostname> <alias>
removes the alias name <alias> for the host named <hostname> .

– delalias <IPaddress> <alias>
removes the alias name <alias> for the host with IP address <IPadress>.

– delhost <hostname>
removes the complete entry for the host with name <hostname>.

- 68 -

– delhost <ipadresse>
removes the complete entry for the host with IP address <IPadress>.

– setComment <ident> <comment>
writes <comment> after the comment sign for the host with host name, IP
address or alias name <ident>.

7.4 IdapiConfig Sections

A IdapiConfig section writes parameters in idapi*.cfg files which are used by
the Borland Database Engine.

This section type is only available for windows.

The name of the file which is to be treated is given as call parameter, e.g.
IdapiConfig_resymesa "c:\idapi\idapi.cfg"

An example for a section may be:
[IdapiConfig_resymesa]
alias:resabw
driver:dbase
;parametername=parameterwert
TYPE=Standard
PATH=C:\ReSyMeSa\Daten
DEFAULT DRIVER=dbase
setalias

Generally we have:

– alias:<alias name>
defines an alias name,

– driver:<driver name>
specifies the driver name.

– setalias
finally writes the data to the configuration file.

Depending on the specific driver there can be any number of settings of form

<parameter name>=<parameter value>

- 69 -

7.5 PatchTextFile Sections

A PatchTextFile section offers a variety of options to patch arbitrary
configuration files which are given as common text files (i.e. they can be
treated line by line).

An essential tool for working on text files is the check if a specific line is
contained in a given file. For this purpose we have got the Boolean functions
Line_ExistsIn and LineBeginning_ExistsIn (cf. Section 6.7.3).

7.5.1 Example

E.g., for a Mozilla preference file we may set the start page of the browser by a
call to the following PatchTextFile section:

[PatchTextFile_NetscapePref]
GoToTop
FindLine_StartingWith 'user_pref("browser.startup.homepage"'
DeleteTheLine
AddLine 'user_pref("browser.startup.homepage", "http://myhomepage.org");'

We can get the same effect more easily since especially for patching the
mozilla preference files there is a special command. Using it the example
reduces to

[PatchTextFile_NetscapePref]
Set_Netscape_User_Pref ("browser.startup.homepage", "http://myhomepage.org")

7.5.2 Call Parameter

The text file which is to be treated is given as parameter of the PatchTextFile
call, e.g.

PatchTextFile_prefsjs $mailhome$ + "prefs.js"

7.5.3 Commands

We have got two commands especially for patching Mozilla preferences files:

– Set_Netscape_User_Pref ("<preference variable>", "<value>")
sets the line of the given user preference file for the variable <preference
variable> to value <value>. The ASCII ordering of the file will be kept.

– AddStringListElement_To_Netscape_User_Pref ("<preference
variable>", "<add values list>")
appends one or more elements to a list entry in the given preference file. It

- 70 -

http://merkur/
http://merkur/

is checked if a single value that shall be added is already contained in the
list (then it will not be added).
The command may be used to supplement elements in the list of no proxy
entries in prefs.js.

The other commands of PatchTextFile sections are not file type specific. All
operations are based on the concept that a line pointer exists which can be
moved from top of the file i.e. above the top line down to the bottom (line).

There are three search commands:

– FindLine <search string>

– FindLine_StartingWith <search string>

– FindLine_Containing <search string>

Each command starts searching at the actual position of the line pointer. If they
find a matching line the line pointer is moved to it. Otherwise the line pointer
keeps its position.

<search string> - as all other String references in the following commands -
are String surrounded by single or double citation marks.

If searching shall certainly start at the top line we have to move the line pointer
beforehand. This is done by the command

– GoToTop

(when we count lines it has to be noted that this commands move the line
pointer above the top line).

We step any - positive or negative - number of lines through the file by

– AdvanceLine [line count]

Advancing to the bottom line is done by

– GoToBottom

By the following command we delete the line at which the line pointer is
directed if there is such a line (if the line pointer has position top, nothing is
deleted):

– DeleteTheLine
There is also a command for deleting all lines which begin with a certain String:

- 71 -

– DeleteAllLines_StartingWith <search string>

The lines of the file may be augmented by the following commands:

– AddLine <line>
or Add_Line <line>
The line is appended to the file.

– InsertLine <line>
or Insert_Line <line>

<line> is inserted at the position of the line pointer.

– AppendLine <line>
or Append_Line <line>

<line> is appended after the line at which the pointer is directed.

We connect to the file system by some other commands:

– Append_File <file name>
reads the file and appends its lines to the edited file.

– Subtract_File <file name>
removes the beginning lines of the edited file as long as they are identical
with the lines of file <file name>.

– SaveToFile <file name>
writes the edited lines as a file <file name>.

– Sorted
causes that the edited lines are (ASCII) ordered.

7.6 LinkFolder Sections

7.6.1 Windows

In a LinkFolder section start menus entries as well as desktop links are
managed.

E.g. the following section creates a folder named "acrobat“ in the common
start menu (shared by all users):

- 72 -

[LinkFolder_Acrobat]
set_basefolder common_programs

set_subfolder "acrobat"
set_link
 name: Acrobat Reader
 target: C:\Programme\adobe\Acrobat\reader\acrord32.exe
 parameters:
 working_dir: C:\Programme\adobe\Acrobat\reader
 icon file:
 icon_index:
end_link

As can be seen in the example, in a LinkFolder section the first thing to set is
the virtual system folder on which the following statements shall operate:

– set_basefolder <system folder>
The predefined virtual system folders which can be used are

desktop, sendto, startmenu, startup, programs, desktopdirectory,

common_startmenu, common_programs, common_startup,

common_desktopdirectory

The folders are 'virtual' since the operating system (resp. registry entries)
determine the real places of them in the file system.

Second, we have to open an subfolder of the selected virtual folder:

– set_subfolder <folder path>
The subfolder name is to be interpreted as a path name with the selected
virtual system folder as root. If some link shall be directly placed into the
system folder we have to write

set_subfolder ""

In the third step, we can start setting links. The command is a multi line
expression starting with

– set_link
and finished by

– end_link
Between these lines the link parameters are defined in the following format:

set_link
 name: [link name]

- 73 -

 target: <complete program path>
 parameters: [command line parameters of the program]
 working_dir: [working directory]
 icon_file: [icon file path]
 icon_index: [position of the icon in the icon file]
end_link

The target name is the only essential entry. The other entries have default
values:

– name defaults to the program name.

– parameters has the empty string as default.

– If no icon_file is specified the program file is selected.

– The default icon_index is 0.

Caution: If the referenced target does not lie on an mounted share at the
moment of link creation windows shortens its name to the 8.3 format.

Workaround:
- Create a correct link when the share is connected.
- Copy the ready link file to a location which exists at script runtime.
- Let this file be the target.

By

– delete_element <link name>
we remove a link from the open folder.

A complete folder is removed from the base virtual folder by

– delete_subfolder <folder path>

7.6.2 Linux

There are some minor differences to the windows version:

Possible virtual folders are:
desktop, startmenu, startup, desktopdirectory, common_startmenu,
common_startup, common_desktopdirectory

set_link has the following parameters:
name: // name of link
target: // path and name of program
parameters: // call parameters of the program
working_dir: // working directory of the program

- 74 -

icon_file: // path and name of icon file
filename // name of the desktop file (with ext)
type // link type (explanation cf. below)
categories // (opt.) ; separated list of categories
genericName // (opt.) description (name=mozilla->generic=browser)

There is no parameter icon_index.

The parameter type is required and shall have one of the following values:
Application, Link, FSDevice, MimeType,

categories may be empty or may contain a semicolon separated list of
categories from the following table:

Category Description

Development An application for development

Building A tool to build applications

Debugger A tool to debug applications

IDE IDE application

GUIDesigner A GUI designer application

Profiling A profiling tool

RevisionControl Applications like cvs or subversion

Translation A translation tool

Office An office type application

Calendar Calendar application

ContactManagement E.g. an address book

Database Application to manage a database

Dictionary A dictionary

Chart Chart application

Email Email application

Finance Application to manage your finance

FlowChart A flowchart application

PDA Tool to manage your PDA

ProjectManagement Project management application

Presentation Presentation software

Spreadsheet A spreadsheet

WordProcessor A word processor

Graphics Graphical application

2DGraphics 2D based graphical application

VectorGraphics Vector based graphical application

RasterGraphics Raster based graphical application

- 75 -

Category Description

3DGraphics 3D based graphical application

Scanning Tool to scan a file/text

OCR Optical character recognition
application

Photography Camera tools, etc.

Viewer Tool to view e.g. a graphic or pdf
file

Settings Settings applications

DesktopSettings Configuration tool for the GUI

HardwareSettings A tool to manage hardware
components, like sound cards, video
cards or printers

PackageManager A package manager application

Network Network application such as a web
browser

Dialup A dial-up program

InstantMessaging An instant messaging client

IRCClient An IRC client

FileTransfer Tools like FTP or P2P programs

HamRadio HAM radio software

News A news reader or a news ticker

P2P A P2P program

RemoteAccess A tool to remotely manage your PC

Telephony Telephony via PC

WebBrowser A web browser

WebDevelopment A tool for web developers

AudioVideo A multimedia (audio/video)
application

Audio An audio application

Midi An app related to MIDI

Mixer Just a mixer

Sequencer A sequencer

Tuner A tuner

Video A video application

TV A TV application

AudioVideoEditing Application to edit audio/video
files

Player Application to play audio/video
files

Recorder Application to record audio/video
files

- 76 -

Category Description

DiscBurning Application to burn a disc

Game A game

ActionGame An action game

AdventureGame Adventure style game

ArcadeGame Arcade style game

BoardGame A board game

BlocksGame Falling blocks game

CardGame A card game

KidsGame A game for kids

LogicGame Logic games like puzzles, etc

RolePlaying A role playing game

Simulation A simulation game

SportsGame A sports game

StrategyGame A strategy game

Education Educational software

Art Software to teach arts

Construction

Music Musical software

Languages Software to learn foreign languages

Science Scientific software

Astronomy Astronomy software

Biology Biology software

Chemistry Chemistry software

Geology Geology software

Math Math software

MedicalSoftware Medical software

Physics Physics software

Teaching An education program for teachers

Amusement A simple amusement

Applet An applet that will run inside a
panel or another such application,
likely desktop specific

Archiving A tool to archive/backup data

Electronics Electronics software, e.g. a circuit
designer

Emulator Emulator of another platform, such
as a DOS emulator

Engineering Engineering software, e.g. CAD
programs

FileManager A file manager

- 77 -

Category Description

Shell A shell (an actual specific shell
such as bash or tcsh, not a
TerminalEmulator)

Screensaver A screen saver (launching this
desktop entry should activate the
screen saver)

TerminalEmulator A terminal emulator application

TrayIcon An application that is primarily an
icon for the "system tray" or
"notification area" (apps that open
a normal window and just happen to
have a tray icon as well should not
list this category)

System System application, "System Tools"
such as say a log viewer or network
monitor

Filesystem A file system tool

Monitor Monitor application/applet that
monitors some resource or activity

Security A security tool

Utility Small utility application,
"Accessories"

Accessibility Accessibility

Calculator A calculator

Clock A clock application/applet

TextEditor A text editor

KDE Application based on KDE libraries

GNOME Application based on GNOME libraries

GTK Application based on GTK+ libraries

Qt Application based on Qt libraries

Motif Application based on Motif libraries

Java Application based on Java GUI
libraries, such as AWT or Swing

ConsoleOnly Application that only works inside a
terminal (text-based or command line
application)

- 78 -

7.7 XMLPatch Sections

Today, the most popular way to keep configuration data or data at all is a file in
XML document format. Its syntax follows the conventions as defined in the XML
(or "Extended Markup Language") specification (http://www.w3.org/TR/xml/).

wInst offers XMLPatch sections for editing XML documents. When calling an
XMLPatch section the document path name is given as parameter, e.g.

XMLPatch_mozilla_mimetypes $mozillaprofilepath$ + "\mimetypes.rdf"

With the actions defined for this section type wInst can

– select (and optionally create) sets of elements of a XML document
according to a path description

– patch all elements of a selected element set

– return the names and/or attributes of the selected elements to the calling
section

To clarify the working of the section commands some concepts shall be
sketched:

7.7.1 Structure of a XML Document

A XML document logically describes a "tree" which starting from a "root" -
therefore named document root– grows into branches. Every branch is
labelled a node. The sub nodes of some node are called children or child nodes of
their parent node.

In XML, the tree is constructed from elements. The beginning of any element
description is marked by a tag (similarly as in HTML) i.e. a specific piece of text
which is set into a pair of angle brackets ("<“ ">“, The end of the element
description is defined by the the same tag text but now bracket by "</“ and
„>“. If an element has no subordinated elements then there is no space
needed between start tag and end tag. In this case the two tags can be
combined to one with end bracket "/>“.

This sketch shows a simple "V"-tree - just one branching at the root level,
rotated so that the root is top:

 | root node (level 0)
 / \ node 1 and node 2 both on level 1
 . . implicitly given end nodes below level 1

This tree could be described in XML in the following way:

- 79 -

<?xml version="1.0"?>
<root>
 <node_level_1_no_1>
 </node_level_1_no_1>
 <node_level_1_no_2>
 </node_level_1_no_2>
</root>

The first line has to declare the XML version used. The rest of lines describe
the tree.

So long the structure seems to be simple. But yet we have only "main nodes"
each defining an element of the tree and marked by a pair of tags. But each
main node may have subnodes of several kinds.

– Of course, an element may have subordered elements, e.g. we may have
subnodes A to C of node 1:

<node_level_1_no_1>

 <node_level_2_A>

 </node_level_2_A>

 <node_level_2_B>

 </node_level_2_B>

 <node_level_2_C>

 </node_level_2_c>

</node_level_1_no_1>

– If there are no subordinated elements an element can have subordinated text.
Then it is said that the element has a subordinated text node. Example

<node_level_1_no_2>hello world

</node_level_1_no_2>

– A line break placed in the text node is now interpreted as part of the text
where otherwise it is only a means of displaying XML structure. To avoid a
line break belonging to "hello world" we have to write

<node_level_1_no_2>hello world</node_level_1_no_2>

– Every element (no matter if it has subordinated elements or subordinated
text) is constituted as a main node with specific tags. It can be further
specified by attributes, so called attribute nodes. For example, there may be
attributes "colour" or "angle" that distinguish different nodes of level 1.

<node_level_1_no_1 colour="green" angle="65"

</node_level_1_no_1>

For selecting a set of elements any kind of information can be used:

(1) the element level,

- 80 -

(2) the element names that are traversed when descending the tree (the "XML
path"),

(3) names and values of the used attributes,

(4) the ordering of attributes,

(5) the ordering of elements,

(6) other relationships of elements,

(7) the textual content of elements (resp. their subordinated text nodes).

In wInst, selection based on criteria (1) to (3) and (7) is implemented:

7.7.2 Options for Selection a Set of Elements

Before any operation on the contents of a XML file the precise set of elements
has to be determined on which it will be operated. The set is constructed step
by step by defining the allowed paths through the XML tree. The finally
remaining end points of the paths define the selected set.

The basic wInst command is

– OpenNodeSet
There two formats for defining the allowed paths a short and a long format .

(i) Explicit Syntax

The more explicit syntax may be seen in the following example (for a more
complex example cf. the cook book, section 8.4):

openNodeSet

 documentroot
 all_childelements_with:
 elementname:"define"
 all_childelements_with:
 elementname:"handler"
 attribute: "extension" value="doc"
 all_childelements_with:
 elementname:"application"
end

(ii) Short Syntax

The same node set is given by the line

- 81 -

openNodeSet 'define /handler extension="doc"/application /'

In this syntax, the slash separates the steps into to the tree structure which are
denoted in the more explicit syntax each by an own description.

(iii) Selecting by Textual Content (only for explicit syntax)

Given the explicit syntax we may select elements by the textual content of
elements:

openNodeSet

 documentroot
 all_childelements_with:
 all_childelements_with:
 elementname:"description"
 attribute:"type" value="browser"
 attribute:"name" value="mozilla"
 all_childelements_with:
 elementname:"linkurl"
 text:"http://www.mozilla.org"
end

(iv) Parametrizing Search Strategy

In the exemplary descriptions of XML tree traversals there remain several
questions.

– Shall an element be accepted if the element name and the listed attributes
match but other attributes exist?

– Is the search meant to give one single result value, that is should the
resulting element set have no more than one element (and otherwise, the
XML file is to considered as erroneous)?

– Conversely, is it meant that a traversal shall at any rate lead to some
result, i.e. do we have to create the element if no matching element
exists?

To answer these questions explicitly there are parameters for the OpenNodeSet
command. The following lines show the default settings which can be varied by
changing the Boolean values:

 - error_when_no_node_existing false
 - warning_when_no_node_existing true
 - error_when_nodecount_greater_1 false
 - warning_when_nodecount_greater_1 false
 - create_when_node_not_existing false
 - attributes_strict false

- 82 -

With short syntax, parametrizing precedes the OpenNodeSet command and
holds for all levels of the XML tree. With the explicit syntax the parameters may
be set directly after the OpenNodeSet command or be newly set for each level.
In particular the option „create when node not existing“ may be set for some
levels but not for all.

7.7.3 Patch Actions

Their exists a bundle of commands which operate on a selected element set

– for setting and removing attributes

– for removing elements

– for text setting.

In detail:

– SetAttribute "attribute name" value="attribute value"
sets the specified attribute for each element in the opened set to the specified
value. In the attribute does not exist it will be created. Example:

SetAttribute "name" value="OpenOffice Writer"

On the contrary, the command

– AddAttribute "attribute name" value="attribute value"
sets the specified attribute only to the specified value if it does not exists
beforehand. An existing attribute keeps its value. E.g. the command

AddAttribute "name" value="OpenOffice Writer"

would not overwrite the value if there was named another program before.

By

– DeleteAttribute "attribute name"
we remove the specified attribute from each element of the selected element
set.

The command

– DeleteElement "element name"
removes all elements with main node name (tag name) element name from
the opened element set.

- 83 -

Finally there exist two commands for setting resp. adding text nodes.:

– SetText "text"
and

– AddText "text"

E. g.
SetText "rtf"

transforms the element
<fileExtensions>doc<fileExtensions>

into
<fileExtensions>rtf<fileExtensions>

By
SetText ""

we remote the text node completely.

The variant
AddText "rtf"

sets the text only if there war no text node given.

7.7.4 Returning Lists to the Caller

A XMLPatch section may return the retrieved informations to the calling
primary section. The result always is a String list, and to get it, the call must
done via the String list function getReturnListFromSection. E.g. we may have
the following String list setting in an Aktionen section where we use a
XMLPatch_mime section

DefStringList list1

set list1=getReturnListFromSection ('XMLPatch_mime "c:\mimetypes.rdf"')

Inside the XMLPatch section we have return commands that determine the
content of returned String list:

– return elements
fills the selected elements completely (element name and attributes) into
the return list.

- 84 -

– return attributes
produces a list of the attributes.

– return elementnames
produces a list of the element names.

– return attributenames
gives a list only of the attribute names.

– return text
list all textual content of the selected elements.

– return counting
gives a report with numerical informations: line 0 contains the number of
selected elements, line 1 the number of attributes.

7.8 ProgmanGroups Sections

This section type is deprecated.

7.9 WinBatch Sections

In a WinBatch section any windows executable can be started. This includes
that – as from Windows explorer – a file of any type for which a program is
registered can be directly called.

E.g, we may start some existing setup program by the following line in a
WinBatch section

%systemdrive%\temp\setup.exe

There a several parameters of the WinBatch call which determine if (or how
long) wInst shall be wait for the started programs returning

Default is that wInst waits for every initiated process to come back. This
behaviour corresponds to the call parameter /WaitOnClose. On the contrary, if
wInst shall proceed while the started processes run in their own threads we
have to apply the call parameter /LetThemGo.

The are more sophisticated options for special circumstances.

- 85 -

If we do the call with parameter /WaitSeconds [number of seconds] then
wInst is waiting the specified time before proceeding. In the default
configuration we additionally wait for the started programs returning. If we
combine the parameter with the option /LetThemGo then wInst continues
processing when the waiting time is finished.

Even more special conditions are given by the options

/WaitForWindowAppearing [window title]
resp.

/WaitForWindowVanish [window title]
The first option means that wInst waits until any process lets pop up a
window with title window title. With the second option wInst is waiting as
long as a certain window (1) appeared on the desktop and (2) disappeared
again.

If we know a process name whose ending we have to await we can use

/WaitForProcessEnding program
This can be combined with a timeout setting:

/WaitForProcessEnding program /TimeOutSeconds seconds
Example:

Winbatch_uninstall /WaitForProcessEnding "uninstall.exe" /TimeOutSeconds 20
[Winbatch_uninstall]
%ScriptPath%\uninstall_starter.exe

The String function getLastExitCode gives access to the ExitCode – or
ErrorLevel – of the last process call in the preceding WinBatch section.

7.10 DOSBatch/ShellBatch Sections

7.10.1 Windows

Via DOSBatch (also called ShellBatch) sections a wInst script uses Windows
shell scripts for tasks which cannot be fulfilled by internal commands or for
which already a batch script solution exists.

A DOSBatch section is simply processed by writing the lines of the sections into
the file _winst.bat in c:\tmp and then calling this file in the context of a

- 86 -

cmd.exe shell. This explains that a DosBatch section may contain all Windows
shell commands can be used.

The shell process is created with the view set to normal. That has the
consequence that a command shell window appears which allows user
interaction.

Parameters of a DosBatch section are directly passed as quasi command line
parameters to the Windows shell script. E. g. we may call DosBatch_1 in
Aktionen section to get a "Hello World" from the DOS echo command:

[Aktionen]
DosBatch_1 today we say "Hello World"

[DosBatch_1]
@echo off
echo %1 %2 %3 %4
pause

The output of the shell commands can be captured by using the String list
function getOutStreamFromSection()(cf. section 6.4.4).

If the return list shall be evaluated programmatically it is advised to use the '@'
prefix of commands. Such we suppress the repetition of the command line in
the output which may different formats dependent on system configurations.

7.10.2 Linux

Via DOSBatch sections, here better called ShellBatch sections do the same
job in Linux as in Windows with minor differences:

The temporary batch file is generated in /tmp and executed in a xterm
environment (xterm -e).

The output of the scripts is written to the log file.

7.11 DOSInAnIcon/ShellInAnIcon Sections

7.11.1 Windows

The section type DOSInAnIcon or ShellInAnIcon is identical to DOSBatch
regarding syntax and execution method but has a different appearance:

For DOSInAnIcon, a shell process is created with view set to minimized. That
has the consequence that it is executed "in an icon". No command window

- 87 -

appears, user interaction is suppressed.

Instead, the output of the script is written to the log file.

7.11.2 Linux

In Linux, the only difference between a ShellBatch and a ShellInAnIcon
section call is that no xterm window is shown for the second.

7.12 Registry Sections

Of course, this section type is only available for Windows.

By a Registry section call we can create, patch and delete entries in the
Windows registry. As usual, wInst logs every operation in detail as long as
logging is not turned off.

7.12.1 Example

Let us set some registry variables by a call to the section Registry_TestPatch
where the section is given by

[Registry_TestPatch]
openkey [HKEY_Current_User\Environment\Test]
set "Testvar1" = "c:\rutils;%Systemroot%\hey"
set "Testvar2" = REG_DWORD:0001

7.12.2 Call Parameters

The standard call of a Registry section has no parameters. This is sufficient as
long as the operations aim at the standard registry of a Windows system and
all entries can be defined using a globally defined registry path.

wInst also offers that the patch commands of a Registry section are
automatically executed "for all users" which are locally defined. I.e. the patches
are made for all user branches of the local registry. This interpretation of the
section is evoked by the parameter /AllNTUserDats
Further parameters control which syntactical variant of the Registry section
shall be valid:

– The parameter /regedit declares that the syntax corresponds the export
file syntax of the Windows Registry Editor regedit. Such, the lines of a

- 88 -

regedit export file may directly be used as a Registry resp. the file itself
can serve as an external section (cf. section 5 in this chapter).

– Similarly, the parameter /addReg declares that the Registry section
syntax is that of an inf-file (as used e.g. for driver installations (cf. section 6
in this chapter).

These not wInst specific syntactical variants are not defined in this manual
since they usually will be generated programmatically.

7.12.3 Commands

The default syntax of a Registry section is oriented at the command syntax of
other patch operations in wInst.
There exist the following commands:

– OpenKey
– Set
– Add
– Supp
– GetMultiSZFromFile
– SaveValueToFile
– DeleteVar
– DeleteKey
– ReconstructFrom
– Flushkey
In detail:

– OpenKey <registry key>
opens the specified key for reading and (if the user has the necessary
privileges) for writing. If the key does not exist it will be created.

The registry key is denoted by a registry path name. Under regular
circumstances it starts with one of the "high keys" which build the top level
of the registry tree data structure (above the "root"). These are:
HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,

- 89 -

HKEY_USERS, HKEY_CURRENT_CONFIG which may optionally be written as
HKCR, HKCU, HKLM. HKU.

In wInst syntax of the registry path name the elements of a path are
separated by single backslashs.

All other commands operate on an opened registry key.

– Set <varname> = <value>
sets the registry variable <varname> to value <value>.
<varname> as well as <value> are Strings and have to be enclosed in
citations marks.

A non-existing variable will be created.

The empty variable "" denotes the standard entry of a registry key.

If some registry variable shall be created or set which has not the default
type Registry-String (REG_SZ) we have to use the extended variant of the
set command:

– Set <varname> = <registry type>:<value>
sets the registry variable <varname> to value <value> of type <registry
type>. The following registry types are supported:

REG_SZ (String)
REG_EXPAND_SZ (a String containing substrings which the operating system
shall expand e.g.)
REG_DWORD (Integer values)
REG_BINARY (binary values usually given as two-digit hex numbers 00 01
02 .. 0F 10 ..,)
REG_MULTI_SZ (String value arrays, in wInst we have to use "|" as
separator):

An example for setting a REG_MULTI_SZ:
set "myVariable" = REG_MULTI_SZ:"A|BC|de"

To construct a multistring we may put the strings as lines in a file and read
it using GetMultiSZFromFile (cf. below).

– Add <varname> = <value>

resp.

- 90 -

– Add <varname> = <registry type> <value>

are analogous to the Set commands with the difference that entries are
only added but values of existing variables not changed.

– Supp <varname> <list separator> <supplement>
This command interprets the String value of variable <varname> a list of
values separated by <list separator> and adds the String <supplement>
to this list (if it not already contained). If <supplement> contains the
<listset_user_Rhino.reg separator> it is split into single Strings, and
the procedure is applied to each single String.

A typical use is adding entries to a path variable (which is defined in the
registry).
supp keeps the original String variant (REG_EXPAND_SZ or REG_SZ) .

Example:

The environment Path is determined by the value for the variable Path as
defined inside the registry key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Environment

To add some entries to the path definition we have to get access to this key
via an OpenKey. Then we can apply e.g.

supp "Path" ; "C:\utils; %JAVABIN%"

in order to supplement the path by "C:\utils" and "%JAVABIN%".

(Windows expands %JAVABIN% to the correct path name if %JAVABIN%
exists as variable and the String is a REG_EXPAND_SZ.)

In Win2k there is the phenomen observed that the path entry can only
beset_user_Rhino.reg read and set by a script if there was set some value
before. The following workaround makes things to:

Whom read the old value of Path from the environment variable , write this
value to the registry value - and are then able to work with the registry
variable:

[Aktionen]

DefVar $Path$

set $Path$ = EnvVar ("Path")

Registry_PathPatch

- 91 -

where RegistryPathPath looks like

[Registry_PathPatch]

openkey [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\control\Session

Manager\Environment]

set "Path"="$Path$"

supp "Path"; "c:\orawin\bin"

Caution: The environment variable gets a changed value after a reboot.

– GetMultiSZFromFile <varname> <filename>
reads the lines of a file and puts them together building a Multistring.

– SaveValueToFile <varname> <filename>
exports the referred (String or MultiSZ) value as file filename lines (each
String forming a line).

– DeleteVar <varname>
removes the entry with variable <varname> from the opened key.

– DeleteKey <registry key>
deletes the registry key recursively including all subkeys and contained
variables. The registry key is defined as for OpenKey.

Example:

[Registry_KeyDelete]

deletekey [HKCU\Environment\subkey1]

– ReconstructFrom <file name>
(deprecated)

– FlushKey
ensures that all entries of a key are saved to the file backing the in memory
registry (is automatically done when closing a key, therefore in particular
when a Registry section is left).

7.12.4 Registry Sections to Patch "All NTUser.dat"

A Registry section called with parameter /AllNTUserdats is executed for
every local user.

To this end, for all local users (as permanent storage for the registry branch
HKEY_Users) the files NTUser.dat are searched one by one and temporarily

- 92 -

loaded into a subkey of some registry branch. The commands of the Registry
section are executed for this subkey, then the subkey is unloaded. As result,
the stored NTUser.dat is changed.

The mechanism does not work for a logged in user . For, his NTUser.dat is
already in use, and the request to load it produces an error. To do the changes
for him as well, the commands of the Registry additionally are executed on
HKEY_Current_User (which is the HKEY_Users branch for the logged in user).

There is a NTUser.dat for Default User which serves as template for newly
created users in the future. Therefore the patches are prepared for them as
well.

The Registry section syntax remains unchanged. But the key pathes are
interpreted relatively:

In the following example the registry entry for variable FileTransferEnabled
is de facto set for all HKEY_Users\XX\Software... successive for all XX (all
users) on the machine:

[Registry_AllUsers]
openkey [Software\ORL\WinVNC3]
set "FileTransferEnabled"=reg_dword:0x00000000

7.12.5 Registry Sections in Regedit Format

If a Registry section is called with parameter /regedit the section is not
expected in wInst standard format but in the format as produced by the
Windows regedit tool.

The export files generated by regedit have - not regarding the head line - ini
file format. Example:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org]

[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\general]
"bootmode"="BKSTD"
"windomain"=""
"opsiconf"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\shareinfo]
"user"="pcpatch"
"pcpatchpass"=""
"depoturl"="\\\\bonifax\\opt_pcbin\\install"
"configurl"="\\\\bonifax\\opt_pcbin\\pcpatch"
"utilsurl"="\\\\bonifax\\opt_pcbin\\utils"
"utilsdrive"="p:"

- 93 -

"configdrive"="p:"
"depotdrive"="p:"

The sections denote registry keys to be opened. Each line describes some
variable setting like the set command in a wInst registry section.

But, we cannot really have an internal wInst section that is constructed from
another sections. Therefore Registry section with parameter /regedit can
only be given as external section or by the function call loadTextFile, e.g.

registry "%scriptpath%/opsiorgkey.reg" /regedit

With Windows XP the registry editor regedit does not produce Regedit4-
Format but a new format that is indicated by the head line

"Windows Registry Editor Version 5.00"

In this format, Windows offers some additional value types. But more
important, the export file is now generated in Unicode. wInst sections
processing is based on Delphi libraries which use 8 bit Strings. To work with a
regedit 5 export the coding therefore has to converted. This can be done
manually, e.g. by a suitable editor. But we may also feed the original file to
wInst using the String list function loadUnicodeTextFile. E.g., if
printerconnections.reg be a unicode based export, we can call regedit in
the following form which does the necessary code conversion on the fly:

registry loadUnicodeTextFile("%scriptpath%/opsiorgkey.reg") /regedit

A registry patch using regedit format can as well be executed "for all NT users"
similarly as the common wInst registry section. That is, a path like
[HKEY_CURRENT_USER\Software\ORL] is to replaced by the relative [Software\
ORL].

7.12.6 Registry Sections in AddReg Format

A Registry section can be called with parameter /addReg. Then its syntax
follows the principles of the AddReg sections in inf files as used e.g. for driver
installations.

E.g.:
[Registry_ForAcroread]
HKCR,".fdf","",0,"AcroExch.FDFDoc"
HKCR,".pdf","",0,"AcroExch.Document"HKCR,"PDF.PdfCtrl.1","",0,"Acr"

- 94 -

7.13 OpsiServiceCall Sections

This type of section allows to retrieve information – or set data – via the opsi
service.

There are three options for determining a connection to an opsi service:

– Per default it is assumed that the script is executed in the standard opsi
installation environment. I.e., we already have a connection to an opsi
service and can use it

– We set the url of the service to which we want to connect as a section
parameter and supply as well the required username and password as
section parameters.

– We demand an interactive login to the service (predefining only the service
url and, optionally, the user name).

Retrieved data may be returned as a String list and then used for scripting
purposes.

7.13.1 Call Parameters

The call parameters determine which opsi service will be addressed and set the
connection parameters if needed.

Connection parameters can be defined via

– /serviceurl STRINGEXPRESSION
– /username STRINGEXPRESSION
– /password STRINGEXPRESSION
If these parameters, at least the serviceurl, are given wInst tries to open a
connection to an opsi service which has the url.

The additional option

– /interactive
raises an interactive connect. The user will be asked for confirming the
connection data and supplying the password. Of course, this option cannot be
used in scripts which shall be executed fully automatically.

If no connection parameters are supplied wInst assumes that an existing
connection shall be reused.

- 95 -

If no connection parameters are given and the interactive option is not
specified (neither at this call nor at a call earlier in the script) it is assumed that
we are in a standard opsi boot process and, already having a connection to an
opsi service, we try to address it.

In the case that there we had a connection to a secondary opsi service we may
(re)set the connection to the standard opsi service via the option

– /preloginservice

7.13.2 Section Format

An opsiServiceCall is defined by its methodname and a list of parameters.

Both are defined in the section body. It has format
"method":METHODNAME-STRING
"params":[

JSON PARAMETER ENTRIES
]

JSON PARAMETER ENTRIES is a (possibly empty) list of Strings or more
complicated Json items (as required by the specified method).

E.g. we may have a section call
opsiservicecall_clientIdsList

where the required methodname and the (empty) list of parameters is set by
[opsiservicecall_clientIdsList]
"method":"getClientIds_list"
"params":[]

The section call produces the list of names (IDs) of all local opsi clients.

If the list shall be exploited for other than test purposes the section call can be
used in a String list expression:

DefStringList $resultList$
Set $resultList$=getReturnListFromSection("opsiservicecall_clientIdsList")

The usage of GetReturnListFromSection is documented in the String list
function chapter of this manual (section 6.4.5)

A hash – in this case a String list – where each item is a pair name=value – is
produced by the following opsi service call:

[opsiservicecall_hostHash]
"method": "getHost_hash"

- 96 -

"params": [
"pcbon8.uib.local"
]

7.14 ExecPython Sections

ExecPython sections are basically Shell-Sections (like DosInAnIcon) which call
the – on the system installed – python script interpreter. It takes the section
content as python script, and the section call parameter as parameters for the
script.

Python as a full grown programming language gives definitely more coding
options than any internal wInst commands, and is as well far more powerful
than a command shell program. Therefore it can be recommended to use
python for complicated tasks. Especially if data objects shall be communicated
to the opsi service a python script is the natural approach since the opsi
service is written itself in python, and there has not to any translation of data
coding.

7.14.1 Example

The following example demonstrates a execPython call with a list of
parameters for that are printed by the python commands.

The call may look like
execpython_hello -a "option a" -b "option b" "there we are"

where the section shall be defined by:
[execpython_hello]
import sys
print "we are working in path: ", a
if len(sys.argv) > 1 :

for arg in sys.argv[1:] :
print arg

else:
 print "no arguments"

print "hello"

The print command output will be caught and written to the log file. So we get
in the log

output:

- 97 -

-a

option a

-b

option b

there we are

 hello

Observe that the loglevel must be set at least to Info (that is 1) if these outputs
shall really find their way to the log file.

7.14.2 Interweaving a Python Script with the wInst Script

An execPython section is actually integrated with the surrounding wInst
script by four kinds of shared data:

– A parameter list is transferred to the python script.

– Everything which is printed by the python script is written into the wInst
log.

– The wInst script substitution mechanism for constants and variables when
entering a section does its expected work for the execPython section.

– The output of an execPython section can be caught into a StringList and
then used in the ongoing wInst script.

An example for the first two ways of interweaving the python script with the
wInst script is already given above. We extend it to retrieve the values of
some wInst constants or variables.

[execpython_hello]
import sys
a = "%scriptpath%"
print "we are working in path: ", a
print "my host ID is ", "%hostID%"
if len(sys.argv) > 1 :

for arg in sys.argv[1:] :
print arg

else:
 print "no arguments"

print "the current loglevel is ", "$loglevel$"
print "hello"

Of course, the $loglevel$ variable has to be set beforehand in the Aktionen
section:

DefVar $LogLevel$
set $loglevel$ = getLoglevel

- 98 -

Finally, in order to being able to use of some results of the section output, we
produce it into a StringList variable by calling the execPython section in the
following way:

DefStringList pythonresult
Set pythonResult = GetOutStreamFromSection('execpython_hello -a "opt a“')

7.15 ExecWith Sections

ExecWith sections are more general than ExecPython sections: Which
program interprets the section lines given is determined by a parameter of the
section call.

E.g, if we have some call
execPython_hello -a "hello" -b "world"

where
-a "hello" -b "world"

are parameters that are passed to the python script we get the following
completely equivalent ExecWith call:

execWith_hello "python" PASS -a "hello" -b "world" WINST /EscapeStrings

The option /EscapeStrings is automatically used in an ExecPython section and
means that backslashes in String variables and constants are duplicated before
interpretation by the the called program.

7.15.1 Call Syntax

In general, we have the call syntax:
ExecWith_SECTION PROGRAM PROGRAMPARAS pass PASSPARAS winst WINSTOPTS

Each of the expressions PROGRAM, PROGRAMPARAS, PASSPARAS, WINSTOPTS
may be an arbitrary String expression, or just a String constant (without
citation marks).

The key words PASS and WINST may be missing if the respective parts do not
exist.

There are two wInst options recognized:

- 99 -

– /EscapeStrings
– /LetThemGo
Like with ExecPython sections, the output of an ExecWith section may be
captured into a String list via the function getOutStreamFromSection.
The first one declares that the backslash in wInst variables and constants is
C-like escaped. The second one has the effect (as for winBatch calls) that the
called program starts its work in new thread while wInst is continuing to
interpret its script.

7.15.2 More Examples

The following call is meant to refer to a section which is an autoit3 script that
waits for some upcoming window (therefore the option /letThemGo is used) in
order to close it:

ExecWith_close "%SCRIPTPATH%\autoit3.exe" WINST /letThemGo

A simple
ExecWith_edit_me "notepad.exe" WINST /letThemGo

calls notepad and opens the section lines in it (but without any line that is
starting with a semicolon since wInst regards such lines as comments and
eliminates them before handle).

- 100 -

8 Cook Book
This chapter contains a growing collection of examples showing real wold
problems that can be mastered by simple or sophisticated pieces wInst
scripting.

8.1 Delete a File in all Subdirectories

Since wInst 4.2 there is an easy solution for this task: To remove a file
alt.txt from all subdirectories of the user profile directory the following
Files call can be used:

files_delete_Alt /allNtUserProfiles

where we have got
[files_delete_Alt]
delete "%UserProfileDir%\alt.txt"

Neverthelesse we document a workaround which could be used in older wInst
versions. It demonstrates some techniques which may be helpful for other
purposes.

The following ingredients are needed:

– A DosInAnIcon section which produces a list of all directory names.

– A Files section which deletes the file alt.txt in some directory.

– A String list processing that puts the parts together.

The complete script should look like:
; here we are in Aktionen section:

; variable for file name
DefVar $deleteFile$ = "alt.txt"

; String list declarations
DefStringList list0
DefStringList list1

; capture the lines produced by the dos dir command
Set list0 = getOutStreamFromSection ('dosbatch_profiledir')

; Loop through the lines. Call a files section for each line.
for x in list0 do files_delete_x

; Here are the two special sections
[dosbatch_profiledir]

- 101 -

@dir "%ProfileDir%" /b

[files_delete_x]
delete "%ProfileDir%\x\$deleteFile$"

8.2 Check if a Specific Service is Running

If we want to check if a specific service (exemplified with "preloginloader") is
running, and, e.g., if it is not running, start it, we may use the following script.

In order to get the list of running services we launch the command
net start

in a DosBatch section, capturing its output in list0. We trim the list, and
iterate through its elements, thus seeing if the specified service is in it. If not,
we do something for it.

[Aktionen]
DefStringList list0
DefStringList list1
DefStringList result
Set list0=getOutStreamFromSection('DosBatch_netcall')
Set list1=getSublist(2:-3, list0)

DefVar $myservice$
DefVar $compareS$
DefVar $splitS$
DefVar $found$
Set $found$ ="false"
set $myservice$ = "preloginloader"

comment "============================"
comment "search the list"
; for developping loglevel = 3
; loglevel=3
; in normal use we dont want to log the looping
loglevel = -1
for %s% in list1 do sub_find_myservice
loglevel=2
comment "============================"

if $found$ = "false"
 set result = getOutStreamFromSection ("dosinanicon_start_myservice")
endif

[sub_find_myservice]
set $splitS$ = takeString (1, splitStringOnWhiteSpace("%s%"))
Set $compareS$ = $splitS$ + takeString(1, splitString("%s%", $splitS$))
if $compareS$ = $myservice$

- 102 -

 set $found$ = "true"
endif

[dosinanicon_start_myservice]
net start "$myservice$"

[dosbatch_netcall]
@echo off
net start

8.3 Script for Installations in the Context of a Local
Administrator

Sometimes it is necessary to run an installation script as an ordinary local user
and not in the context of the opsi service. For example, there are installations
that require a user context or use other services that are started after a user
login.

MSI installations which seem to need a local user can sometimes be configured
by the option ALLUSERS=2 to proceed without such a user:

[Aktionen]

DefVar $LOG_LOCATION$

Set $LOG_LOCATION$ = "c:\tmp\myproduct.log"

winbatch_install_myproduct

[winbatch_install_myproduct]

msiexec /qb ALLUSERS=2 /l* $LOG_LOCATION$ /i %SCRIPTPATH

%\files\myproduct.msi

In other case it is necessary to create a temporary administrative user in whose
context the installation takes place. This can be done as follows:

• Create a directory localsetup in the product directory (i.e. in
install\productname).

• Move all installation files into this directory.

• Rename the installation script from <productname>.ins to
local_<productname>.ins

• Create a new <produktname>.ins in install\productname and write the
statements as below documented (with variables values adapted to your
situation) into it .

- 103 -

• Make sure that the script that is now named local_<produktname>.ins
finishes with a reboot call: The last executed command in the Aktionen
section has to be the line
ExitWindows /Reboot

• Insert a call at the beginning of the script local_<produktname>.ins that
removes the password of the temporary local administrator:

[Aktionen]

Registry_del_autologin

;

[Registry_del_autologin]

openkey [HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]

set "DefaultUserName"=""

set "DefaultPassword"=""

The wInst script template temporarily generates a user context, executes an
installation in it, then removes it. Before using the template the following
values are to be set adequately:

• the value for the variable $Productname$
• the value of the variable $ProductSize$
• $LockKeyboard$ to "true".

The script proceeds as follows:

– It creates a local administrator opsiSetupAdmin;

– saves the autologon state;

– inserts opsiSetupAdmin as autologon user;

– copies the installation files to the client (as defined in $localFilesPath$);
among them the installation script that is to be executed in the local user
context;

– creates a RunOnce entry in the registry that calls wInst with the local
script as argument;

– reboots in order to make the registry change work;

– when wInst runs again, it calls an ExitWindows /ImmediateLogout, and
the second scripting level begins to work:

- 104 -

– By autologon , opsiSetupAdmin is logged on without user
interaction.

– Windows calls the RunOnce command, that is the wInst call.

– The wInst script should now regularly proceed. But at its end,
there must be a ExitWindows /ImmediateReboot command.
Otherwise the desktop would of the administratrive user
opsiSetupAdmin who is already logged at the moment would be
accessible.

– after the reboot, the main script works again cleaning everything (writing
back the old autologon state, deleting the local setup files, removing the
opsiSetupAdmin profile)

We call the two involved wInst scripts master script and local script . The first
one runs in a system service context, the second which does the specific
software installation runs in the context of a local administrator.

To observe:

– If the local script requires internal reboots then the master script must be
adapted to produce them. As long as the local script is not finished the
master script hands over control to the local script by an ExitWindows
/ImmediateLogout. Of course the RunOnce entry has to be created for
each run. Since username and password for the autologon are removed at
the beginning of the local script they have to be reset each time as well.

– There is no direct access from the local script to the product properties
(usually via the String function IniVar) . If there are values needed the
master script must retrieve them and e.g. save them temporarily in the
registry.

– There may be product installations by external setup program calls which
change registry entries which are saved by the master script and usually
written back at the end of the installation. In this case the master script
must be adapted to avoid writing back.

– The local script runs with an administrator logged in. You have to lock the
keyboard when testing is done. Otherwise anybody sitting at the client
could stop script execution and take over the session.

– In the following example, the password of the tempory opsiSetupAdmin
user is set via the function RandomStr, which is strongly recommended.

- 105 -

– In order to avoid logging of passwords the loglevel is temporarily set to -2.

(Maybe a newer version of the following example can be found under
http://www.opsi.org/opsi_wiki/TemplateForInstallationsAsTemporaryLocalAdmin)

; Copyright (c) uib gmbh (www.uib.de)
; This sourcecode is owned by uib
; and published under the Terms of the General Public License.

[Initial]
LogLevel=2
ExitOnError=false
ScriptErrorMessages=on
TraceMode=off

[Aktionen]
DefVar $ProductName$
Set $ProductName$ = "softprod"
DefVar $ProductSizeMB$
Set $ProductSizeMB$ = "20"
DefVar $LocalSetupScript$
Set $LocalSetupScript$ = "local_"+$ProductName$+".ins /batch"
DefVar $LockKeyboard$
; set $LockKeyboard$ to "true" to prevent user hacks while admin is logged in
Set $LockKeyboard$="true"
; Set PasswdLogLevel to -2 to prevent passwords to logged (not working yet)
DefVar $PasswdLogLevel$
Set $PasswdLogLevel$="-2"
DefVar $OpsiAdminPass$
DefStringlist $outlist$

; some variables for the sub sections
DefVar $SYSTEMROOT$
DefVar $SYSTEMDRIVE$
DefVar $ScriptPath$
DefVar $ProgramFilesDir$
DefVar $HOST$
DefVar $AppDataDir$
Set $SYSTEMDRIVE$ = "%SYSTEMDRIVE%"
Set $SYSTEMROOT$ = "%SYSTEMROOT%"
set $ScriptPath$="%ScriptPath%"
set $ProgramFilesDir$="%ProgramFilesDir%"
set $Host$="%Host%"
set $AppDataDir$="%AppDataDir%"
; temp is always useful
DefVar $TEMP$
Set $TEMP$= EnvVar("TEMP")
DefVar Tmp
set Tmp = EnvVar("TMP")
;Variables for version of the operating system (OS)-Test
DefVar OS
DefVar $MinorOS$
set OS = GetOS
set $MinorOS$ = GetNTVersion

DefVar $RebootFlag$

- 106 -

http://www.opsi.org/opsi_wiki/TemplateForInstallationsAsTemporaryLocalAdmin

DefVar $WinstRegKey$
DefVar $RebootRegVar$
DefVar $AutoName$
DefVar $AutoPass$
DefVar $AutoDom$
DefVar $AutoLogon$
DefVar $AutoBackupKey$
DefVar $LocalFilesPath$
DefVar $LocalWinst$

Set $WinstRegKey$ = "HKLM\SOFTWARE\opsi.org\winst"
Set $RebootFlag$ = GetRegistryStringValue("["+$WinstRegKey$+"]
"+"RebootFlag")
Set $AutoBackupKey$ = $WinstRegKey$+"\AutoLogonBackup"
Set $LocalFilesPath$ = "C:\opsi_local_inst"
Set $LocalWinst$ = "c:\opsi\utils\winst32.exe"

if (OS = "Windows_NT")

 if not (($RebootFlag$ = "1") or ($RebootFlag$ = "2"))
 ;=========================
 ; statements before reboot

 if not(HasMinimumSpace ("%SYSTEMDRIVE%", ""+$ProductSizeMB$+" MB"))
 LogError "Not enough space left on C: . "+$ProductSizeMB$+" MB on C:
required for "+$ProductName$+"."
 else

 ; show product picture
 ShowBitmap /3 "%scriptpath%\localsetup\"+$ProductName$+".bmp"
"$ProductName$"

 Message "Preparing "+$ProductName$+" install ..."
 sub_Prepare_AutoLogon

 ; we need to reboot now to be sure that the autologon work

 ; Reboot initialisieren ...
 Set $RebootFlag$ = "1"
 Registry_SaveRebootFlag
 ExitWindows /ImmediateReboot

 endif ; enough space
 endif ; Rebootflag = not (1 or 2)
 if ($RebootFlag$ = "1")
 ;=========================
 ; Statements after Reboot
 ; Set new Rebootflag
 Set $RebootFlag$ = "2"
 Registry_SaveRebootFlag
 ; the work statements

 Message "Preparing "+$ProductName$+" install ..."
 Registry_enable_keyboard
 ExitWindows /ImmediateLogout
 ; now let the autologon work
 ; it will stop with a reboot

- 107 -

 endif ; Rebootflag = 1
 if ($RebootFlag$ = "2")
 ;=========================
 ; statements after second reboot
 Set $RebootFlag$ = "0"
 Registry_SaveRebootFlag
 ; This part must be here even if nothing is done
 ; possibly we do some cleanup
 Message "Cleanup "+$ProductName$+" install ..."
 sub_Restore_AutoLogon
 ; This is the clean end of the installation
 endif ; Rebootflag = 2
else
 LogError "We need Windows 2000/XP for installing with temporary local user"
endif

[sub_Prepare_AutoLogon]
; copy the setup script and files
Files_copy_Setup_files_local
; read actual Autologon values for backup
set $AutoName$ = GetRegistryStringValue ("[HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] DefaultUserName")
; if AutoLogonName is our setup admin user, something bad happend
; then let us cleanup
if ($AutoName$="opsiSetupAdmin")
 set $AutoName$=""
 set $AutoPass$=""
 set $AutoDom$=""
 set $AutoLogon$="0"
else
 set $AutoPass$ = GetRegistryStringValue ("[HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] DefaultPassword")
 set $AutoDom$ = GetRegistryStringValue ("[HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] DefaultDomainName")
 set $AutoLogon$ = GetRegistryStringValue ("[HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] AutoAdminLogon")
endif
; backup AutoLogon values
Registry_save_autologon
; prepare the admin AutoLogon
;LogLevel="$PasswdLogLevel$"
LogLevel=-2
set $OpsiAdminPass$= RandomStr
Registry_autologon
; create our setup admin user
DosInAnIcon_makeadmin
LogLevel=2
; remove c:\tmp\winst.bat with password
Files_remove_winst_bat
; store our setup script as run once
Registry_runOnce
; disable keyboard and mouse while the autologin admin works
if ($LockKeyboard$="true")
 Registry_disable_keyboard
endif

[sub_Restore_AutoLogon]
; read AutoLogon values from backup

- 108 -

set $AutoName$ = GetRegistryStringValue("["+$AutoBackupKey$+"]
DefaultUserName")
set $AutoPass$ = GetRegistryStringValue("["+$AutoBackupKey$+"]
DefaultPassword")
set $AutoDom$= GetRegistryStringValue("["+$AutoBackupKey$+"]
DefaultDomainName")
set $AutoLogon$= GetRegistryStringValue("["+$AutoBackupKey$+"]
AutoAdminLogon")
; restore the values
;LogLevel="$PasswdLogLevel$"
LogLevel=-2
Registry_restore_autologon
LogLevel=2
; delete our setup admin user
DosInAnIcon_deleteadmin
; cleanup setup script, files and profiledir
Files_delete_Setup_files_local
; delete profiledir
DosInAnIcon_deleteprofile

[Registry_save_autologon]
openkey [$AutoBackupKey$]
set "DefaultUserName"="$AutoName$"
set "DefaultPassword"="$AutoPass$"
set "DefaultDomainName"="$AutoDom$"
set "AutoAdminLogon"="$AutoLogon$"

[Registry_restore_autologon]
openkey [HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]
set "DefaultUserName"="$AutoName$"
set "DefaultPassword"="$AutoPass$"
set "DefaultDomainName"="$AutoDom$"
set "AutoAdminLogon"="$AutoLogon$"

[DosInAnIcon_deleteadmin]
NET USER opsiSetupAdmin /DELETE

[Registry_SaveRebootFlag]
openKey [$WinstRegKey$]
set "RebootFlag" = "$RebootFlag$"

[Files_copy_Setup_files_local]
copy -s %ScriptPath%\localsetup*.* $LocalFilesPath$

[Files_delete_Setup_files_local]
delete -sf $LocalFilesPath$
; folgender Befehl funktioniert nicht vollständig, deshalb ist er zur Zeit
auskommentier
; der Befehl wird durch die Sektion "DosInAnIcon_deleteprofile" ersetzt
(P.Ohler)
;delete -sf "%ProfileDir%\opsiSetupAdmin"

[DosInAnIcon_deleteprofile]
rmdir /S /Q "%ProfileDir%\opsiSetupAdmin"

[DosInAnIcon_makeadmin]
NET USER opsiSetupAdmin $OpsiAdminPass$ /ADD

- 109 -

NET LOCALGROUP Administratoren /ADD opsiSetupAdmin

[Registry_autologon]
openkey [HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]
set "DefaultUserName"="opsiSetupAdmin"
set "DefaultPassword"="$OpsiAdminPass$"
set "DefaultDomainName"="%pcname%"
set "AutoAdminLogon"="1"

[Registry_runonce]
openkey [HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce]
set "opsi_autologon_setup"="$LocalWinst$ $LocalFilesPath$\$LocalSetupScript$"

[Registry_disable_keyboard]
openkey [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kbdclass]
; disable
set "Start"=REG_DWORD:0x4
;enable
;set "Start"=REG_DWORD:0x1
openkey [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Mouclass]
; disable
set "Start"=REG_DWORD:0x4
;enable
;set "Start"=REG_DWORD:0x1

[Registry_enable_keyboard]
openkey [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Kbdclass]
; disable
;set "Start"=REG_DWORD:0x4
;enable
set "Start"=REG_DWORD:0x1
openkey [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Mouclass]
; disable
;set "Start"=REG_DWORD:0x4
;enable
set "Start"=REG_DWORD:0x1

[Files_remove_winst_bat]
delete -f c:\tmp_winst.bat

8.4 XML File Patching: Setting Template Path for
OpenOffice.org 2

Setting the template path can be done by the following script extracts
[Aktionen]
;

DefVar $oooTemplateDirectory$
;--
;set path here:

Set $oooTemplateDirectory$ = "file://server/share/verzeichnis"
;--

- 110 -

file://server/share/verzeichnis

;...

DefVar $sofficePath$
Set $sofficePath$= GetRegistryStringValue
("[HKEY_LOCAL_MACHINE\SOFTWARE\OpenOffice.org\OpenOffice.org\2.0] Path")
DefVar $oooDirectory$
Set $oooDirectory$= SubstringBefore ($sofficePath$, "\program\soffice.exe")
DefVar $oooShareDirectory$
Set $oooShareDirectory$ = $oooDirectory$ + "\share"

XMLPatch_paths_xcu $oooShareDirectory$+"\registry\data\org\openoffice\Office\
Paths.xcu"

; ...

[XMLPatch_paths_xcu]
OpenNodeSet
- error_when_no_node_existing false
- warning_when_no_node_existing true
- error_when_nodecount_greater_1 false
- warning_when_nodecount_greater_1 true
- create_when_node_not_existing true
- attributes_strict false

documentroot
all_childelements_with:
elementname: "node"
attribute:"oor:name" value="Paths"
all_childelements_with:
elementname: "node"
attribute: "oor:name" value="Template"
all_childelements_with:
elementname: "node"
attribute: "oor:name" value="InternalPaths"
all_childelements_with:
elementname: "node"

end

SetAttribute "oor:name" value="$oooTemplateDirectory$"

8.5 Retrieving Values From a XML File

As treated in chapter 7.7 , wInst can evaluate and modify XML files.

An example shall demonstrate how a value can be retrieved from a XML file.
We assume that the following XML file is read:

<?xml version="1.0" encoding="utf-16" ?>
<Collector xmlns="http://schemas.microsoft.com/appx/2004/04/Collector"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

- 111 -

xs:schemaLocation="Collector.xsd" UtcDate="04/06/2006 12:28:17"
LogId="{693B0A32-76A2-4FA0-979C-611DEE852C2C}" Version="4.1.3790.1641" >
 <Options>
 <Department></Department>
 <IniPath></IniPath>
 <CustomValues>
 </CustomValues>
 </Options>
 <SystemList>
 <ChassisInfo Vendor="Chassis Manufacture" AssetTag="System Enclosure 0"
SerialNumber="EVAL"/>
 <DirectxInfo Major="9" Minor="0"/>
 </SystemList>
 <SoftwareList>
 <Application Name="Windows XP-Hotfix - KB873333" ComponentType="Hotfix"
EvidenceId="256" RootDirPath="C:\WINDOWS\$NtUninstallKB873333$\spuninst"
OsComponent="true" Vendor="Microsoft Corporation" Crc32="0x4235b909">
 <Evidence>
 <AddRemoveProgram DisplayName="Windows XP-Hotfix - KB873333"
CompanyName="Microsoft Corporation" Path="C:\WINDOWS\
$NtUninstallKB873333$\spuninst"
RegistryPath="HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Un
install\KB873333" UninstallString="C:\WINDOWS\$NtUninstallKB873333$\spuninst\
spuninst.exe" OsComponent="true" UniqueId="256"/>
 </Evidence>
 </Application>
 <Application Name="Windows XP-Hotfix - KB873339" ComponentType="Hotfix"
EvidenceId="257" RootDirPath="C:\WINDOWS\$NtUninstallKB873339$\spuninst"
OsComponent="true" Vendor="Microsoft Corporation" Crc32="0x9c550c9c">
 <Evidence>
 <AddRemoveProgram DisplayName="Windows XP-Hotfix - KB873339"
CompanyName="Microsoft Corporation" Path="C:\WINDOWS\
$NtUninstallKB873339$\spuninst"
RegistryPath="HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Un
install\KB873339" UninstallString="C:\WINDOWS\$NtUninstallKB873339$\spuninst\
spuninst.exe" OsComponent="true" UniqueId="257"/>
 </Evidence>
 </Application>
 </SoftwareList>
</Collector>

To read the elements and get the values of all „Application“ nodes we may use
these extracts of code:

[Aktionen]
DefStringList $list$

...

set $list$ = getReturnListFromSection ('XMLPatch_findProducts '+$TEMP$
+'\test.xml')
for %line% in $list$ do Sub_doSomething

[XMLPatch_findProducts]
openNodeSet
; Node „Collector“ is documentroot

- 112 -

 documentroot
 all_childelements_with:
 elementname:"SoftwareList"
 all_childelements_with:
 elementname:"Application"
end
return elements

[Sub_doSomething]
set $escLine$ = EscapeString:%line%
; now we can work on the content of $escLine$

We encapsulate the retrieved Strings by setting their values as a whole into an
variable via an EscapeString call. Since the loop variable %line% is not a
common variable but behaves like a constant all special characters in it (as <
> $ % “ ') may cause difficulties.

8.6 Inserting a Name Space Definition Into a XML File

The wInst XMLPatch section requires fully declared XML name spaces (as is
postulated in the XML RFC). But there are XML configuration files which do not
declare „obvious“ elements (and the interpreting programs insist that the file
looks this way). Especially patching the lots of XML/XCU configuration files of
OpenOffice.org proved to be a hard job. For solving this task, A. Pohl (many
thanks!) the functions XMLaddNamespace and XMLremoveNamespace. Its
usage is demonstrated by the following example:

DefVar $XMLFile$
DefVar $XMLElement$
DefVar $XMLNameSpace$
set $XMLFile$ = "D:\Entwicklung\OPSI\winst\Common.xcu3"
set $XMLElement$ = 'oor:component-data'
set $XMLNameSpace$ = 'xmlns:xml="http://www.w3.org/XML/1998/namespace"'
if XMLAddNamespace($XMLFile$,$XMLElement$, $XMLNameSpace$)
 set $NSMustRemove$="1"
endif
;
; now the XML Patch should work
; (commented out since not integrated in this example)
;
; XMLPatch_Common $XMLFile$
;
; when finished we rebuild the original format
if $NSMustRemove$="1"
 if not (XMLRemoveNamespace($XMLFile$,$XMLElement$,$XMLNameSpace$))
 LogError "XML-Datei konnte nicht korrekt wiederhergestellt werden"
 isFatalError
 endif
endif

- 113 -

http://www.w3.org/XML/1998/namespace

Please observe that the XML file must be formatted such that the element tags
do not contain line breaks. Special Error Messages

- 114 -

9 No Connection with the opsi Service
What the matter if wInst reports "... cannot connect to service"?

The information which is shown additionally may give a hint to the problem:

– Socket- Error #10061, Connection refused:
Perhaps the opsi service does not run.

– Socket- Fehler #10065, No route to host:
No network connection to server

– HTTP/1.1. 401 Unauthorized:
The service responds but the user/password combination is not
accepted.

- 115 -

	1 Windows Installer
	2 Command Line Parameters
	3 Additional Configurations
	3.1 Central Logging of Error Messages
	3.2 Skinnable wInst

	4 The wInst Script
	4.1 An Example
	4.2 Primary and Secondary Subprograms of a wInst script
	4.3 String Expressions in a wInst Script

	5 Definition and Use of Variables and Constants in a wInst Script
	5.1 Overview
	5.2 Global Text Constants
	5.2.1 Usage
	5.2.2 Example
	5.2.3 List of Existing Constants
	(i) System Paths
	(ii) wInst Paths
	(iii) Network Information
	(iv) Data for opsi service

	5.3 String (or Text) Variables
	5.3.1 Declaration
	5.3.2 Value Assignment
	5.3.3 Use of variables in String expressions
	5.3.4 Secondary vs. primary sections

	5.4 Stringlist Variables

	6 Syntax and Meaning of Primary Sections of a wInst Script
	6.1 Primary Sections
	6.2 Parametrizing wInst
	6.2.1 Example
	6.2.2 Specification of Logging Level
	6.2.3 Required wInst Version
	6.2.4 Reacting on Errors
	6.2.5 Staying On Top

	6.3 String Expressions, String Values, and String Functions
	6.3.1 Elementary String Values
	6.3.2 Strings in Strings (Nested String Values)
	6.3.3 String Concatenation
	6.3.4 String Variables
	6.3.5 String Functions which Return the OS Type
	6.3.6 String Functions for Retrieving Environment or Command Line Parameters
	6.3.7 Reading Values from the Windows Registry and Transforming Values into Registry Format
	6.3.8 Reading Property Values
	6.3.9 Retrieving Data from etc/hosts
	6.3.10 String processing
	6.3.11 Additional String Functions
	6.3.12 (String-) Functions for Licence Management
	6.3.13 Retrieving Error Infos from Service Calls

	6.4 String List Functions and String List Processing
	6.4.1 Info Maps
	6.4.2 Producing String Lists from Strings
	6.4.3 Loading the Lines of a Text File into a String List
	6.4.4 Simple String Values generated from String Lists
	6.4.5 Producing String Lists from wInst Sections
	6.4.6 Transforming String Lists
	6.4.7 Iterating through String Lists

	6.5 Special Commands
	6.6 Commands for User Information and User Interaction
	6.7 Conditional Statements (if Statements)
	6.7.1 Example
	6.7.2 General Syntax
	6.7.3 Boolean Expressions

	6.8 Subprogram Calls
	6.8.1 Syntax of Procedure Calling

	6.9 Controlling Reboot
	6.10 Keeping Track of Failed Installations

	7 Secondary Sections
	7.1 Files Sections
	7.1.1 Example
	7.1.2 Call Parameters
	7.1.3 Commands

	7.2 Patches-Sektionen
	7.2.1 Example
	7.2.2 Call Parameter
	7.2.3 Commands

	7.3 PatchHosts Sections
	7.4 IdapiConfig Sections
	7.5 PatchTextFile Sections
	7.5.1 Example
	7.5.2 Call Parameter
	7.5.3 Commands

	7.6 LinkFolder Sections
	7.6.1 Windows
	7.6.2 Linux

	7.7 XMLPatch Sections
	7.7.1 Structure of a XML Document
	7.7.2 Options for Selection a Set of Elements
	(i) Explicit Syntax
	(ii) Short Syntax
	(iii) Selecting by Textual Content (only for explicit syntax)
	(iv) Parametrizing Search Strategy

	7.7.3 Patch Actions
	7.7.4 Returning Lists to the Caller

	7.8 ProgmanGroups Sections
	7.9 WinBatch Sections
	7.10 DOSBatch/ShellBatch Sections
	7.10.1 Windows
	7.10.2 Linux

	7.11 DOSInAnIcon/ShellInAnIcon Sections
	7.11.1 Windows
	7.11.2 Linux

	7.12 Registry Sections
	7.12.1 Example
	7.12.2 Call Parameters
	7.12.3 Commands
	7.12.4 Registry Sections to Patch "All NTUser.dat"
	7.12.5 Registry Sections in Regedit Format
	7.12.6 Registry Sections in AddReg Format

	7.13 OpsiServiceCall Sections
	7.13.1 Call Parameters
	7.13.2 Section Format

	7.14 ExecPython Sections
	7.14.1 Example
	7.14.2 Interweaving a Python Script with the wInst Script

	7.15 ExecWith Sections
	7.15.1 Call Syntax
	7.15.2 More Examples

	8 Cook Book
	8.1 Delete a File in all Subdirectories
	8.2 Check if a Specific Service is Running
	8.3 Script for Installations in the Context of a Local Administrator
	8.4 XML File Patching: Setting Template Path for OpenOffice.org 2
	8.5 Retrieving Values From a XML File
	8.6 Inserting a Name Space Definition Into a XML File

	9 No Connection with the opsi Service

