opsi documentation

PC Software Installation
using winst

- the opsi Windows Installer -

Manual for software developers

Revision date: 22.04.08

uib umwelt informatik biro gmbh (www.uib.de)

Content

1 Windows Installer 8
2 Command Line Parameters 10
3 _Additional Configurations 12
3.1 Central Logging Of EIrTOr IMESSAGES. ...c.uveuertietietieteetieteeiesteete st eeesttesesseensesseenseeseanseeneeseeneenseeneesseensesseenseeesnseens 12

4 The wlnst Script 13
T AN o 1 2. 1111 0) (< PRSP UST 14
4.2 Primary and Secondary Subprograms of @ WINSt SCIIPL.......cc.eeeueriiuieeieeireectee et eetee e eeree et eve et e ereeetreeeeeeannees 15
4.3 String EXPressions 1N @ WINSE SCIIDE ...vvveeiieerieieeiieieeeeeeeeeeeeeeeeseeteeeeeeeseaeeeeesessaaeeesseseesaeeesssesssseeessessnnnnnnnsssesesss 17

5 Definition and Use of Variables and Constants in a wlnst Script 18
5.1 OVEIVIEW .evvvieeiiiieieeee ettt e e ettt e e e et e e e e eaaa e eesee e aaaseeessassaaeeeesensasseeeseansseeesesanneaaeeessanssseeessennnsaeessessnssaeeessannsnnnnnn 18
5.2 GlODAL TEXE CONSTANES. ...ttt et et eeeeeeeeeee e e e e e e e e e e e e e eeeeeeeeeteeeeeeaeeeesesesaaaaaaaae s eeeeeeeeneeeeeseeeeennnnaeseeenanaaaeeees 19
5.2.1 USAEE. cueeutteuteteente ettt ettt ettt ettt ettt e a e bt e a e e h et e h et e e bt e bt bt e bt eh e ekt eR e e bt ea b e bt en et ehe et ehe e bt eht e bt e et e nbeentenbeente s 19

5.2.2 EXAIMPIC....uieuiiitieeiiiiieieiteete st ete et ete et eteeste st eseesseessesseessesseesseessesbe et s esseess e b e ess e st enbeereenbeeaa e beerbeeennaeeerneeeanneens 19

5.2.3 LiSt Of EXISTNZ COMSLANTS.uvvvreeeieieeieeeeeeeeteeeeeereeeeeeeeeeeseesseeesessesseeesesanssseesssesssseessssessssesssssssssessssssssssnnnnnns 20

(1) SYSEEIM PALNS. ...eoutieeieeiie ettt ettt ettt et et ettt e a e et e e e h e e et e e bt et e e bt eateenbeenteehteeate et ee bt eteenbeenteenteeenna 20

(1) WINSE PATNS. ...eoiiiieiiieiieeeeee ettt et ettt e e e e e e e e e et e et e e eeeeeeeseasaaaaaaeeeeeeseesesaannesasseeeeeeseeeesasnnnnnsseeeseannnnneees 21

(111) OPST SETVICE DIALA.eteitiitietiete ettt ettt ettt et b et ettt eat et e sb e e eb e e s bt e bt et e eabeeabeesteesbesbeeabeenbee bt enbeenbeenbeebaeentesbeennea 21

(1V) NEtWOTK TNTOTIIATION.eeiiiieiiiie ettt e e e et e e e ettt e e eateeeeeeaeaeeeseaaaeeessssaeeesssaseeessnseeeeeeeeeeeeeeeeeeeeeeees 22

5.3 SHING (OF TEXE) VATTADLES. .. eveeeeeeeeeeeeeeeeee et eee e e et e e et eeeetee e et eesaaaeeeeaeeeseseeesaeeesaaeessaneeeesseesaaeessareeeasannnnnes 22
5.3.1 DIECIATALION. ¢ eeeevieeeeeeeeee e e ettt e e ettt e e e e et eeeeseeateeeeeeeeeaaseeessasaseeeesesasaaeeeesasaasseessasaaseeesssssasaeeesessnresssnnnnnen 22

5.3.2 Value ASSIGNMENL......cccueiuieiestieieetieteetteteeteteetesseesesseessesseessesseessesssassessseseassesseansesseensesssessesssensseesnseessnsees 23

5.3.3 Use of variables in String €XPIESSIONS.ecueeuerreeruerreeruesseeterseesseaseesseaeesseensesseessesseessesseessesssessesssseessseeesnsees 23

5.3.4 Secondary VS. PriMary SECHIOMS.eeueeuierueruierteeiierteetesteentesteentesseenteeseanteeseenseemeesaeemeesseensesseensesseensesseenseeanneens 24

5.4 StHNGIST VATIADIES ...veouieniiiiiiiieiieitt ettt ettt h et s bt et e s at e bt sbe e bees e e bt ee e e bt e bt e e enbeeesmbeeennneeas 24

6 Syntax and Meaning of Primary Sections of a wlInst Script 25
6.1 PIIIMATY SECLIOMS. . vvveeeieeieeieeeeeeee ettt eeeeteeeeeeeeeateeeseseeaeeeeseseesateeessesaaseessssaaseeessssassseesssensasseessasssseesssssnsessssssssnnnnen 25
6.2 Parametrizing WINSE........ccueviieieiieiest ettt ettt et et et e et e st e esee s st ensesse e seeneenseenaeseesteseenaeenneeenneeeenneens 26
LY D 2 1111) S US 26

6.2.2 Specification of LOGZING LEVEL.....cc.eiiiiiiiiitieieetiee ettt et et e e et et esbeeeesbeeneeannee s 26

6.2.3 ReqUIr€d WINSE VEISION.ceciiiiieeieeiiesieeiteesteesteestteeteesseessteessseesseessseasseesseessseenseesssessseessseesansssseessssssneesenses 27

60.2.4 REACHINIE OI EITOTS. ...vvieiiieeeeee oottt e e e e et e e e e et e e e eeesaseeeesaseaaeeesesesssaeeessaseasteeseeeeeesssaessnnnnnes 27

(TN 7.0 V0T ©)1 1 1o R

28

6.3 String Expressions, String Values, and String FUNCHONS.couveruirierieiierie ettt e e e e e es 29
6.3.1 Elementary Sring VAIUES.coeeriiiuiiieiiieieeitet ettt sttt sttt sttt et e b et e et e et e et e e e seeenaesaeeneeeneas 29
6.3.2 Strings in Strings (NeSted StrING VAIUES).......ceiiuuiiiieeieieeee ettt e et e e etee e eeteseteeeeeaaee s e enaaaaeeeeeeeeeeenans 29
6.3.3 String CONCALENALIONeveeevertieriereeteeeesteetesseetesseetesseessesseessasseesseeseessesssesseassesseessessesssessesssesssessenssessesssees 30
6.3.4 SEIING VATIADLES. .. .oeeiiiieeiieeeeeieietee ettt e ettt e e e ee et eeeeses s teeeseseasseeesesassseeessasassseseseesesessesssssssnnnnnes 30
6.3.5 String Functions which Return the OS TVDE.....ccovouuuiiiiiiieiiee ettt eeeae e e e e et e e e e e ssaaeeeeseseaaseeessenes 30
6.3.6 String Functions for Retrieving Environment or Command Line Parameters...........ccceeeeerervereeneeesneeeennenn. 31
6.3.7 Reading Values from the Windows Registry and Transforming Values into Registry Format...................... 31
6.3.8 Reading PrOPETTY VAIUES.ccoooveiiieiiieieie ettt e et e e et e eeae e s eaeeeesaaeessateesenstessssseesnaseessnnnessaseeeeeeeeeeenns 32
6.3.9 Retrieving Datad fTOM @LC/NOSES. . eeeveeeereeeteeeeeeeee ettt e e e e ettt e e eeeeaeeeeesessaeeeesesaesaeeeeesassaeeesssssaseeessanes 34
6.3.10 SHIINE PIOCESSING.eeeeuviieeeeeieeeteeeeeareeeeteeeeeteeeeesaeseeaeeeeseeeeraeeeeeseeeasseeeeseeseesseeessreseenseeeeseeeentseeenneesesneeeeeeann 34
6.3.11 Additional String FUNCHIOMNS.vviiiiiiueiieeeieiietieeeeeeetee et eeeeeeeeeeeeaeeeessesssateessesssseeeesssssaseesssssssessssssssannnnes 35
6.4 String List Functions and String LiSt PrOCESSINE.eueeuretiruieriieierieeiesit ettt ettt ettt eseeeneeseeeneesneeesneeees 35
6.4.1 Parameterless String List FUNCHONS ...c..eoveruiiiiiiiiiitieieet ettt sttt et e e et e e e s 36
6.4.2 Producing String LiStS frOmM STITNES.ccuveiiiiiiieiiiieiiee ettt et e et eeaae e e eeesaeessraeessaaeeesnseessteeeeesens 37
6.4.3 Toading the Lines of @ Text File iNt0 @ SEING LISt......uvveeiiiieeaeeeeesessaeesesaaasaeanees 37
6.4.4 Simple String Values generated from SrING LASES.......coveeuviiiiiiiiiiiieeieeieieeeeeeeereeeeeeeeeeeeeeesesrseeeesesessssseeennnes 38
6.4.5 Producing String Lists from WINSt SECHIOMS. .. .uuveeiiiiieuiiiieeiiiiieieeeeeieeeeeeeeeeeeeeeeeeeeeaeeessesaaseeseessnseeesesssnsnnnnnes 38
6.4.6 Transforming SErINE LASES.eeruieiiiieieeteeee ettt ettt et ettt et eeteeee s et enbe s st ebe s s eeteeneenteeneeeneeeenneeeanneens 39
6.4.7 TIterating through SrNE LASES......ccueerieiiiieiieteet ettt ettt e et ese et e e st e bt e st e sbeeemneeesnbeeeanneeas 40
6.5 SPECIAL COMIMEANGS.eeeeeeeeeeeeeeeeeeeeee e e ettt e e e e e e et eeeeseeeaeteeseeeaeeeessaaeseeeesesaeaeeeessasaaeeessasassseeesesaarseeeessaenareeessannas 41
6.6 _Commands for User Information and USETr TNEETACLIONcceveeuvvieeeeieeieeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeesesiseeesseserseeesesans 41
6.7 Conditional Statements (1 STALEIMIENTS).......eeeveueiieeeieiereeeeeeeeeteeeeseeteeeeeeeeeaeeeessessaeeeesesessaseeessesssseesssssnsseeessssssnnen 43
LT D 25 111 o) USRI 43
(O € o)1 1<) v2) BN s 1 - . GO USRS 44
6.7.3 BOO0lEaN EXPIESSIONS. ¢.-veuvteuteeuieieeiierteetenteeitestee e eteenteeteeteetee et sseesseeseesbeemtesbeemtesseenteabeenteeseenbeeneenseeneenseeennneens 44
6.8 SUDPIOZIAM CallS.......oocviieiiiiieiiiiieiectete ettt et e et et e et eete et e eteesbeeseesseeseesbesssesseessesseessasseessanseesseessseesssseesssseessseeas 47
6.8.1 Syntax of Procedure Callig...........ccceieeriiiieriieieiieierteetesteete st eteseeebesttessesssesseesseseessesseessessessssseessseeesnseens 47
6.9 CONLIOIIING REDOOL.uevviiieieiiiieee ettt ettt et ettt e e e e et aeeeeeseaaaeeeesessaaaeeesessaasaeesssseasaaeeeeseesssessssssssannnen 49
6.10 Keeping Track of Failed INStAIlAtIONS.ccooouviiiiiiiiiiieeeeeeteee ettt eeeeee et e e e s eeaaeeeesesaateeesessnaaseeessssaseeessssnnnnen 51
7_Secondary Sections 53

Tl FILES SECHIOMS. ...uuvveiieeiieiieieeeeeteeee e e eeette et e e e eeaaeeeeeeeaaaeeeeeeeaaeeeeesesastasesessassaaseesseasaaseeeesassaesseesansaesseessanssssesssssessnnnnnn

A T B 2. 1111 o) (OSSP SPRRURPPRRN
R B O 1 |) 2 1 1= ¢ PPN

7 R T 03 441 4 P11 T 3PP

[, N (O, T (O, T [V, T [V R (O N [V, I (V]
A S S S A S v

R I A 116) 11 5 [I Yool To) TSR

7.4 1dapiCONTIE SECHOMS. ... veveruieteeieerteeiieeteeiieett et ett e et etee et eseenteeseeaseemee st emse st ense st enseeseenseeneenseemeeaseemeesseensesseensenseaneens
7.5 PatChTEXIEIIE SECLIOMS. ..uvviiiiieurieiieeieiteeeeeeeeett et eeeeet et e e e ee ettt e e sesaaeeeeeeeessaaeeessensaaseeessassssseseesstasseeeesesseesssssessnsnnnn

Z.5.1 EXAIMIPIC. cneeueeiieiieieete sttt ettt ettt et s h et s b et s h et e h e bt eh e bt ea e bt e a et bt et ehe e bt ebb e e e bt e e enbeeennaee s
7.5.2 Call PATAIMELET. ... cveotiteiteteietet ettt ettt et et eb sttt b et s e et et et et esten e es e es e eb e ebeebeebeebesb e et e besb et ensenseneentententeans
7.5.3 COMMANGS. ...c.veveneeutenteieiteit ettt ettt ettt et sttt et et et es s e st ebeebe e bt ebeeb e e bt sbesh e b e b e st et et et e st estentebeebeebeebeebeebenbentens
7.6 LINKFOIACT SECHIOMS.ueeueiuiriiriirtirtietertertet ettt ettt ettt sttt sttt ettt eat bt ebeeb e e bt s be s et et et sb et et enbeenbeenene
T.0.1 WIANAOWS.....cuieiiieeiieieieeiee et et eetteeteestaeesteessbaesseessseasseessseassaaasaeassaassseasseessssanseesseeassaenseessseenssesssssaessnsssseesanns
T.0.2 LATIUX...eeeuvieueeeereeieeeteeteesteeteeseseessaessseasseassseeasaessseasseessseassaensseansaanseessseasseesssenssaanseenseeassaenseesssaensnesassnneesnnnes
7.7 XIMLPALCH SECHIOMS.euveueeneeuieitenietietiett et et ettt ete et e stestes et et eseesteseeseebeeseebe et eabesbeetentease s entenseneeneeneeseeseanbeenseenaeenens
7.7.1 Structure 0f @ XML DOCUMENL.cuveueeuieiiriietietiittsteeteste sttt ettt ettt ebeebeebesbesaesbesbesbestesseeenbeenbeenaeesneeans

7.7.2 Options for Selection a Set Of EISMENLS.c.eeoueiiiriririniinieriesieiesest ettt sttt ens
(1) EXPIICIE SYIEAK. ..t euteeuteeuiestiesteesteett et eteette et teettestee st e e bt e bt e st eabeeabesateeseesbee st asteenbeenteenseensessteensesseesseanseenseeesanseeeesnnbeeennnns 73
(1) SHOTE SYIEAX. ¢+ vvevireteteneeteteittetetest sttt ettt et beb et b s etk st et e b et st ebes e e b ekt et s e b e sttt e b e st et e b e b e a et et e sttt eb et s et et e s ene e 73
(iii) Selecting by Textual Content (only fOr eXpliCit SYNTAX).eeveueeruerterterteetieteeieieeestesteste et et eseeeeeeseesbesbeseeereeneenseesenes 73

(V) Parametrizing SEArCH STIALEGY.ccvveiiireeeitieeeie e et e et e et et e e et e et e eeaeeeeteeeeaeeeeseeeeseeeeseeeeaseeenseeaseeeeseeeatsesaeeeeeenssrnreen 74

TR T o) (WA o1 5 (o) 4 - TR

7.7.4 Returning ListS t0 the Caller.......ccc.eveiuiiieieieeeeeee e ettt eete e eete e e e e e e e eeaeeeeeeaeeeeaeeeeaeeseennnnereeeeeeeeeeeans

7.8 ProgmanGroUPS SECHIOMS.evuerierreetertietesttetesteeteeseesteestessesntessessaesseassesseassesseensesseensesseansesnsesseensesseensessesssesnseens
R I A10) 27 106 s W T=Tois (o) 4 - TR

7.10 DOSBatch/ShellBatCh SECHIONS.ceuvieuieiiitietieiieitt ettt sttt sttt ettt ettt et es et e te s bt emeesaeemtesbeenteemneeeanneeas
Z.10.1 WIIAOWS. 1.ttt ettt ettt ettt ettt e te st et et et e e n et emees e esees e ebeebeebesb e ek e ke se e s ense s emeentenseneeneebeenbeanbeenneeanseans
T.10.2 TLANUX..vevieireetieteeteeteestesteestesseessesseessesseessasseessesssessesssesseassessesssesseessesssessesssessesssessenssessesssenseessesseessesssseeesssees

7.11 DOSInAnlcon/ShellINANICON SECHIOMS.ccueruirtirterieteieieieiteit ettt ettt sttt sttt ettt et eae bt et ebeeabeebeenbeeseee
TL 1T WIIAOWS. ettt ettt ettt et et eb bbbt b e s bt sa e bt b s e et et et et esteat e st eueebe et e embeenueesaneens
T11.2 TUMUX.ceutieiteeeiteeteeeteeteesteeteeseseetaessseesseasssaesseessseassaassseassaessseansaasseessseesssaasssessseasseessseassaenseesssaesaessnsssseesansns

712 REGISIIY SECHIOMS. ..euveeutetientietieteeiteettette st ettt et stt e bt et tebe et e et e es e e bt es e e et e emeeeaeemeeeaeeneeeaeenbeseeenbeemtenteeanneeesmbeeennneens

74
7
77
77
78
78
79
79
79
79
79
T 12,1 EXAMPIE..ccutieiiieitieiiiesiteeteetteeteesteesteeteestteesseesseesssaenseessseesssessseessseasseesseesnsaenseesssesnssessseenssesnsssseesssssseeesnnses 79
T 12.2 CAll PATAIMIELETS. ...veveeteeieeeeeeeeeeeeee e eeeeee e e e e ee et e e e ee e et e e e eeseeaaeeeseseeasaeeessasesseeeessassaseeeesesasseeesesassssesesssssssnnnnnen 80
80
84
84
86
86
86
87
88
88
89

R U T 00 410 11116 L TR
7.12.4 Registry Sections to Patch "AllL NTUSEI.AAt"........ccoviiiieieeeieeeeeee ettt eaee e e eeeeeeaeeeeens

7.12.5 Registry Sections in Regedit FOIMAL..........ccoiiiiieiiiieieeieeeeee ettt et eneennee s

7.12.6 Registry Sections in AAAREZ FOIMAL.......cecuiiuiiiiiiieiieieeee ettt st
713 OPSISErVICECAIL SECLIONS.eovvieieeeiieeiieeeeeeee et et e ettt e et e e et e e sateeeeaeeeseaaeeesmeeeessaeeessaeesnseeessnseeesseessnsseesnnnnnes

T13.1 Call PATAIMELETS.eeeeuveieieeeeeeeeeeeeeeee e et e et e eeeae e e et eeeaeeeeaeeeeesaeseesseeeenseeeenseeeseseeeeanseesensseesneeessnnereeeeeeeeeenans

R R I T 5 (e) 4 1 KXo 1 4 V- R

714 EXECPYNON SECHIOMNS.veeiceveeeeeeeeeeeiee ettt e e e e et e e et e e et e e e eeeeeeaeeeesaeeeeaneeeenneeeenteeeennreeennreessnseeeennes

R 3 B 521 0 13) (<SSP
7.14.2 Interweaving a Python Script with the WINSt SCIIPE......ccueeeeriiiiiriiereee e

8 Cook Book 90

8.1 Delete a File in all SUDAITECLOTIES.ceueeutrueruirtirieniirtetentetetet ettt ettt ettt ettt ettt ese et et ebeeb e be e stesbeennees 90
8.2 List All Shares Available On a Domain COntIOLLET.ooeeeee e e e e e e e e ens 91
8.3 Script for Installations in the Context of a Local AAMINIStIAtOr.c.evueeiuirieriieieriieiese ettt 92
8.4 XML File Patching: Setting Template Path for OpenOffiCE.0TE 2....cooouueeieenees 100
8.5 Retrieving Values From @ XIML FIle.....coccuvviiiiiieiieee oottt e e e e et e e e eseeaaeeeeseseaseeesssssaeeeeeeeseeereeenees 101
8.6 Inserting a Name Space Definition INto @ XIML FIle........cciiiiiiiiiiiieiiiiee ettt e eeeveeeeeesenaeeseeenees 102
9 No Connection with the opsi Service 103

Revison history of this manual

wInst version 4.5 (packed with opsi version 3.2)

New section type execPython (section 7.14). If python is installed on the system,
python.exe is called and the section interpreted as a python script. For
interweaving the python script with the winst script there are new constants
%opsiserviceURL%, %opsiserviceUser%, %opsiservicePassword%, %hostID%,
%logfile% (cf. 5.2.3) and a new String function getLoglevel (shortly loglevel; cf.
6.3.11).

wInst version 4.4 (packed with opsi version 3.1)

New section type opsiServiceCall (section 7.13) for connecting directly - or with an
interactively supplied password - to and communicating with an opsi service.

New functions XMLaddNamespace and XMLRemoveNamespace (cf. section 6.7.3
and cookbook 8.6)

wInst version 4.3 (required for opsi version 3.0)

New appendix (section 9.1) on error messages in the situation that the connect to
the opsi service fails.

Corrected description for the WaitForProcessEnding option for the winbatch section.

The opsi service (opsi Version 3.0) can inform on the PC configuration (Section 2
of this manual)

By the new function requiredWinstVersion (cf. section 6.3.3) a wInst script can
check if the installed wInst meets its requirements.

wInst version 4.2 (packed with opsi version 2.5)

Supports the state description "failed" (section 6.10)
New RandomStr function (cf. sections 6.2.9, 8.3)
Pseudo function EscapeString (section 6.3.2)

For Files sections with Option /alINtUserProfiles the new variable %UserProfileDir
% can be used (section 7.1.2)

wInst constants can now be used in sub sections (section 6.1)

A new LoglLevel syntax can be used (section 6.1.2)

wInst version 4.1

New parameter /WaitForProcessEnding for WinBatch calls (section 7.9)
Parameter /ImmediateLogout for ExitWindows-Kommando eingefuehrt (section
6.9, 8.3)

Syntaxvariante /regedit fuer Registry-Sektionen (section 7.12)

New string list function loadUnicodeTextFile (section 6.4.1, 7.12.4)

A sub section can be called with a string list expression as parameter (section
6.8.1)

wInst version 4.0

Introduces a kind of string list processing (sections 5.4, 6.4, 8.2 ,...)
Capturing of the output of DosBatch/Shell calls as string lists (section 6.4.4)
Patches of XML files (section 7.7)

Ewlnst - Windows-Installation-Programm

PC Server Integration
Modul winst version 3.17 wiN32

Cygwin 1.5.8-1

Souce Prlinstall

1 Windows Installer

The open source program wInst (or windows Installer) serves in the context of
opsi — open pc server integration (cf. www.opsi.org) - as the central function
for initiating and performing the automatic software installation. It may also be
used stand alone as a tool for setup programs for any piece of software.

wInst is basically an interpreter for a specific, rather simple script language
which can be used to express all relevant elements of a software installation.

A software installation that is described by a wInst script and performed by
executing the script has several advantages compared with installations that
are managed by a bunch of shell commands (e. g. copy etc.):

file:///../bonifax/n/bsz/4all/hupsidoc/winst-handbuch/www.opsi.org

- wInst offers to log very thoroughly all operations of the installation
process. The support team can check the log files, and can easily
detect when errors occured or other problematic circumstances are
evolving.

- Copy actions can be configured with a great variety of options if
existing files shall be overwritten

- Especially, it may be configured that files are copied depending on
their internal version.

- There are different modi for writing to the Windows registry
(overwrite existing values/ write only when no value exists/ append a
value to an existing value).

- The Windows registry can be patched for all users which exist on a
work station (including the default user, who is used as prototype for
further users).

- There is a sophisticated syntax for an integrated patching of XML
configuration files.

teste winst
Set $OSIfo = GetOS

Variable "Pat" not found. Code: Z ‘:J
Eey closed
The walus of the wvariable iz now: ""

Set $03Info = Get03
The walue of the wariable is now: "Windows NT"

0 errors
0 warnings

Dateiauswahlment

D:R\SKRIPTE'test.ins -

Zwischenablage --= Memoliste Programmende
WMemaoliste als Skript ausfithren

o

ciitmpiinstlog.txt)

wInst indialog and test mode

2 Command Line Parameters

wInst kann be started with different sets of parameters depending on context
and purpose of use.

There are the following syntactical schemata:
(1) Show usage:
wInst /?

wInst /h[elp]

(2) Execute a script:

wInst scriptfile [[/logfile] logfile]
[/batch | /ini winstconfigfilepath]
[/parameter parameterstring]

(3) Read the PC configuration from the opsi service and act accordingly, since
wInst 4.3

winst /opsiservice [opsiserviceurl]
[/clientid clientname]
[/username username]
[/password password]
[[/logfile] logfile]
[/parameter parameterstring]]

(4) Read the PC profile file and act accordingly (opsi classic)

wInst /pcprofil
[PC_configuration file [[/logfile] logfile]]
[/parameter parameterstring]

- 10 -

In each case we have:

Default name for the log file is C: \tmp\instlog. txt

The parameterstring, which is marked by the option "/parameter", is
accessible for every called wInst script (via the string function paramsStr).

Explanations to (2):

If option /batch is used, then wInst shows only its "batch surface" offering
no user dialogs. Without using option /batch we get into the interactive
mode where script file and log file can be chosen interactively (mainly for
testing purposes).

The winstconfigfilepath parameter which is designated by /ini refers
to a file in ini file format that holds the last used (in interactive mode) script
file names. The dialog surface presents a list box that presents these file
names for choosing the next file to interpret. If winstconfigfilepath ends
with "\" it is assumed to be a directory name, and WINST.INI serves as file
name.

Explanations to (3):
If @ opsiserviceurl is missing the following URL is used:
https://DEPOTSERVER: 4447

where DEPOTSERVER is the server name derived from the value of depoturl
in the Windows Registry.

Default value for clientid is the computer name.

Explanations to (4):

In opsi classic, wInst reads the PC specific data directly from the PC
configuration file - the so called PC profile file or "ini file" since it has ini file
format. If an explicit file name is missing the "classic" default P:\PCPatch\
$PCNAMES .ini iS used where $PCNAMES is an appropriately set environment
variable.

In particular, the PC configuration file informs which applications shall be
installed. The pathes of the wInst scripts that control the installations are

-11 -

read from the file pathnams.ini that has as default location p:\pcpatch
steht.

The not interactive mode is implied.

It is possible to overwrite the log file location by data from PC configuration file
or by the opsi service.

To do this we must a create a section in the PC configuration file that looks like
(if the log file shall be placed in the directory n:\tmp with file name xxx.log):

[winst]

Logdat ei name=n: \t np\ xxx. | og

3 Additional Configurations

3.1 Central Logging of Error Messages

If wanted, wInst writes the error data to a second file on a network drive or
sends them to a syslog demon.

The feature can be configured in the Windows registry: :

In HKEY LOCAL MACHINE, we have in a standard installation the key
\SOFTWARE\opsi.org. We can create a subkey syslogd with a variable
remoteerrorlogging. Its value determines if and, if yes, by which method a
central logging shall take place.

Furthermore, in HKEY LOCAL MACHINE\SOFTWARE\opsi.org\syslogd we have
to observe three up to three variables:

If remoteerrorlogging has value 0, no extra central logging takes place
(default).

If remoteerrorlogging has value 1, winst tries to open a $pcnames.errin
the configshare, subdirectory pcpatch\pclog, and write the data to it.

If remoteerrorlogging has value 2, the error reports are sent to syslog
demon. The demon host name is read from the variable sysloghost (default

12 -

localhost) , the syslog channel number can be set from the value of the
variable syslogfacility (default 18, thatis local2).

The following table shows the possible values for the facility:

ID SYSLOG_FACILITY KERNEL

ID _SYSLOG_FACILITY USER

ID SYSLOG_FACILITY MAIL

ID SYSLOG_FACILITY SYS DAEMON
ID_SYSLOG_FACILITY SECURITY1
ID SYSLOG_FACILITY INTERNAL
ID SYSLOG_FACILITY LPR

ID SYSLOG_FACILITY NNTP

ID SYSLOG_FACILITY UUCP

ID _SYSLOG_FACILITY CLOCK1
ID SYSLOG_FACILITY SECURITY?2
ID SYSLOG_FACILITY FTP

ID SYSLOG_FACILITY NTP

ID SYSLOG_FACILITY AUDIT

ID SYSLOG_FACILITY ALERT

ID SYSLOG_FACILITY CLOCK2

// kernel messages

// user-level messages

// mail system

// system daemons

security/authorization messages (1)

// messages generated internally by syslogd
// line printer subsystem

// network news subsystem

// UUCP subsystem

clock daemon (1)

security/authorization messages (2)

FTP daemon
NTP subsystem
log audit

log alert
clock daemon

[l
O oW~JoU ™ WN - O
e Ne Ne Ne Se Se o SeoSe oSe
~
~

e S = S Y

O WN P O

e
~ ~
~ ~

Ne Ne N
S~ OO .
S~ OO .

~e N
~ O~
~ O~

)

(2
ID SYSLOG FACILITY LOCALO 16; // local use O (localO)
ID SYSLOG_FACILITY LOCAL1 17; // local use 1 (locall)
ID SYSLOG FACILITY LOCAL2 18; // local use 2 (local2)
ID SYSLOG_FACILITY LOCAL3 19; // local use 3 (local3)
ID SYSLOG FACILITY LOCAL4 20; // local use 4 (locald)
ID_SYSLOG_FACILITY LOCAL5 21; // local use 5 (localb)
ID SYSLOG FACILITY LOCAL6 22; // local use 6 (localb)
ID_SYSLOG_FACILITY LOCAL7 23; // local use 7 (local7)

4 The wInst Script

On principle: wInst is an interpreter for a specific, easy to use scripting
language which is tailored for the requirements of software installations. A
script should be an integrated description, and a means of control, for the
installation of one piece of software.

The following section sketches the structure of a wInst script. The purpose is
to identify the book marks of a script: in which way we to have to look into it to
understand its processing.

All elements shall be described more in detail in the further section. The
purpose then will be to show how scripts can be modified or devoleped.

-13 -

4.1 An Example

wInst scripts are roughly derived from .1N1I files. They are composed of
sections, which are marked by a title (the section name) which is written in
brackets [].

Schematically a wInst script looks like this one (here with a check which
operating system is installed):

[Initial]
Message "lInstallation of Mzilla"
LogLevel =2

[Akti onen]
;Determine the OS
Def Var $0S$
Set $0S$ = GetCS
Wndows NT fam ly (including Wn2k, W nXP)
;o or Wn95 (including Wn98, W nME)
or Linux

;Whi ch NT- Ver si on?
Def Var $NTVer si on$

if OS = "W ndows_95"
Sub_install_w n95

el se
Set $NTVersi on$ = Get NTVersi on
; has val ues "NT4" or "Wn2k" or "WnXP"
; or "Wn NT " + majorVersion + "." + mnorVersion

if ($NTVersion$ = "NT4") or ($NTVersion$ = "Wn2k")
sub_i nstal | _wi nnt
el se
if ($NTVersion$ = "WnXP")
sub_install_w nXP
el se
stop "OS not supported”
endi f
endi f

el se
stop "OS not supported"

endi f

-14 -

[sub_install_w n95]
Fi | es_Kopi eren_95
W nBat ch_Set up

[sub_install _w nNT]
Fi | es_Kopi eren_NT
W nBat ch_Set up

[sub_install _w nXP]
Fi | es_Kopi eren_XP
W nBat ch_Set upXP

[Fi | es_Kopi eren_95]
copy "Uscriptpath%files_win95*. *" "c:\tenp\installation”

[Fi | es_Kopi eren_NT]
copy "%criptpath%files winnt*.*" "c:\tenp\installation"

[WnBat ch_Set up]
c:\tenp\install ati on\ set up. exe

[WnBat ch_Set upXP]
c:\tenp\installation\install.exe

How can we read the sections of this script?

4.2 Primary and Secondary Subprograms of a wInst
script

The script as a whole serves as a program, an instruction for an installation
process. Therefore each of its sections can be seen as a a subprogram (or
"procedure" or "method"). The script is a collection of subprograms.

The human reader as well as an interpreting software has to know at which
element in this collection reading must start.

Execution of a wInst script begins with working on the sections[Initial] and
[Aktionen] (in this order). All other sections are called as subroutines from
these two sections. This process is only recursive for Ssub sections: Sub
sections have the same syntax as Initial and Aktionen sections and may
contain calls for further subroutines.

- 15 -

This gives reason to make the distinction between primary and secondary
subprograms:

The primary or general control sections comprise
- the Initial section (by convention the beginning of the script),
- the Aktionen section (should follow to Initial section), and

- Sub sections (0 to n subroutines called by the Aktionen section which are
syntactical and logical extensions of the calling section).

The procedural logic of the script is determined by the sequence of calls in
these sections.

The secondary or specific sections can be called from any primary section but
have a different syntax. The syntax is derived from the functional requirements
and library conditions and conventions for the specific purposes. Therefore no
further section can be called from a secondary section.

At this moment there are the following types of secondary sections:
- Files sections,

- WinBatch sections,

- DosBatch sections,

- DosInAnIcon/ShellInAnIcon sections,
- Registry sections,

- Patches sections,

- PatchHosts sections,

- PatchTextFile sections,

- StartMenu sections,

- ProgmanGroups Sections (deprecated),
- IdapiConfig sections,

- XMLPatch sections.

Meaning and syntax of the different section types is treated in chapters 5 and
6.

- 16 -

4.3 String Expressions in a wInst Script

Textual values (string values) in the primary sections can be given in different
ways:

- Avalue can be directly cited, mostly by writing in into (double) citation
marks. Examples:

"Installation of Mzilla"
"n:\ homre\ user nane"

- Avalue can be given by a String variable or a String constant, that "contains"
the value:

The variable
SNtVersion$

may stand for "windows NT" - if it has been assigned beforedhand with
this value.

- A function retrieves or calculates a value by some internal procedure. E. g.

EnvVar ("Username")

fetches a value from the system environment, in this case the value of the
environment variable Username. Functions may have any number of
parameters, including zero:

Get Gs

On a NT system, this function call yields the value "windows NT" (not as
with a variable this values has to be produced at every call again).

- Avalue can be constructed by an additive expression, where string values
and partial expressions are concatenated - theoretically "plus" can be seen
as a function of two parameters:

$Home$ + "\mail"
(More on this in section 6.3)

There is no analogous way of using string expressions in the secondary
sections. They follow there domain specific syntax. e.g. for copying commands
similar to the windows command line copy command. Up to this moment it is
no escape syntax implemented for transporting primary section logic into
secondary sections.

-17 -

The only way to transport string values into secondary sections is the use of
the names of variables and constants as value container in these sections. Lets
have a closer look at the variables and constants of a wInst script:

5 Definition and Use of Variables and
Constants in a wInst Script

5.1 Overview

In a wInst script, variables and constants appear as "words", that are
interpreted by wInst and "contain" values. "Words" are sequences of
characters consisting of letters, numbers and some special characters (in
particular ".", "-", " ", "$" "%"), but not blanks, but no brackets, parentheses,
or operator signs ("+") .

wInst Vvariables and constants are not case-sensitive.
There exist the following types of variables or constants:

Global text constants, shortly constants,

contain values which are preset by the wInst program and cannot be
changed in a script. Before interpreting the script wInst replaces each
occurence of the pure constant name with its value in the whole script (textual
substitution).

An example will make this clear: The constant $ScriptPath% is the
predefined name of the location where wInst found and read the script that
it just executes. This location may be, e.q., p:\install\produkt. Then we
have to write

"%$ScriptPath%"

in the script when we want do get the value
"p:\install\produkt"

- observe the citations marks which include the constant delimiter.

Text or String variables, shortly variables,
have an appearance very much like any (String) variables in a common

-18 -

programming language. They must be declared by a Defvar statement
before they can be used. In primary sections, values can be assigned to
variables (once ore more times). They can be used as elements in composed
expressions (like addition of strings) or as function arguments.

But they freeze in a secondary section to a phenomenon that behaves like a
constant. There, they appear as a non-syntactical foreign element. Their
value is fixed and is inserted by textual substitution for their pure names
(when a section is called, whereas the textual substitution for real constants
take place before starting the execution of the whole script).

Stringlist variables

are declared by a DefStringList statement. In primary sections they can be
used for many purposes, e.g. collecting strings, manipulating strings,
building sections.

In detail:

5.2 Global Text Constants

Scripts shall work in a different contexts without manual changes. The contexts
can be characterized by system values as OS version or certain pathes. wInst
introduces such values as constants into the script.

5.2.1 Usage

The fundamental characterics of text constants is the way how the values
which they represent come intro the script interpretation process:

The names of the constants, that is the pure sequences of chars, are substituted
by their fixed values in the whole script before starting the script execution.

The replacement does not take into account any syntactical context in which
the names possibly occur (just like with variables in the secondary sections).

5.2.2 Example

wInst implements constants $ScriptPath% for the location of the
momentarily interpreted script, and $System% for the name of the windows
system directory. The following (Files) subsection defines a command that
copies all files from the script directory to the windows system directory:

[files_do_ny_copyi ng]

-19 -

copy "%oscri pt Pat h% system *. *" "%Byst ents

5.2.3 List of Existing Constants

At this moment the following constants are implemented:

(i) System Paths

- %AppdataDir$%

The default value since Windows 2000 in a german context is:

C:\Dokumente und Einstellungen\%USERNAMES%\Anwendungsdaten
- %AllUsersProfileDir%

Since Windows 2000:

C:\Dokumente und Einstellungen\All Users
- %CommonStartMenuPath%

Default:
C:\Dokumente und Einstellungen\All Users\Startmenii
- %ProfileDir%
Since Windows 2000:
C:\Dokumente und Einstellungen
Hint:

In Files sections that are called with option /AlINtUserProfiles there is a
pseudo variable

%$UserProfileDir$%

When the section is executed for each user that exists on a work station
this variable represents the name of the profile directory of the user just
treated.

- %ProgramFilesDir%

By default:

C:\Programme

-20 -

- %Systemroot%

Denotes the root directory for Windows on the work station (without closing
backslash) - e.qg.

c:\wi ndows
c:\w nnt

- %System%
Name of the Windows system directory (without backslash) e.g.

c: \wi ndows\ syst em
c:\w nnt\systenB2

- %Systemdrive$%

Denotes the drive on which the operating system is installed.

(ii) wlnst Paths

- %ScriptPath%

represents the path of the current winst script (without closing backslash).
Using this variable we can build path and file names in scripts that are
relative to the location of the script. So, everything can be copied, called
from the new place, and all works as before.

- R%ScriptDrive%

The drive where the just executed winst script is located (including the
colon).

- 3%WinstDir%
The location (without closing backslash) of the running wiInst.
- 3%Logfile%

The name of the logfile which wInst is using.

(iii) _opsi service Data

- $HostID%

The fully qualified domain name of the opsi client.

-21 -

%opsiserviceURLS

The (usually https://) URL of the opsi service.
%opsiserviceUser%

The user ID for which there is a connection to the opsi service.
sopsiservicePassword$

The user password used for the connection to the opsi service. The
password is eliminated when logging by the standard wInst logging
functions.

(iv) Network Information

$Host%

The value of the environmental variable host (traditionally meaning the
opsi server name, not to confuse with %$HostID% (meaning the client
network name).

$PCName$

The value of the environmental variable PCName, when existing. Otherwise
the value of the environmental variable client name.

%$Username%

Name of the logged in user.

5.3 String (or Text) Variables

5.3.1 Declaration

String variables must be declared before they can be used. The syntax for the
declaration reads

DefVar <variable name>

Def Var $NTVer si on$

22 -

Explanations:

- Variable names must not start or end with "$" - but this is recommended as
a convention to understand their functioning in secondary sections.

- Variables can only be declared in primary sections (Initial section, Aktionen
section and sub sections).

- The declaration should not be conditioned. That is it should not placed into a
branch of an if - else statement. Otherwise, it could happen that the
DefVar statement is not executed for a variable, but an evaluation of the
variable is tried in some if clause (and produces an syntax error).

- The variables are initialized with an empty string ("") .

5.3.2 Value Assignment

- As itis appropriate for a variable, it can take several values in a script. They
are assigned by statements of syntax

Set <Variablenname> = <Value>
<Value> means any (String valued) expression.

Examples (cf. section 6.3):

Set $0S$ = Get OS
Set $NTVersion$ = "not deternined"

if $0S$ = "W ndows_NT"
Set $NTVersi on$ = Get NTVersi on
endi f

Def Var $Honme$

Set $Hone$ = "n:\hone\user nane"

Def Var $Mai | Locati on$

Set $Mai |l Location$ = $Home$ + "\mail "

5.3.3 Use of variables in String expressions

- In primary sections of a wInst script, a variable "holds" a value. When it is
declared it is initialized with the empty String "*. When a new value is
assigned to it via the set command, it represents this value.

- In a primary section a variable can replace any String expression resp. can
be a component of a String expression, e.g.

-23-

Set $Mail Locati on$ = $Honme$ + "\mail "

In @ primary section the variable name denotes an object that represents a
string, If we add the variable we add the underlying string.

This representational chain is shortcut in a secondary section. Just the variable
name now stands for the string:

5.3.4 Secondary vs. primary sections

When a secondary section is loaded and wInst tbe interpretation the sequences
of chars of the variable names are replaced by their values.

Example:
A copy command in a files section shall copy a file to
"n:\ hone\ user nane\ mail \ backup”

We first set $MailLocation$ to the directory above it:
Def Var $Horme$
DevVar $Mail Location$

Set $Hone$ = "n:\hone\user nane"
Set $Muail Locati on$ = $Hone$ + "“\nmmi l "

$MailLocation$ is now holding

"n:\home\user name\mail"

In a primary section we may now express the directory
"n:\home\user name\mail\backup"

by
$Mai | Locati on$ + "\ backup”

The same directory has to be designated in a secondary section as:

"$Mai | Locat i on$\ backup"

5.4 Stringlist Variables

Variables for string lists must be declared in a befStringList statement, e.q.

Def Stri ngLi st SMBMbunt s

- 24 -

A string list can serve e.g. as container for the captured output of a shell
program. The collected strings can be manipulated in a lot of ways. In detail
this will be treated in the section on string list processing (section 6.3).

6 Syntax and Meaning of Primary Sections of
a wInst Script

As shortly presented in chapter 4 the Aktionen section of a script can be
regarded as a the main method of the wInst script and describes the global
processing sequence. It may call subroutines - the sub sections which may
then recursively call sub sections themselves.

The following sections explain syntax and use of the primary sections of a
wInst script.

6.1 Primary Sections

There are possibly three kinds of primary sectons in a script
- an Initial section,

- an Aktionen section,

- any number of sub sections

Initial and Aktionen section are syntactically equivalent (but Initial hasto
keep the first place). By convention, inthe Initial section some
parametrizations of the script execution (e.g. the loglevel) are made. The
Aktionen section can be regarded as the main program in a wInst script. It
contains the sequence of actions that are controlled by the script.

Sub sections are as well syntactically equivalent. But they are a called from the
Aktionen section. Then, they can call themselves sub sections.

A sub section is determined by creating a name that begins with "sub", e.g.
Sub_InstallBrowser. By writing its name in the Aktionen section we
produce a call to the sub section. The meaning of this call is defined by the
content of the section in the script that begins with the bracketed name, in the
example [Sub InstallBrowser]

- 25 -

Sub sections of second and higher order (subs of subs and so on) can not have
any more internal sections but must refer to external sections (for this
distinction cf. 6.8).

6.2 Parametrizing winst

Typical entries of an Initial section set some the wInst execution attributes.
The following example shows how error responses may be configured:

6.2.1 Example
[Initial]
LogLevel =2
Exi t OnError =f al se

Scri pt Er r or Messages=on
Tr aceMbde=of f

This means that:
logging level is set to 2,
when an error occurs wInst shall try to continue script execution,

if a script syntax error occurs it shall be communicated (this will be in a
special window), and

we dont want to activate the trace mode for script execution (which would
mean that we asked if we want to continue after each program step).

The above values are the default values, wInst will assume them if these
statements are missing.

To the details of syntax and meaning:

6.2.2 Specification of Logging Level

There are two syntactical variants for specifying the logging level:

- LogLevel = <number>
LoglLevel = <String expression>

l.e. the number can be given as an integer value or a s a string expression (cf.
section 6.3). In the second case, wInst tries to evaluate the string expression
as a number.

- 26 -

There exist six levels from -2 up to +3.

LogLevel = 0 (Error Level) has the meaning that only a summary of events is
produced. Only errors and extraordinary events are logged more in detail.

With LogLevel = 1 (Warning Level) we tell the program that we wish to
receive also warnings - meaning indications of events that were possibly not
intended and may lead to errors or misbehaviour.

At LogLevel = 2 (default) every operation shall be logged.
With Level = 3 some additional debugging information may be given.
Level = -1 reduces the logging to errors.

A possibly useful setting may be LogLevel = -2. Any logging (besides of
comments) is turned off.

6.2.3 Required wInst Version
The statement
- requiredWinstVersion <RELATIONSSYMBOL> <ZAHLENSTRING>

e.g.

requi redW nst Versi on >= "4, 3"

makes wInst check if the desired version state is given. Otherwise an error
message windows pops up.

This feature exists since winst version 4.3. For an earlier version, the
statement is unknown, and the statement itsself is a syntactical error which will
be indicated by syntax error window (cf. the following section). Therefore the
statement can be used independently of the actual used wInst version as
long as the required version is at least version 4.3.

6.2.4 Reacting on Errors

There are two kinds of errors which are treated in different ways:
1. illegal statements which cannot be interpreted by wInst (syntactical errors),

2. failing statements which cannot be executed because of external, objective
reasons (execution errors).

-27 -

In principal, syntactical errors are indicated by a pop up window for immediate
correction, execution errors are logged in a log fileto be analyzed later.

The behaviour of wInst when it recognizes a syntactical error is defined by the
configuration statement

- ScriptErrorMessages = <boolean value>
If the value is true (default), syntactical errors trigger a pop up window
with some informations on the error. This kind of errors is not recorded in
the log file. The log file shall keep informations on the real execution of a
syntactical correct script.

The boolean value may be true or false. Delimiters on or off can be
used as well.

There two configuration options for execution errors.

- ExitOnError = <boolean value>
This statement defines if the script execution shall terminate when an
error occurs. If the value is true or yes the program will stop execution,
otherwise errors are just logged (default).

- TraceMode = <boolean value>
In TraceMode (default false) every log file entry will additionally be
shown in message window with an O.K. button.

6.2.5 Staying On Top

- StayOnTop = <boolean value>
With stayOnTop = true (Oor = on) we request, that - in batch mode - the
wInst window be on top on the windows which share the screen. That
means it should be visible in the "foreground" as long as no other window
having the same status wins.

Observe: According to the system manual the value cannot be changed
while the proram is running. But it seems that we can give a new value to
it once.

StayOnTop has default false in order to avoid that some other process raises
an error message which eventually can not be seen if wInst keeps staying on
top.

-28 -

6.3 String Expressions, String Values, and String
Functions

A String expression can be

- an elementary String value
- a nested String value

- a String variable

- the concatenation of other String expressions

a String valued function call

6.3.1 Elementary String Values

An elementary String value is any sequence of characters that is enclosed in
double or single citations marks, formally:

"<sequence of characters>"
or
- '<sequence of characters>:

We have e.qg.

Def Var $Exanpl eStri ng$
Set $Exampl eString$ = "ny text"

6.3.2 Strings in Strings (Nested String Values)

If the sequence of chars itself contains citation marks we have to use the other
kind of citation marks to enclose it:

Def Var $citation$
Set $citation$ = 'he said "Yes"'

If the sequence of chars is containing both kinds of citation marks we must use
the following special expression:

- EscapeString: <sequence of characters>

E.g. we can write:

Def Var $Meta_citation$
Set $Meta citation$ = EscapeString: Set $citation$ = 'he said "Yes"'

- 29 -

Then the variable $Meta_citation$ will exactly contain the complete sequence
of chars that follows the colon after "EscapeString" (including the blank). Such,
$Meta_citation$ will contain the complete statement

Set $citation$ = 'he said "Yes"'

6.3.3 String Concatenation
String concatenation is written using the addition sign ("+")
- <String expression> + <String expression>

Example:

Def Var $Stringl$
Def Var $String2$
Def Var $String3$
Def Var $String4$
Set $Stringl$ = "ny text"

Set $String2% = "and"
Set $String3$ = "your text"
Set $String4$ = $Stringl$ + " " + $String2$ + " " + $String3$

$String4$ then has value "my text and your text".

6.3.4 String Variables

A String variable in a primary section "contains" a String value. In an String
expression, it can always substitute an elementary string. For how to define
and set String variables cf. section 5.3.

The following sections present the variety of string functions.

6.3.5 String Functions which Return the OS Type

- GetOS
The function tells which type of operating system is running. It returns one
of the following values:
"Windows_16"
"Windows_ 95" (including Windows 98 and ME)
"Windows NT" (including Windows 2000 and XP)

"Linux"

- GetNtVersion
A Windows NT operating system is characterized by a the Windows type
number and a subtype number. GetNtVersion returns the precise subtype
name. Possible values are

- 30 -

"NT3"
"NT4"
"Win2k" (Windows 5.0)
"WinXP" (Windows 5.1)

If the NT operating system has higher versions as 5.1 the function returns
"Win NT" and the complete version number (5.2, ... resp. 6.0 ..) . E.qg. for
Windows Server 2003 R2 Enterprise Edition, we get

"Win NT 5.2"
For Vista, we seem to get
"Win NT 6.x"

If the operating system is no Windows NT system the function returns the
error value

"No OS of Windows NT type"

6.3.6 String Functions for Retrieving Environment or Command Line

Parameters

EnvVar (<String expression>)
The function reads and returns the momentary value of a system
environment variable.

E.g., we can retrieve which user is logged in by EnvVar ("Username") .

ParamStr

The function passes the the parameter string of the wInst command line
i.e. the command line parameter which is indicated by /parameter. If there
is no such parameter ParamStr returns the empty string.

6.3.7 Reading Values from the Windows Registry and Transforming

Values into Registry Format

GetRegistryStringValue (<String expression>)
tries to interpret the passed String value as an expression of format

[KEY] X

Then, the function tries to open the registry key KEY, and, in case it

- 31 -

succeeds, to read and return the String value that belongs to the registry
variable name x .

E.g.
GetRegistryStringValue (" [HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon] Shell")

usually yields "Explorer.exe", the default Windows shell program.

If there is no registry key KEY or the variable X does not exist the function
produces a warning message in the log file and returns the empty string.

The function

- RegString (<String expression>)
is useful for transforming path names into the format which is used in the
Windows registry. That is, any back slash is doubled.

E. g,

RegString ("c:\windows\system\")
yields

"c:\\windows\\system\\"

6.3.8 Reading Property Values

For historical reasons, there are three functions for reading values from
configuration files which have ini file format. Since opsi 3.0 the specific product
properties are retrieved from the opsi configuration demon (that may fetch it
from a configuration file or from any other backend data container).

In detail:

Ini file format means that the file is a text file and is composed of "sections"
each containing key value pairs:

[sectionl]
Varnamel=Valuel
Varname2=Value2
[section2]
The most general function reads the value belonging to some key in some

section of some ini file. Any parameter can be given as an arbitrary String
expression:

- GetValueFromInifile (FILE, SECTION, KEY, DEFAULTVALUE)

-32-

The function tries to open the ini file FILE, retrieve the requested SECTION
and find the value belonging to the specified KEY which the function will
return. If any of these operations fail DEFAULTVALUE is returned.

The second function borrows its syntax from the ini file format itself, and may
sometimes be easier to use. But since this syntax turns complicated in more
general circumstances it is deprecated. The syntax reads:

- GetIni (<String expression> [<character sequence>] <character sequence>)

The <String expression> is interpreted as file name, the first <character
sequence> as section name, the second as key name. l.e.,

GetIni ("MYINIFILE" [mysection] mykey)

returns the same value as

GetValueFromInifile ("MYINIFILE", "mysection", "mykey", "")
E.g.

GetIni ("%Systemroot%\win.ini" [Interbase] RootDirectory)

yields the entry of section [Interbase] of the Windows main inifile.

The third function returns a PC specific property of the product which is just
being installed (wInst running in pcprofile mode). Its syntax reads

- IniVar (<String Expression>)
E.g.
InivVar ("switch")

is in "opsi classic" - with default configuration paths and if the product just
being installed is named prODUCT - short for

GetValueFromIniFile ("p:\pcpatch\%PCNAMES%.ini", "PRODUCT-install", "switch",
" ")

If wInst is connected to the opsi configuration service (opsi 3.0) the
product property is retrieved from the service (no matter if it is
permanently saved in an ini file or somewhere else).

The product properties can be used to configure variants of an installation.

- 33 -

E.g. the opsi UltraVNC network viewer installation may be configured using
the options

Vi ewer <yes> | <no>
policy = <factory default> |

The installation script branches according to the chosen values for these
options which can be retrieved by

I ni Var ("viewer")
resp.

I ni Var ("policy")

6.3.9 Retrieving Data from etc/hosts

GetHostsName (<String expression>)

returns the host name to a given ip address as it is declared in the local
hosts file. If the operating system is "Windows NT" (according to
environment variable OS) "$systemroot%\system32\drivers\etc\" is
assumed as host file location, otherwise "C:\Windows\".

Inversely, backed by the same files,

GetHostsAddr (<String expression>)
tells the IP address to a given host or alias name.

6.3.10 String processing

ExtractFilePath (<String expression>)
interprets the passed String value as file or path name and returns the path
part (the string up to the last "\", including it).

StringSplit (Stringl, String2, index)

is deprecated. The expression is equivalent to
takeString(I NDEX, splitString (Stringl, String2)

(cf. the section String list processing, section 6.4).

The result is produced by slicing stringl where each slice is delimited by
an occurrence of string2, and then taking the slice with index index
(where counting starts with 0).

-34 -

E.qg.,

takeString (3, splitString ("\\server\share\directory", "\")
produces the String value

"share"
For, numbering the parts of the string sliced by "\" we get

index 0: "" (empty string before the first occurrence of "\"
index 1: "" (empty string between the first and second "\")
index 2: "server"
index 3: "share"

- SubstringBefore (stringValuel, stringValue2)
yields the sequence of characters of stringValuel up to the beginning of
stringValue2 ,

E. g.

SubstringBefore ("C:.\programe\staroffice\program soffice.exe",
"\ program sof fi ce. exe")

returns

"C:\programme\staroffice"

6.3.11 Additional String Functions

- RandomStr
returns a random String of length 10 where upper case letters, lower case
letters and digits are mixed (for creating passwords).

6.4 String List Functions and String List Processing

A String list (or a String list value) is a sequence of String values. For this kind
of values we have the variable of type String list. They are defined by the
statement

— DefStringList <VarName>
A String list value may be assigned to String list variable:

- Set <VarName> = <StringListValue>

-35 -

String list values can be given only as results of String expressions. There are
many ways to create or capture String lists, and many options for processing
them, often yielding new String lists. They are presented in the following
subsections.

For the following examples we declare a String list variable:
Def StringList listl

If we refer to variables named like sString0, StringvVal, .. itis meant that
these represent any String expressions.

6.4.1 Parameterless String List Functions
- getLocalelnfo

retrieves the (supposedly) most interesting data from the locale data,
namely (at this moment)

- the two-letter version of the system default language name
- the three-letter version of it (including subtypes of language)
- the English language name

- the Englisch country name

- the language code (hexadezimal value as String)

Usage: If we define and call

Def Stri ngLi st $l anguagel nf 0$
set $l anguagel nf o$ = get Local el nfo

we have a 5 elements String List. In the log file we get

retrieving strings from getLocal el nfo:
(string 0) DE
(string 1) DEU
(string 2) Ger man
(string 3) Ger many
(string 4) 0407

We may now construct scripts for conditionial statements (cf. section 6.7) like

if takeString(0, $languagelnfo$ = "DE")
install German version
el se
if takeString(0, $languagelnfo$ = "EN')
install English version
endi f
endi f

- 36 -

6.4.2 Producing String Lists from Strings

createStringList (String0, Stringl ,...)

forms a String list from the values of the listed String expressions. For
example, by

set listl = createStringList (‘a','b'", 'c', '"d)
we get a list of the first four letters of the alphabet.
The following two functions produce a String list by splitting some string:

splitString (Stringl, String2)
generates the list of partial strings of Stringl (including empty strings)
before resp. between the occurences of string2. E.g.,

set listl = splitString ("\\server\share\directory", ™"
defines the list
nnomwno o wgerver", "share", "directory"
splitStringOnWhiteSpace (StringVal)
slices stringval by the "white spots"” in it. E. g.
set listl = splitString ("Status Lokal Renot e Net zwer k™)
produces the list
"Status", "Lokal", "Remote", "Netzwerk"

no matter how many blanks or tabs constitute the white space between the
words.

6.4.3 Loading the Lines of a Text File into a String List

loadTextFile (filename)

reads the file filename and generates the String list that contains all lines
of the file.

If the file has unicode format the function
loadUnicodeTextFile (filename)

should be used. By this call, the strings are converted into the system
default 8 bit code.

-37 -

6.4.4 Simple String Values generated from String Lists

E.g. a spliced string or any transformation of it can be recombined by the
function

- composeString (stringList, linkString)
E.g. if 1istl represents the list 'a', 'b', 'c', 'd', 'e' by
line = conposeString (listl, " | ™)
we set the String variable 1ine to the value "a|b|c|d|e".
A String value can be retrieved from a list by
- takeString (index, list)
E. g., if 1istl represents the list of the first five letters of the alphabet by
takeString (2, listl)

we get string 'c' (since the index is counted from 0).

6.4.5 Producing String Lists from wInst Sections

- retrieveSection (sectionName)
gives the lines of the specified section as String list.

- getOutStreamFromSection (sectionName)
invokes the section and - at this moment implemented only for DosBatch ,
DosInAnlcon (ShellBatch) and ExecPython calls - captures the output to
standard out and standard error of the invoked commands writing them
into a String list. For example:

We declare

[DosInAnIcon_netuse]
net use

Then the result of
getOutStreamFromSection ('DosInAnIcon netuse')

contains among some surrounding stuff the list of all mounted shares of a
PC

- 38 -

- getReturnlistFromSection (sectionName)
For some section types - at this moment implemented only for XMLPatch
sections and opsiServiceCall sections - there is a specific return statement
which yields some result of the execution of the section (assumed to be of
String list type). E.g. we may use the statement

set listl = getReturnListFronBSection (' XM_Patch_mne "c:\m metypes.rdf"")

to get a specific knot list of the XML file mimetypes.rdf (where
XMLPatch mime is defined as in section 7.7 in this manual).

Or the list of opsi clients is produced by the reference to the following opsi
service call (cf. Section 7.13)

Def StringList $result$
Set $resul t $=get Ret ur nLi st FronBecti on(" opsi servi cecal | _clientldsList")

where

[opsi servicecal |l _clientldsList]
"method":"getClientlds_list"
"parans":[]

6.4.6 Transforming String Lists
A partial list of a given list is produced by the function:
- getSublist (startIndex, endIndex, list)

E.g., if 1ist represents the list of letters 'a', 'b', 'c', 'd', 'e', bythe
statement:

set listl = getSubList(l : 3, list)

we get the partial list 'b', 'c', 'd' . Beginindex as well as end index
have to be interpreted as the index of the first and last included list
elements. The counting starts with 0.

Default start index is 0, default end index is the index of the last element of
the list.

Therefore, (for the above defined 1istl) the command
set listl = getSubList(l : , list)

yields the list 'b', 'c', 'd', 'e'.

-390 -

set listl = getSublist(:, list)

produces a copy of the original list. It is possible to count backwards in
order to determine the last index:

set listl = getSubList(l : -1, list)

defines the list of elements starting with the first and ending with the
second to last element of the list - in the above example we again get list
|b| , |l c! , |d| .

- reverse (list)
produces the inverted list, if 1ist1is 'a', 'b', 'c', 'd', 'e', by
set listl = reverse (list)

we get the list 'e', 'd', 'c', 'b', 'a'.

6.4.7 lIterating through String Lists

An important application of String lists is based on the device that the script
runs through all elements of a list executing some operation on each.

The syntax to define this repetition is:
- for %$s% in list do statement

This expression locally defines a String variable $s% that takes one by one the
values of the 1ist elements.

statement can be any single statement that can exist in a primary section
type. In particular (and most interestingly) it may be a subsection call. The
locally defined iteration index %s% exists in the whole context of statement, in
particular in the subsection if statement is a subsection call.

The replacement mechanism for $s% always works like that for constants: The
name of the variable is replaced by the element values. If we iterate through a
list 'a', 'b', 'c' and the iteration index is named %s%, we get for $s% one by
one a, b, c - nottheString values. To reproduce the original list elements we
have to enclose %$s% in citation marks.

Example: Let 1istl be thelist 'a', 'b', 'c', 'd', 'e', and line a String
variable. The statement

for %% in listl do set line =1line + '%%

iterates through the list elements internally executing

- 40 -

set line =1line +'a'
set line =1line +'b'
set line =1line + 'c'
set line =1line + 'd'
set line =1line + '¢'

Such, finally line has value 'abcde' . If we omitted the citation marks around
$s% we would get a syntax error for each iteration step.

For further examples cf. the cook book chapter, e.g. section 8.2.

6.5 Special Commands

- Killtask <String expression>

tries to stop all processes that execute the program named by the String
expression.

E.g.

killtask "w nword. exe"

6.6 Commands for User Information and User Interaction
- Message <String expression>

or
- Message = <sequence of characters>

lets wInst display the value of the String expression resp. the sequence
of chars in the batch window in the top information line. The text is kept as
long as no new message is set.

Example:

Message "lInstalling Mozilla Firefox"
On the other hand, the command
- ShowMessageFile <String expression>

interprets the String expression as text file name, tries to read the text und
show it in a user information window. Execution stops until the user
confirms reading. E.g. by a command like

-41 -

ShowMessageFil e "p:\ I ogi n\ day. nsg"
one can realize a "Message of the Day" mechanism.
The statement
ShowBitMap [/<location index>] [<image name>] [<inscription>]

places the image denoted by the image name (in BMP or PNG format, size
160x160 pixel) at the position denoted by the location index and
subtitled by the inscription.

<location index> iS a <sequence of digits> - in fact at this time there
are only positions 1, 2, 3.

<image name> and <inscription> are String expressions.
E.g. we may call

ShowBi tmap /3 "%scriptpath% " + $Product Name$ + ".bnmp" "$Product Nanme$"
for producing a product specific image at window position 3.

Wenn the name parameter is missing the image at the referred position is
cleared.

comment <String expression>
or
comment = <sequence of characters>

writes the value of the String expression resp. the sequence of characters
into the log file.

Additional error messages or warnings can be written to the log file by the
statements

LogError <String expression>

or

LogError = <sequence of characters>
resp.

LogWarning <String expression>

or

- 42 -

- LogWarning = <sequence of characters>

The following statements are mainly intended for debugging purposes:
- Pause <String expression>

or
- Pause = <sequence of characters>

display the text given as a String expression or as a sequence of chars in a
information window waiting until the user confirms the continuation.

On the contrary, the statements
- Stop <String expression>
or
- stop = <sequence of characters>

are able to end program execution if the user confirms it. The String
expression resp. the (possibly empty) sequence of chars explain to the user
what is going to be stopped.

6.7 Conditional Statements (if Statements)

In primary sections, the execution of a statement or a sequence of statements
can be made dependent on some condition.

6.7.1 Example

Recall the example where the script branches dependent on the OS running:

Def Var $0S$
Set $0S$ = Get OGS
Def Var $NTVer si on$

if $0S$ = "W ndows_NT"
Set $NTVersi on$ = Get NTVer si on

if ($NTVersion$ = "NT4") or ($NTVersion$ = "Wn2k")
sub_i nstal | _wi nnt
el se
if ($NTVersion$ = "WnXP")
sub_instal | _wi nXP
el se

- 43 -

stop "OS version not supported"
endi f
endi f

endi f

6.7.2 General Syntax
The syntax of the complete if statement reads

if <condition>

<sequence of statements>
else

<sequence of statements>
endif

The else part may be omitted.

if statements may be nested. That is, in the sequence of statements that
depend on an if clause (no matter if inside the if or the else part) another
if statement may occur.

<condition> iS a <Boolean expression> . A Boolean (or logical) expression
can be constructed as a (String) value comparison, by Boolean operators, or by
certain function calls which evaluate to true or false. Up to now these Boolean
values cannot be explicitly represented in a wInst script).

6.7.3 Boolean Expressions
The String comparison (which is a Boolean expression) has the form
<String expression> <comparison sign> <String expression>
where <comparison sign> is one of the signs
< <= = >= >
String comparison in wInst is case independent.
Inequality must be expressed by a NOT () expression which is presented below.

There is as well a comparison expression for comparing Strings as (integer)
numbers. If any of them cannot be converted to a number an error will be
indicated.

- 44 -

This number comparison expression has the same form as the String
comparison but for an INT prefix of the comparison sign:

<String expression> INT<comparison sign> <String expression>

Such, we can build expressions as
if $Namel$ <= $Nane2$
or

i f $Nunber1$ >= $Number 2%

For additional examples and some special comparison functions cf. section
6.3.12.

Boolean operators are AND, OR, and NOT () (case does not matter). If bl, b2
and b3 are Boolean expressions the combined expressions

bl AND b2
bl OR b2
NOT (b3)

are Boolean expressions as well denoting respectively the conjunction, the
disjunction, and the negation.

A Boolean expression can be enclosed in parentheses (such producing a new
Boolean expression with the same value).

The common rules of Boolean operator priority ("and" before "or") are at this
moment not implemented. An expression with more than one operator is
interpreted from left to right. For clarity, in a Boolean expression that combines
AND and OR operators parentheses should be employed, e.g. we should explicitly
write

bl OR (b2 AND b3)
or
(bl OR b2) AND b3

The second describes what would be executed if there were no parentheses -
whereas the common interpretation would run as the other line indicates.

Boolean operators can be conceived as special Boolean valued functions (the
negation operator demonstrates this very clearly).

- 45 -

There are some more Boolean functions implemented. Every call of such a
function constitutes a Boolean expression as well:

- FileExists (<String expression>)
returns true if the denoted file or directory exists otherwise false.

- LineExistsIn (line, filename)
returns true if the text file denoted by filename contains a line as specified
in the first parameter where each parameter is a String expression.
Otherwise (or if the file does not exist) it returns false.

- LineBeginning ExistsIn (stringval, filename)
returns true if there is line that begins with stringval in the text file
denoted by filename (each parameter being a String expression).
Otherwise (or if the file does not exist) it returns false.

- XMLAddNamespace (XMLfilename, XMLelementname, XMLnamespace)
inserts a XML namespace definition into the first XML element with the
given name (if not existing). It gives back if an insertion took place. (The
wlnst XML patch section need the definitions of namespace.)

The file must be formatted that an element tag has no line breaks in it.
For an example, cf. cookbook section 8.6.

- XMLRemoveNamespace (XMLfilename, XMLelementname, XMLnamespace)
removes the XML namespace definition from the XML element. It gives
back if an removal took place. We need this to simulate that an original file
is unchanged. For an example, cf. cookbook section 8.6.

- HasMinimumSpace (drivename, capacity)
returns true if at least a capacity capacity is left on drive drivename.
capacity as well as drivename syntactically are String expressions. The
capacity may be given as a number without unit specification (then
interpreted as bytes) or with unit specifications "kB", "MB", or "GB" (case
independent).

Example of use:

if not (HasM ni nunpace ("% SYSTEMDRI VE%, "500 MB"))
LogError "Not enough Space on drive ¥SYSTEMDRI VE% required 500 MB"
i sFatal Error

endi f

- 46 -

6.8 Subprogram Calls

Statements in primary sections which refer to instructions declared otherwhere
are called subprogram (or procedure) calls.

E.g., the statement
sub_install_w nXP

“calls" the section titled [sub_install winXP] which is placed somewhere else in
the script, as in the example

[sub_install_w nXP]
Fil es_copy_XP
W nBat ch_Set upXP

As long as a sub section, being yet a primary section, is called the chain of
reference may continue. In the example program execution jumps first to
section [Files Kopieren XP], then to [WinBatch SetupXP].

Generally, there are three ways to place the referred instructions:

(1) The most common target of a subprogram call is some other internal section
in the very script file where the calling statement is placed (as in the example).

(2) We may put the referred instructions into another file which serves as an
external section.

(3) Any String list can be used as list of instructions for a subprogram call.

We describe the syntax of subprogram calls in detail:

6.8.1 Syntax of Procedure Calling

Formally the syntax can be given by

<proc. type>(<proc. name> | <External proc. file> | <String list function>)

This expression may supplemented by one ore ore parameters (procedure type
dependent).

That means: A procedure call consists of three main parts.
- The first part is the subprogram type specifier.

Examples of type names are sub (we call a procedure of type sub thatis a
again a primary section),or Files and WinBatch (calls of special
secondary sections). The complete overview of the existing subprogram
types is given in chapter 6.

-47 -

The second part determines where and how the lines of subprogram are to
be found.

Case (1): The subprogram is a sequence of lines situated in the executed
wInst script as another internal section. Then a name (constituted from
letters, digits, and some special characters) has to be appended to the type
specifier (without space) in order to form an unique section name.

sub_install _w nXP
or
files_copy_w nXP
Section names are case independent as any other string.

Case (2): If the type specifier stands alone a String list expression or a
String expression is expected. If the expression following the type specifier
cannot be resolved as a String list expression (cf. case (3)) it is assumed to
be a String expression. The string is then interpreted as a file name. winst
tries to open the file as a text file and interpret its line as an external
section of the specified type.

E.g.
sub "p:\install\opsiutils\mainroutine.ins"

tries to execute the lines of mainroutine.ins as statements of a sub
section.

Case (3): If the expression following a stand alone sectiontype specifier is
resolvable as a String list expression then the string components of the list
are interpreted as the statements of the section.

This mechanism can e.g. be used to load a file that has unicode format and
then treat it by the usual mechanisms

regi stry loadUnicodeTextFile (" %scri pt pat h% opsi orgkey.reg") /regedit
Syntactically, this line is composed of three main parts:

registry, the core statement specifying the section type,
loadUnicodeTextFile (...), a String list expression specifying how to get
the lines of a registry section resp. its surrogate.

/regedit, parametrizing the registry call.

- 48 -

In this example, the call parameter already gives an example for the third
part of a subsection call:

- The thirdpart of a procedure call comprises type specific call options.

For a reference of the call options cf. the descriptions of the section calls in
chapter 7.

6.9 Controlling Reboot

The statement ExitWindows offers to apply the whole diversity of the
underlying system command in a wInst script.

On principle, ExitWindows triggers a reboot (resp. an automatic log out) after
the end of script execution. In the interactive mode the user is asked if she or
he agrees with rebooting (at once). If wInst works in pcprofil mode then the
reboot request is written to the registry. In an opsi environment, with installed
preloginloader, the wInst process is a subprocess of the execution of
pcptch.exe. When wInst execution is finished pcptch.exe reads the registry
entry, calls the system function exitwindows. This call does not always
succeed, therefore the opsi service process checks the registry again, and
enforces the call to exitwindows. In batch mode, wInst calls the system
exitwindows command itself.

There are three variants of a reboot request in a wInst script each denoted by
a specific parameter of ExitWindows. We list them in the order of increasing
urgency of the request:

- ExitWindows /RebootWanted
notes a reboot request of a script in the Registry but lets wInst continue
script execution and continue to treat further scripts until the execution of a
whole series of scripts has finished.

- ExitWindows /Reboot
breaks any series of script executions by triggering the reboot after wInst
has finished the currently treated script.

- ExitWindows /ImmediateReboot
breaks the normal execution of a script anywhere inside it. When this
command is called wInst runs as directly as possible to its end entailing
the system exitwindows call. In the context of an installed preloginloader
it is guaranteed that after rebooting wInst runs again in the script that

- 49 -

was aborted. The script has to take provisions that the execution continues
where it was left the turn before (otherwise we get an infinite loop ...)

The fourth variant works similarly as /ImmediateReboot but causes a log out
instead of a reboot:

- ExitWindows /ImmediateLogout
breaks the normal execution of a script at the very spot entailing a system
log out call. This feature is needed if a automated user log in for some
other user shall take place (cf. cookbook, section 8.3).

How flags may be set to ensure that the script does not run into an infinite loop
when ExitWindows /ImmediateReboot is called we demonstrate by the
following code fragment:

Def Var $0S$

Def Var $Fl ag$

Def Var $W nst RegKey$
Def Var $Reboot RegVar $

set $0S$=EnvVar (" COS")
i f $0OS$="W ndows_NT"

Set $W nst RegKey$ = "HKLM SOFTWARE\ opsi . or g\ wi nst "
Set $Fl ag$ = Cet Regi stryStringVal ue("["+$W nst RegKey$+"] "+"Reboot Fl ag")

if not ($Flags = "1")

; Statements BEFORE Reboot
Fi | es_doSon®et hi ng

; initialize reboot

Set $Flag$ = "1"

Regi st ry_SaveReboot Fl ag
Exi t Wndows /| nmmedi at eReboot

; Statenments AFTER Reboot
; set back reboot flag
Set $Flag$ = "0O"
Regi st ry_SaveReboot Fl ag
; the work part after reboot:
Fil es_doMore
endi f

endi f

-50 -

[Regi stry_SaveReboot Fl ag]
openKey [$W nst RegKey$]
set "Reboot Fl ag" = "$Fl ag$"

[Fi | es_doSonet hi ng]
; a section executed before reboot

[Fil es_doMore]
; a section executed after reboot

6.10 Keeping Track of Failed Installations

If a product installation fails since errors occur, or if some circumstances
prevent the installation script from being successfully executed the script
execution should not, as usually in an opsi environment, lead to the product
state installed but the product state failed.

To indicate in a wInst script that regarding he circumstances the current
installation is not successful there is the statement

- isFatalError

If this statement is called wInst stops the normal execution of the script and
sets the product state to failed.

E. g., a "fatal error" shall be triggered if there is as much space left as it is
needed for an installation:

Def Var $SpaceNeeded"
Set $SpaceNeeded" = "200 MB'

Def Var $LogErr or Message$
Set $LogError Message$ = "Not enough space on drive . Required "
Set $LogError Message$ = $LogError Message$ + $SpaceNeeded”

i f not (HasM ni nunSpace ("%SYSTEMDRI VE% , $SpaceNeeded"))
LogError $LogError Message$
i sFatal Error
finish execution and set ProductState to failed
el se
we start the installation

endi f

-51 -

It is also possible to state isFatalError depending on the number of errors
which occured in some critical part of an installation script. In order to do this
we initialize the error counting by the command

— markErrorNumber

The number of execution errors which occur after setting the counter can be
queried by the the number valued function

- errorsOccuredSinceMark
We can evaluate the result in a numerical comparison condition (that as yet is only

implemented for this expression). E. g. we may state

if errorsCccuredSinceMark > 0

and may, if this seems to make sense, then state

isFatalError

For increasing the number of counted errors depending on certain
circumstances (that do not directly produce an error) we may use the logError
statement.

We may test this device by the following script example:

mar KEr r or Nunber
; Erors occuring after this mark are counted and
; Will possibly be regarded as fata

| ogError "test error"

; we wite "test error"” into the log file
; and increase the nunber of errors by 1
; for testing, comrent out this line

if errorsCccuredSi nceMark > 0
; we finish script execution as quick as possible
; and set the product state to "fail ed"

i sFatal Error
; but coment witing is not stopped

comrent "error occured"

el se
; no error occured, lets log this:

comrent "no error occured"
endi f

-52 -

7 Secondary Sections

The secondary or specific sections can be called from any primary section but
have a different syntax. The syntax is derived from the functional requirements
and library conditions and conventions for the specific purposes. Therefore
from a secondary section, no further section can be called.

Secondary sections are specific each for a certain functional area. This refers to
the object of the functionality, e.g. file system in general, the Windows registry,
or XML files. But it refers even more to the apparatus that is internally applied.
This may be demonstrated by the the variants of the batch sections (which call
external programs or scripts).

The functional context is mirrored in the specific syntax of the particular
section type.

In detail:

7.1 Files Sections

A Files section mainly offers functions which correspond to copy commands
of the underlying operating system. The surplus value when using the wInst
commands is the detailled logging and checking of all operations when
necessary. If wanted overwriting of files can be forbidden if newer versions of a
file (e.g. an newer dll) are already installed on the system.

7.1.1 Example

A simple Files section could read:

[Files_do_sone_copyi ng]
copy -sv "p:\install\instnsc\netscape*.*" "C:.\netscape"
copy -sv "p:\install\instnsc\w ndows*.*" " %EYSTEMROOT%

These commands cause that alle files of the directory
p:\install\instnsc\netscape are copied to the directory C:\netscape, and
then all files from p:\install\instnsc\windows to the windows system
directory (its value is automatically inserted into the constant name
$SYSTEMROOTS) .

Option -s means that all subdirectories are copied as well, -v activates the
version control for library files.

-53 -

file:///C:/r/4uib/delphi32/winst32/winst_release_3-3-alpha/winstdoc.sdw

7.1.2 Call Parameters
In most cases a Files section will be called without parameters.

There are only some special uses of Files sections where the target of copy
actions is set or changed in a certain specified way. We have got the two
optional parameters

/A11NTUserProfiles resp.
/Al11NTUserSendTo
Both variants mean:
- The called Files section is executed once for each local Windows NT user.

- Every copy command in the section is associated with an user specific
target directory.

- In case other we need to build other user specific path names we can use
the automatically set variable %UserProfileDir%.

With option /A11NTUserProfiles the user specific target directory for copy
actions is the user profile directory (that is usually denoted by the user name
and is by default situated as a subdirectory of the userappdata directory. In
case of option /Al1NTUserSendTo the target directory is the path of the user
specific SendTo folder (for links of the windows explorer context menu).

The exact rule for determining the target path for a copy command has three
parts:

1. If only the source of a copy action is specified the files are copied directly
into the user target directory. We have syntax

copy sourcepath
It could be rewritten as
copy sourcpath "%Jser ProfileDir%"

2.lf some targetdir is specified and targetdir is a relative path description
(starting neither with a drive name nor a backslash) then targetdir is
regard as the name of a subdirectory of the user specific directory. l.e.

copy sourcepath targetdir

is interpreted like:

copy sourcepath "%JserProfileDir%targetdir"”

-54 -

3.If targetdir is an absolute path it is used as the static target path of the
copy action.

7.1.3 Commands

In a Files section the following commands are defined:

- Copy

- Delete

- SourcePath

- CheckTargetPath

- zip

Copy and Delete roughly correspond the the Windows shell commands xcopy
resp. del.

SourcePath and CheckTargetPath set origin and destination of the
forthcoming copy actions (as if we would open two explorer windows for copy
actions between them). If the target path does not exist it will be created.

zip is used to create an archive.
The syntax definitions are:

- Copy [-svdunxwnr] <source (mask)> <target path>
The source files can be denoted explicitly, using the wild card sign ("* ") or
by a directory name. The target path is always understood as a
directory name. Renaming by copying is not possible. If the target path
does not exist it will be created (if needed a hierarchy of directories).

The optional modifiers of the copy command mean (the ordering is
insignificant):

- s
We recurse into subdirectories.

- e
If there are empty subdirectories in the source path they will be
created in the source directory as well.

- v
With version checking:
A newer version of a windows library file is not overwritten by an

-55-

- Delete
— Delete

older one (according primarily to the internal version counting of
the file). If there are any doubts regarding the priority of the files
a warning is added to the log file.

d
With date check:
A newer exe file is not overwritten by an older one.

u
We are only updating files:

A file is not copied if there is a newer or equally old file of the
same name.

X
If a file is a zip archive it will be unpacked (Xtracted) on copying.
Caution: Zip archives are not characterized by its name but by an
internal definition. E.g. a java jar file is a zip file. If it is unpacked
the application call will not work as before.

w
We respect any write protection of a file such proceeding
“weakly" (in opposite to the default behaviour which is to try to
use administrator privileges and overwrite a write protected file).

n
Existing files are not overwritten.

r
If a copied file has a read-only attribute it is set again (in
opposite to the default behaviour which is to eliminate read-only
attributs).

[-sfd[n]] <path>
[-sfd[n]] <source (mask)>

deletes files and directories. Possible options are (with arbitrary ordering)

s
We recurse into subdirectories. Everything that matches the
path name or the source mask is deleted.

f
forces to delete read only files

d [n]
Only files of age n days or older are deleted. n defaults to 1.

- 56 -

- SourcePath = <source directory>
Sets <source directory> as default directory for the following copy and
(!) Delete commands.

- CheckTargetPath = <Zieldirectory>
Sets <Zieldirectory> as default directory for Copy command . If the
specified path does not exist it will be created.

- zip [-s] <archive directory> <source mask>
The command produces a zip archive file for every file that corresponds to
the source mask and puts it in the archive directory. Option -s lets recurse
into the source subdirectories. (This command was used to produce a
special sort of archives when server space was scarce.)

7.2 Patches-Sektionen

A Patches section modifies a property file in ini file format. I. e. a file that
consists of sections which are a sequence of entries constructed as settings
<variable> = <value>. Where sections are characterized by headings which
are bracketed names like [sectionname].

(Since a patched ini file is similarly built from sections like the wInst script we
have to be careful to avoid a denotational mess.)

7.2.1 Example

In times when not everything was written to the registry a file named win.ini
played a central role. It can be edited via a Patches call: In a primary section,
we write

Patches_WN. I NI " %SYSTEMROOT% W N. | NI *

and the called section may be defined e.g. for Acrobat Writer:

[Pat ches_W N. I NI']

set [Devices] Acrobat Distiller=w nspool, Ne0O:

set [Devices] Acrobat PDFWiter=w nspool, LPT1:

set [PrinterPorts] Acrobat Distiller=wi nspool, Ne0O:, 15, 45
set [PrinterPorts] Acrobat PDFWiter=w nspool, LPT1:, 15, 45
set [Wndows] Device=Acrobat PDFWiter, w nspool, LPT1:

7.2.2 Call Parameter

As shown in the example the name of the property file to be patched is
specified as parameter of the subprogram call.

-57 -

7.2.3 Commands

For a Patches section, we have commands
- add

- set

- addnew

- change

- del

- delsec

- replace

Each command refers to some section of the file which is to be patched. The
name of this section is specified in brackets (which do here not mean
“syntactically optional"!!).

In detail:

- add [<section name>] <variablel> = <valuel>
This command adds an entry of kind <variablel> = <valuel> to section
<section name> ifthereis yet no entryfor <variablel> in this section.
Otherwise nothing is written. If the section does not exist it will be created.

- set [<section name>] <variablel> = <valuel>
If there is no entry for <variablel> in section <section name> the
setting <variablel> = <valuel> is added. Otherwise, the first entry
<variablel> = <valueX> is changed to <variablel> = <valuel>.

- addnew [<section name>] <variablel> = <valuel>
No matter if there is an entry for <variablel> in section <section name>
the setting <variablel> = <valuel> is added.

- change [<section name>] <variablel> = <valuel>
Only if there is any entry for <variablel> in
section <section name> it is changed to <variablel> = <valuel>.

- del [<section name>] <variablel> = <valuel>
resp.
- del <section name>] <variablel>
removes all entries <variablel> = <valuel> resp. all entries for

-58 -

<variablel> in section <section name>.

- delsec [<Sektionsname>]
removes the section <section name>.

- Replace <variablel>=<valuel> <variable2>=<value2>
means that <variablel> = <valuel> Will be replaced by <variable2> =
<value2> in all sections of the ini file. There must be no spaces in the
value or around the equal signs.

7.3 PatchHosts Sections

By virtue of a PatchHosts section we are able to modify a hosts file which is
to understand as any file with lines having format

IPadress hostName aliases # comment

Aliases and comment (and the comment separator #) are optional. A line may
also be a comment line starting with # .

The file which is to be modified can be given as parameter of a PatchHosts
call. If there is no parameter a file named HOSTS is searched in the directories
c:\nfs, c:\windows and %$systemroot%\system32\drivers\etc. If no such
file is found the PatchHosts call terminates with an error.

In @ PatchHosts section there are defined commands

setAddr

- setName

- setAlias

- delAlias

- delHost

- setComment

E.g. by

[Pat chHost s MyHost sPat ch]
setAddr ServerNol 111.111.111.111
setAlias ServerNol myServer

we decide that the name ServerNol is resolved as 111.111.111.111, and
that any call to the alias myServer is directed to the same address.

- 590 -

In detail:

- setaddr <hostname> <IPaddress>
sets the IP address for host <hostname> to <IPaddress>. If there is no
entry for host name as yet it will be created.

- setname <IPaddress> <hostname>
sets the host name for the given IP address. If there is no entry for the IP
address as yet it will be created.

- setalias <hostname> <alias>
adds an alias for the host named <hostname>.

- setalias <IPadresse> <alias>
adds an alias name for the host with IP address <IPadress>.

- delalias <hostname> <alias>
removes the alias name <alias> for the host named <hostname> .

- delalias <IPaddress> <alias>
removes the alias name <alias> for the host with IP address <IPadress>.

- delhost <hostname>
removes the complete entry for the host with name <hostname>.

- delhost <ipadresse>
removes the complete entry fo the host with IP address <IPadress>.

- setComment <ident> <comment>
writes <comment> after the comment sign for the host with host name, IP
address or alias name <ident>.

7.4 ldapiConfig Sections

A IdapiConfig section writes parameters in idapi*.cfg files which are used by
the Borland Database Engine.

This section type is only available for windows.

The name of the file which is to be treated is given as call parameter, e.q.
| dapi Confi g_resynesa "c:\idapi\idapi.cfg"

An example for a section may be:
[1 dapi Confi g_resynesa]

al i as: resabw

- 60 -

driver: dbase

; par anet er nane=par amnet er wert
TYPE=St andar d

PATH=C: \ ReSyMeSa\ Dat en
DEFAULT DRI VER=dbase
setalias

Generally we have:

- alias:<alias name>
defines an alias name,

- driver:<driver name>
specifies the driver name.

- setalias
finally writes the data to the configuration file.

Depending on the specific driver there can be any number of settings of form

<parameter name>=<parameter wvalue>

7.5 PatchTextFile Sections

A PatchTextFile section offers a variety of options to patch arbitrary
configuration files which are given as common text files (i.e. they can be
treated line by line).

An essential tool for working on text files is the check if a specific line is
contained in a given file. For this purpose we have got the Boolean functions
Line_ExistsIn and LineBeginnung ExistsIn (cf. section 6.7.3) zur
Verflgung.

7.5.1 Example

E.g., for a Mozilla preference file we may set the start page of the browser by a
call to the following PatchTextFile section:

[PatchTextFile NetscapePref]

GoToTop

FindLine_StartingWith 'user pref ("browser.startup.homepage"'
DeleteTheline

AddLine 'user_ pref ("browser.startup.homepage", "http://myhomepage.org") ;'

We can get the same effect more easily since especially for patching the
mozilla preference files there is a special command. Using it the example
reduces to

-061 -

http://merkur/

[PatchTextFile NetscapePref]
Set _Net scape_User Pref ("browser.startup.honepage", "http://myhomepage.org")

7.5.2 Call Parameter

The text file which is to be treated is given as parameter of the PatchTextFile
call, e.q.

Pat chText Fil e_prefsjs $nail hone$ + "prefs.js"

7.5.3 Commands

We have got two commands especially for patching Mozilla preferences files:

- Set Netscape User Pref ("<preference variable>", "<value>")
sets the line of the given user preference file for the variable <preference
variable> to value <value>. The ASCII ordering of the file will be kept.

- AddStringListElement To Netscape User Pref ("<preference
variable>", "<add values list>")
appends one or more elements to a list entry in the given preference file. It
is checked if a single value that shall be added is already contained in the
list (then it will not be added).
The command may be used to supplement elements in the list of no proxy
entries in prefs.js.

The other commands of PatchTextFile sections are not file type specific. All
operations are based on the concept that a line pointer exists which can be
moved from top of the file i.e. above the top line down to the bottom (line).

There are three search commands:

- FindLine <search string>

- FindLine StartingWith <search string>
- FindLine Containing <search string>

Each command starts searching at the actual position of the line pointer. If they
find a matching line the line pointer is moved to it. Otherwise the line pointer
keeps its position.

<search string> - as all other String references in the following commands -
are String surrounded by single or double citation marks.

-062 -

http://merkur/

If searching shall certainly start at the top line we have to move the line pointer
beforehand. This is done by the command

- GoToTop

(when we count lines it has to be noted that this commands move the line
pointer above the top line).

We step any - positive or negative - number of lines through the file by
- Advanceline [line count]

Advancing to the bottom line is done by

- GoToBottom

By the following command we delete the line at which the line pointer is
directed if there is such a line (if the line pointer has position top, nothing is
deleted):

- DeleteTheline

There is also a command for deleting all lines which begin with a certain String:
- DeleteAlllLines_StartingWith <search string>
The lines of the file may be augmented by the following commands:

- AddLine <line>
Or Add Line <line>
The line is appended to the file.

- InsertlLine <line>
or Insert_Line <line>

<line> is inserted at the position of the line pointer.

- AppendLine <line>
Oor Append Line <line>

<line> is appended after the line at which the pointer is directed.
We connect to the file system by some other commands:

- Append File <file name>
reads the file and appends its lines to the edited file.

-63 -

- Subtract File <file name>
removes the beginning lines of the edited file as long as they are identical
with the lines of file <file name>.

- SaveToFile <file name>
writes the edited lines as a file <file name>.

- Sorted
causes that the edited lines are (ASCIIl) ordered.

7.6 LinkFolder Sections

7.6.1 Windows

In @ LinkFolder section start menus entries as well as desktop links are
managed.

E.g. the following section creates a folder named "acrobat” in the common
start menu (shared by all users):

[Li nkFol der _Acr obat]
set basef ol der conmon_pr ogr ans

set subfol der "acrobat™

set _link
nane: Acrobat Reader
target: C:.\Progranmme\ adobe\ Acrobat\reader\acrord32. exe
par anmet ers:
wor ki ng_dir: C:.\Progranme\ adobe\ Acr obat \ r eader
icon_file:
i con_i ndex:

end_| i nk

As can be seen in the example, in a LinkFolder section the first thing to set is
the virtual system folder on which the following statements shall operate:
- set basefolder <system folder>

The predefined virtual system folders which can be used are

deskt op, sendto, startnenu, startup, prograns, desktopdirectory,
common_st art nenu, conmon_pr ogr ans, conmon_startup,
conmon_deskt opdi rect ory

- 64 -

The folders are 'virtual' since the operating system (resp. registry entries)
determine the real places of them in the file system.

Second, we have to open an subfolder of the selected virtual folder:
- set_subfolder <folder path>

The subfolder name is to be interpreted as a path name with the selected
virtual system folder as root. If some link shall be directly placed into the
system folder we have to write

set _subfol der ""

In the third step, we can start setting links. The command is a multi line
expression starting with

- set_link
and finished by
- end link

Between these lines the link parameters are defined in the following format:

set _link

nane: [link nane]

target: <conpl ete program pat h>

paraneters: [command |ine paraneters of the prograni

wor ki ng dir: [working directory]

icon_file: [icon file path]

icon_index: [position of the icon in the icon file]
end_|ink

The target name is the only essential entry. The other entries have default
values:

name defaults to the program name.

- parameters has the empty string as default.
- Ifnoicon file is specified the program file is selected.
- The default icon indexis 0.

Caution: If the referenced target does not lie on an mounted share at the
moment of link creation windows shortens its name to the 8.3 format.

Workaround:
- Create a correct link when the share is connected.

- 65 -

- Copy the ready link file to a location which exists at script runtime.
- Let this file be the target.

By

- delete_element <link name>

we remove a link from the open folder.

A complete folder is removed from the base virtual folder by

- delete_subfolder <folder path>

7.6.2 Linux
There are some minor differences to the windows version:

Possible virtual folders are:

desktop, startmenu, startup, desktopdirectory, conmon_startnenu
common_st artup, comon_desktopdirectory

set_link has the following parameters:

name: /1 name of link

target: /1 path and name of program

par anmet ers: /1 call paraneters of the program

wor ki ng_dir:

icon_file: /1 path and nanme of icon file

filenane /1 nanme of the desktop file (with ext)

type /1 link type (explanation cf. bel ow)

cat egori es /1 (opt.) ; separated |ist of categories

generi cNane /1 (opt.) description (nanme=nozill a->generic=browser)

There is no parameter icon_index.

The parameter type is required and shall have one of the following values:
Application, Link, FSDevice, MimeType,

categories may be empty or may contain a semicolon separated list of
categories from the following table:

Cat egory Description

Devel opnent An application for devel opnent
Bui | di ng A tool to build applications
Debugger A tool to debug applications

| DE | DE application

- 66 -

Cat egory

Descri ption

GUI Desi gner
Profiling

A GU designer application
A profiling tool

Revi si onCont r ol
Transl ation
Ofice

Cal endar

Cont act Managenent
Dat abase

Applications |like cvs or subversion
A translation tool

An office type application

Cal endar application

E. g. an address book

Application to nmanage a dat abase

Di ctionary

A dictionary

Chart Chart application

Enai | Emai | application

Fi nance Application to nmanage your finance
FI owChar t A flowchart application

PDA Tool to manage your PDA

Pr oj ect Managenent

Present ati on

Proj ect nanagenent application

Presentati on software

Spr eadsheet

Wor dPr ocessor

A spreadsheet

A word processor

Graphi cs

2DGr aphi cs
Vect or Gr aphi cs
Rast er Gr aphi cs

Graphi cal application
2D based graphi cal application
Vect or based graphical application

Rast er based graphical application

3DG aphi cs 3D based graphi cal application
Scanni ng Tool to scan a file/text
CCR Optical character recognition

Phot ogr aphy

application

Canera tools, etc.

Vi ewer

Settings
Deskt opSetti ngs
Har dwar eSet ti ngs

Tool to view e.g. a graphic or pdf
file

Settings applications
Configuration tool for the GU

A tool to manage hardware
conponents, |ike sound cards, video
cards or printers

PackageManager A package manager application

Net wor k Net wor k application such as a web
br owser

Di al up A dial -up program

I nst ant Messagi ng

An instant nessaging client

I RCA i ent

-067 -

An | RC client

Cat egory Descri ption

Fi | eTransfer Tool s |i ke FTP or P2P prograns

HanRadi o HAM r adi o software

News A news reader or a news ticker

P2P A P2P program

Renot eAccess A tool to renptely nanage your PC

Tel ephony Tel ephony via PC

WebBr owser A web browser

WebDevel oprent A tool for web devel opers

Audi oVi deo A mul tinmedia (audi o/ vi deo)
application

Audi o An audi o application

M di An app related to MDI

M xer Just a mi xer

Sequencer A sequencer

Tuner A tuner

Vi deo A video application

TV A TV application

Audi oVi deoEdi ti ng Application to edit audi o/video
files

Pl ayer Application to play audi o/ video
files

Recor der Application to record audi o/ vi deo
files

Di scBur ni ng Application to burn a disc

Gane A gane

Acti onGane An action game

Advent ur eGane Adventure style gane

Ar cadeGane Arcade style gane

Boar dGane A board gane

Bl ocksGane Fal i ng bl ocks gane

Car dGane A card gane

Ki dsGame A game for Kkids

Logi cGane Logi ¢ ganes like puzzles, etc

Rol ePl ayi ng A rol e playing ganme

Si mul ati on A simul ati on gane

Spor t sGane A sports gane

Strat egyGane A strategy gane

Educati on Educati onal software

Art Software to teach arts

- 068 -

Cat egory Descri ption

Construction

Musi ¢ Musi cal software

Languages Software to learn foreign | anguages
Sci ence Scientific software

Ast ronony Astronony software

Bi ol ogy Bi ol ogy software

Chemi stry Chemi stry software

Geol ogy Geol ogy software

Mat h Mat h sof t war e

Medi cal Sof t war e Medi cal software

Physi cs Physi cs software

Teachi ng An education program for teachers
Anusenent A sinpl e anusenent

Appl et An applet that will run inside a

panel or another such application
likely desktop specific

Ar chi vi ng A tool to archive/backup data

El ectronics El ectronics software, e.g. a circuit
desi gner

Emul at or Emul at or of another platform such
as a DOCS enul at or

Engi neeri ng Engi neering software, e.g. CAD
pr ogr ans

Fi | eManager A file manager

Shel | A shell (an actual specific shel

such as bash or tcsh, not a
Ter m nal Enul at or)

Scr eensaver A screen saver (launching this
desktop entry should activate the
screen saver)

Ter m nal Enul at or A terminal enul ator application

Trayl con An application that is primarily an
icon for the "systemtray" or
"notification area" (apps that open
a normal wi ndow and just happen to
have a tray icon as well should not
list this category)

System System appl i cation, "System Tool s"
such as say a |l og viewer or network
noni t or

Fi | esystem A file systemtool

Moni t or Moni t or application/appl et that

nmoni tors some resource or activity

- 069 -

Cat egory Descri ption

Security A security too

Uility Smal | utility application
"Accessories”

Accessibility Accessibility

Cal cul at or A cal cul at or

Cl ock A cl ock application/appl et

Text Edi t or A text editor

KDE Application based on KDE libraries

GNOVE Application based on GNOVE |ibraries

GTK Application based on GIK+ |ibraries

Q Application based on Q¢ libraries

Mot i f Application based on Mtif libraries

Java Appli cation based on Java QU

libraries, such as AWT or Sw ng

Consol eOnl y Application that only works inside a
term nal (text-based or command |ine
application)

7.7 XMLPatch Sections

Today, the most popular way to keep configuration data or data at all is a file in
XML document format. Its syntax follows the conventions as defined in the XML
(or "Extended Markup Language") specification (http://www.w3.org/TR/xml/).

wInst offers XMLPatch sections for editing XML documents. When calling an
XMLPatch section the document path name is given as parameter, e.q.

XMLPatch mozilla mimetypes $mozillaprofilepath$ + "\mi netypes.rdf"

With the actions defined for this section type wInst can

- select (and optionally create) sets of elements of a XML document
according to a path description

- patch all elements of a selected element set

- return the names and/or attributes of the selected elements to the calling
section

To clarify the working of the section commands some concepts shall be
sketched:

-70 -

7.7.1 Structure of a XML Document

A XML document logically describes a "tree" which starting from a "root" -
therefore named document root - grows into branches. Every branch is
labelled a node. The sub nodes of some node are called children or child nodes of
their parent node.

In XML, the tree is constructed from elements. The beginning of any element
description is marked by a tag (similarly as in HTML) i.e. a specific piece of text
which is set into a pair of angle brackets ("< ">“, The end of the element
description is defined by the the same tag text but now bracket by "</ and
»=>"“. If an element has no subordered elements then there is no space needed
between start tag and end tag. In this case the two tags can be combined to
one with end bracket "/>".

This sketch shows a simple "V"-tree - just one branching at the root level,
rotated so that the root is top:

| root node (Ilevel 0)
[\ node 1 and node 2 both on level 1
implicitly given end nodes bel ow | evel 1

This tree could be described in XML in the following way:

<?xm version="1.0"?>

<r oot >
<node_l evel _1 no 1>
</ node |l evel 1 no 1>
<node_l evel _1 no_ 2>
</ node | evel 1 no 2>

</root >

The first line has to declare the XML version used. The rest of lines describe
the tree.

So long the structure seems to be simple. But yet we have only "main nodes"
each defining an element of the tree and marked by a pair of tags. But each
main node may have subnodes of several kinds.

- Of course, an element may have subordered elements, e.g. we may have
subnodes A to C of node 1:

<node_l evel _1 no_1>
<node_| evel _2_A>
</ node_| evel 2 A>
<node_| evel _2_B>
</ node_| evel 2 B>
<node_l evel _2 C
</ node_| evel 2 c>

-71 -

</ node_l evel _1_no_1>

- Ifthere are no subordered elements an element can have subordered text. Then
it is said that the element has a subordered text node. Example

<node_l evel 1 no_2>hello world
</ node_| evel 1 no 2>

A line break placed in the text node is now interpreted as part of the text
where otherwise it is only a means of displaying XML structure. To avoid a
line break belonging to "hello world" we have to write

<node_l evel _1 no_2>hell o worl d</node_ |l evel 1 no 2>

- Every element (no matter if it has subordered elements or subordered text)
is constituted as a main node with specific tags. It can be further specified
by attributes, so called attribute nodes. For example, there may be attributes
“colour" or "angle" that distinguish different nodes of level 1.

<node_l evel _1 no_1 col our="green" angl e="65"
</ node_level 1 no 1>

For selecting a set of elements any kind of information can be used:
(1) the element level,

(2) the element names that are traversed when descending the tree (the "XML
path"),

(3) names and values of the used attributes,

(4) the ordering of attributes,

(5) the ordering of elements,

(6) other relationships of elements,

(7) the textual content of elements (resp. their suborderd text nodes).

In wInst, selection based on criteria (1) to (3) and (7) is implemented:

7.7.2 Options for Selection a Set of Elements

Before any operation on the contents of a XML file the precise set of elements
has to be determined on which it will be operated. The set is constructed step
by step by defining the allowed pathes through the XML tree. The finally
remaining end points of the pathes define the selected set.

-72 -

The basic wInst command is
- OpenNodeSet

There two formats for defining the allowed pathes a short and a long format .

(i) Explicit Syntax

The more explicit syntax may be seen in the following example (for a more
complex example cf. the cook book, section 8.4):

openNodeSet

document r oot
all _childelements_with
el enent nane: "defi ne"
all _childelements_with
el enent nane: "handl er "
attri bute: extension val ue="doc"
all _childelements_with
el enent nane: "appl i cati on”
end

(ii)_Short Syntax

The same node set is given by the line

openNodeSet ' define /handl er val ue="doc"/application /'

In this syntax, the slash separates the steps into to the tree structure which are
denoted in the more explicit syntax each by an own description.

(iii) Selecting by Textual Content (only for explicit syntax)

Given the explicit syntax we may select elements by the textual content of
elements:

openNodeSet

document r oot

all _childelenents_with:

all _childelenents_with:
el enent nane: "descri pti on"
attribute:“type* val ue="browser*
attribute: “name” val ue=“nozill a“

all _childelenents_with:
el ement nane: "1 i nkurl "
text:"http://ww.nozilla.org"

end

- 73 -

(iv) Parametrizing Search Strategy

In the exemplary descriptions of XML tree traversals there remain several
questions.

- Shall an element be accepted if the element name and the listed attributes
match but other attributes exist?

- Is the search meant to give one single result value, that is should the
resulting element set have no more than one element (and otherwise, the
XML file is to considered as erroneous)?

- Conversely, is it meant that a traversal shall at any rate lead to some
result, i.e. do we have to create the element if no matching element
exists?

To answer these questions explicitly there are parameters for the OpenNodeSet
command. The following lines show the default settings which can be varied by
changing the Boolean values:

- error_when_no_node_existing fal se

- war ni ng_when_no_node_exi sting true

- error_when_nodecount _greater_1 fal se

- war ni ng_when_nodecount _greater_1 fal se
- create_when_node_not_existing fal se

- attributes_strict false

With short syntax, parametrizing precedes the openNodeSet command and
holds for all levels of the XML tree. With the explicit syntax the parameters may
be set directly after the OpenNodeset command or be newly set for each level.
In particular the option , create when node not existing” may be set for some
levels but not for all.

7.7.3 Patch Actions

Their exists a bundle of commands which operate on a selected element set
- for setting and removing attributes

- for removing elements

- for text setting.

In detail:

— SetAttribute "attribute name" wvalue="attribute wvalue"

-74 -

sets the specified attribute for each element in the opened set to the specified
value. In the attribute does not exist it will be created. Example:

SetAttribute "name" value="OpenOffice Writer"
On the contrary, the command
— AddAttribute "attribute name" wvalue="attribute wvalue"

sets the specified attribute only to the specified value if it does not exists
beforehand. An existing attribute keeps its value. E.g. the command

AddAttribute "name" value="OpenOffice Writer"
would not overwrite the value if there was named another program before.
By
— DeleteAttribute "attribute name"

we remove the specified attribute from each element of the selected element
set.

The command
— DeleteElement "element name"

removes all elements with main node name (tag nhame) element name from
the opened element set.

Finally there exist two commands for setting resp. adding text nodes.:
- SetText "text"
and

- AddText "text"

E. Q.
Set Text "rtf"

transforms the element

<fi | eExt ensi ons>doc<fi | eExt ensi ons>
into
<fil eExtensi ons>rtf<fil eExtensi ons>

By

-75 -

Set Text ""
we remote the text node completely.

The variant

AddText "rtf"

sets the text only if there war no text node given.

7.7.4 Returning Lists to the Caller

A XMLPatch section may return the retrieved informations to the calling
primary section. The result always is a String list, and to get it, the call must
done via the String list function getReturnListFromSection. E.g. we may have
the following String list setting in an Aktionen section where we use a
XMLPatch mime section

Def StringList listl
set |istl=getReturnListFrontection (' XM.Patch_nine "c:\mnmetypes.rdf"")

Inside the XMLPatch section we have return commands that determine the
content of returned String list:

- return elements

fills the selected elements completely (element name and attributes) into
the return list.

- return attributes
produces a list of the attributes.
- return elementnames
produces a list of the element names.
- return attributenames
gives a list only of the attribute names.
- return text
list all textual content of the selected elements.
- return counting

gives a report with numerical informations: line 0 contains the number of
selected elements, line 1 the number of attributes.

-76 -

7.8 ProgmanGroups Sections

This section type is deprecated.

7.9 WinBatch Sections

In a winBatch section every external windows executable can be started. (This
includes that as from Windows explorer any file type for which a program is
registered can be directly called.)

E.g, we may start some existing setup program by the following line in a
WinBatch section

Y%syst endri ve% t enp\ set up. exe

There a some parameters of the winBatch call which determine if (or how
long) wInst shall be wait for the started programs returning

Default is that wInst waits for every initiated process to come back. This
behaviour corresponds to the call parameter /WaitOnClose. On the contrary, if
wInst shall proceed while the started processes run in their own threads we
have to apply the call parameter /LetThemGo.

The are more sophisticated options for special circumstances.

If we do the call with parameter /WaitSeconds [number of seconds] then
wInst is waiting the specified time before proceeding. In the default
configuration we additionally wait for the started programs returning. If we
combine the parameter with the option /LetThemGo then wInst continues
processing when the waiting time is finished.

Even more special conditions are given by the options
/WaitForWindowAppearing [window title]

resp.

/WaitForWindowVanish [window title]

The first option means that wInst waits until any process lets pop up a
window with title window title. With the second option wInst is waiting as
long as ein certain window (1) appeared on the desktop and (2) disappeared
again.

If we know a process name whose ending we have to await we can use

/WaitForProcessEnding program

-77 -

This can be combined with a timeout setting:
/WaitForProcessEnding program /TimeOutSeconds seconds

Example:

W nbat ch_uni nstal | /Wit For ProcessEndi ng "uni nstall.exe" /Ti meQut Seconds 20
[Wnbat ch_uni nstal |]
%Seri pt Pat h% uni nstal | _starter. exe

7.10 DOSBatch/ShellBatch Sections

7.10.1 Windows

Via DOSBatch (also called shellBatch) sections a wInst script uses Windows
shell scripts for tasks which cannot be fulfilled by internal commands or for
which alreay a batch script solution exists.

A DOSBatch section is simply processed by writing the lines of the sections into
the file winst.bat in c:\tmp and then calling this file in the context of a
cmd.exe Shell. This explains that a bosBatch section may contain all Windows
shell commands can be used.

The shell process is created with the view set to normal. That has the
consequence that a command shell window appears which allows user
interaction.

Parameters of a DosBatch section are directly passed as quasi command line
parameters to the Windows shell script. E. g. we may call DosBatch 1 in
Aktionen section to get a "Hello World" from the DOS echo command:

[Akti onen]
DosBatch_1 today we say "Hello Wbrld"

[DosBat ch_1]
@cho of f
echo %4 R Y38 %4
pause
The output of the shell commands can be captured by using the String list

function getOutStreamFromSection () (cf. section 6.4.4).

If the return list shall be evaluated programmatically it is advised to use the '@’
prefix of commands. Such we suppress the repetition of the command line in
the output which may different formats dependent on system configurations.

-78 -

7.10.2 Linux

Via DOSBatch sections, here better called sShellBatch sections do the same
job in Linux as in Windows with minor differences:

The temporary batch file is generated in /tmp and executed in a xterm
environment (xterm -e).

The output of the scripts is written to the log file.

7.11 DOSInAnlcon/ShellinAnlcon Sections

7.11.1 Windows

The section type DOSInAnIcon Or ShellInAnIcon is identical to DOSBatch
regarding syntax and execution method but has a different appearance:

For DOSInAnIcon, a shell process is created with view set to minimized. That
has the consequence that it is executed "in an icon". No command window
appears, user interaction is suppressed.

Instead, the output of the script is written to the log file.

7.11.2 Linux

In Linux, the only difference between a ShellBatch and a ShellInAnIcon
section call is that no xterm window is shown for the second.

7.12 Registry Sections
Of course, this section type is only available for Windows.

By a Registry section call we can create, patch and delete entries in the
Windows registry. As usual, wInst logs every operation in detail as long as
logging is not turned off.

7.12.1 Example

Let us set some registry variables by a call to the section Registry TestPatch
where the section is given by

[Regi stry_Test Pat ch]

- 79 -

openkey [HKEY_Current_User\ Environnent\ Test]
set "Testvarl" = "c:\rutils; %ystenroot % hey"
set "Testvar2" = REG DWORD: 0001

7.12.2 Call Parameters

The standard call of a Registry section has no parameters. This is sufficient as
long as the operations aim at the standard registry of a Windows system and
all entries can be defined using a globally defined registry path.

wInst also offers that the patch commands of a Registry section are
automatically executed "for all users" which are locally defined. l.e. the patches
are made for all user branches of the local registry. This interpretation of the
section is evoked by the parameter /Al11NTUserDats

Further parameters control which syntactical variant of the Registry section
shall be valid:

- The parameter /regedit declares that the syntax corresponds the export
file syntax of the Windows Registry Editor regedit. Such, the lines of a
regedit export file may directly be used as a Registry resp. the file itself
can serve as an external section (cf. section 5 in this chapter).

- Similarly, the parameter /addReg declares that the Registry section
syntax is that of an inf-file (as used e.qg. for driver installations (cf. section 6
in this chapter).

These not wInst specific syntactical variants are not defined in this manual
since they usually will be generated programmatically.

7.12.3 Commands

The default syntax of a Registry section is oriented at the command syntax of
other patch operations in wInst.

There exist the following commands:
- OpenKey

- Set

- Add

- Supp

- GetMultiSZFromFile

-80 -

DeleteVar
DeleteKey
ReconstructFrom

Flushkey

In detail:

OpenKey <registry key>
opens the specified key for reading and (if the user has the necessary
privileges) for writing. If the key does not exist it will be created.

The registry key is denoted by a registry path name. Under regular
circumstances it starts with one of the "high keys" which build the top level
of the registry tree data structure (above the "root"). These are:

HKEY CLASSES ROOT, HKEY CURRENT USER, HKEY LOCAL MACHINE,
HKEY_USERS, HKEY_CURRENT_CONFIG which may optionally be written as
HKCR, HKCU, HKLM. HKU.

In wInst syntax of the registry path name the elements of a path are
separated by single backslashs.

All other commands operate on an opened registry key.

Set <varname> = <value>
sets the registry variable <varname> to value <value>.

<varname> as well as <value> are Strings and have to be enclosed in
citations marks.

A non-existing variable will be created.
The empty variable "" denotes the standard entry of a registry key.

If some registry variable shall be created or set which has not the default
type Registry-String (REG_SZ) we have to use the extended variant of the
set command:

Set <varname> = <registry type>:<value>
sets the registry variable <varname> to value <value> of type <registry
type>. The following registry types are supported:

REG_SZz (String)
REG_EXPAND SZ (a String containing substrings which the operatings system

- 81 -

shall expand e.g.)

REG_DWORD (Integer values)

REG_BINARY (binary values usually given as two-digit hex numbers 00 01
02 .. 0F 10 ..,)

REG_MULTI_SZz (String value arrays, in wInst we have to use "|" as
separator):

An example for setting a REG_MULTI SZ:
set "myVariable" = REG MILTI _SZ:"A| BC| de"

To construct a multistring we may put the strings as lines in a file and read
it using GetMultiSZFromFile (cf. below).

Add <wvarname> = <value>

resp.

Add <varname> = <registry type> <value>

are analogous to the Set commands with the difference that entries are
only added but values of existing variables not changed.

Supp <varname> <list separator> <supplement>

This command interprets the String value of variable <varname> a list of
values separated by <list separator> and adds the String <supplement>
to this list (if it not already contained). If <supplement> contains the
<listset _user Rhino.reg separator> it is split into single Strings, and
the procedure is applied to each single String.

A typical use is adding entries to a path variable (which is defined in the
registry).
supp keeps the original String variant (REG EXPAND SZ Or REG SZ).

Example:

The environment path is determined by the value for the variable Path as
defined inside the registry key

HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Sessi on
Manager \ Envi r onnent

To add some entries to the path definition we have to get access to this key
via an OpenKey. Then we can apply e.g.

-82 -

supp "Path" ; "C:\utils; %JAVABIN%"
in order to supplement the path by "c:\utils"™ and "$JAVABIN%".

(Windows expands %JAVABIN% ato the correct path name if $JAVABINS
exists als variable and the String is a REG_EXPAND Sz.)

In Win2k there is the phenomen observed that the path entry can only
beset user Rhino.reg read and set by a script if there was set some value
before. The following workaround makes things to:

Wer read the old value of path from the environment variable , write this
value to the registry value - and are then able to work with the registry
variable:

[Akti onen]

Def Var $Pat h$

set $Path$ = EnvVar ("Path")
Regi st ry_Pat hPat ch

where RegistryPathPath looks like

[Regi stry_Pat hPat ch]

openkey [HKEY_LOCAL_MACHI NE\ SYSTEM Current Contr ol Set\ control \ Sessi on
Manager \ Envi r onment]

set "Pat h"="$Pat h$"

supp "Path"; "c:\oraw n\bin"

Caution: The environment variable gets a changed value after a reboot.
GetMultiSZFromFile <varname> <file name>
reads the lines of a file and puts them together building a Multistring.

DeleteVar <varname>
removes the entry with variable <varname> from the opened key.

DeleteKey <registry key>
deletes the registry key recursively including all subkeys and contained
variables. The registry key is defined as for OpenKey.

Example:

[Regi stry KeyDel et €]
del et ekey [HKCW Envi r onment \ subkey1]

- 83 -

- ReconstructFrom <file name>
(deprecated)

- FlushKey
ensures that all entries of a key are saved to the file backing the in memory
registry (is automatically done when closing a key, therefore in particular
when a Registry section is left).

7.12.4 Registry Sections to Patch "All NTUser.dat"

A Registry section called with parameter /A11NTUserdats is executed for
every local user.

To this end, for all local users (as permanent storage for the registry branch
HKEY Users abgelegt sind) the files NTUser.dat are searched one by one and
temporarily loaded into a subkey of some registry branch. The commands of
the Registry section are executed for this subkey, then the subkey is
unloaded. As result, the stored NTUser.dat is changed.

The mechanism does not work for a logged in user . For, his NTUser.dat is
already in use, and the request to load it produces an error. To do the changes
for him as well, the commands of the Registry additionally are executed on
HKEY Current User (which isthe HKEY Users branch for the logged in user).

There is a NTUser .dat for Default User which serves as template for newly
created users in the future. Therefore the patches are prepared for them as
well.

The Registry section syntax remains unchanged. But the key pathes are
interpreted relatively:

In the following example the registry entry for variable FileTransferEnabled
is de facto set for all HKEY Users\xX\Software... sukzessive for all XX (all
users) on the machine:

[Registry All Users]

openkey [Sof t war e\ ORL\ W nVNC3]
set "Fil eTransfer Enabl ed"=reg_dwor d: 0x00000000

7.12.5 Registry Sections in Regedit Format

If @ Registry section is called with parameter /regedit the section is not
expected in wInst standard format but in the format as produced by the
Windows regedit tool.

-84 -

The export files generated by regedit have - not regarding the head line - ini
file format. Example:

REGEDI T4
[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . or g]

[HKEY _LOCAL_MACHI NE\ SOFTWARE\ opsi . or g\ gener al]
"boot node" =" BKSTD'

"wi ndomai n"=""

"opsi conf " =dwor d: 00000001

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ opsi . or g\ shar ei nf 0]
"user"="pcpatch"

"pcpat chpass"=""

“depoturl "="\\\\boni fax\\opt _pcbin\\install"
“configurl"="\\\\bonifax\\opt_ pcbin\\pcpatch"
"utilsurl"="\\\\bonifax\\opt_ pcbhin\\utils"
"utilsdrive"="p:"

"configdrive"="p:"

"depotdrive"="p:"

The sections denote registry keys to be opened. Each line describes some
variable setting like the set command in a wInst registry section.

But, we cannot really have an internal wInst section that is constructed from
another sections. Therefore Registry section with parameter /regedit can
only be given as external section or by the function call 1oadTextFile, e.g.

registry "%scri pt pat h% opsi orgkey.reg" /regedit

With Windows XP the registry editor regedit does not produce Regedit4-
Format but a new format that is indicated by the head line

"W ndows Registry Editor Version 5.00"

In this format, Windows offers some additional value types. But more
important, the export file is now generated in Unicode. wInst sections
processing is based on Delphi libraries which use 8 bit Strings. To work with a
regedit 5 export the coding therefore has to converted. This can be done
manually, e.g. by a suitable editor. But we may also feed the original file to
wInst using the String list function loadUnicodeTextFile. E.q., if
printerconnections.reg be a unicode based export, we can call regedit in
the following form which does the necessary code conversion on the fly:

regi stry loadUnicodeTextFile ("%scri pt pat h% opsi orgkey.reg") /regedit

A registry patch using regedit format can as well be executed "for all NT users"
similarly as the common wInst registry section. That is, a path like

-85 -

[HKEY_CURRENT_USER\Software\ORL] is to replaced by the relative [Software\
ORL].

7.12.6 Registry Sections in AddReg Format

A Registry section can be called with parameter /addReg. Then its syntax
follows the principles of the AddReg sections in inf files as used e.qg. for driver
installations.

E.g.:
[Regi stry_For Acr or ead]
HKCR, " . fdf","", 0, " Acr oExch. FDFDoc"
HKCR, ". pdf","", 0, " Acr oExch. Docunent "HKCR, "PDF. Pdf Ctrl.1","", 0, "Acr"

7.13 OpsiServiceCall Sections

This type of section allows to retrieve information - or set data - via the opsi
service.

There are three options for determining a connection to an opsi service:

- Per default it is assumed that the script is executed in the standard opsi
installation environment. l.e., we already have a connection to an opsi
service and can use it

- We set the url of the service to which we want to connect as a section
parameter and supply as well the required username and password as
section parameters.

- We demand an interactive login to the service (predefining only the service
url and, optionally, the user name).

Retrieved data may be returned as a String list, and from there used for
scripting purposes.

7.13.1 Call Parameters

The call parameters determine which opsi service will be addressed and set the
connection parameters if needed.

Connection parameters can be defined via

- /serviceurl STRINGEXPRESSION

- 86 -

- /username STRINGEXPRESSION
- /password STRINGEXPRESSION

If these parameters, at least the serviceurl, are given wInst tries to open
connection to an opsi service which has the url.

The additional option
- /interactive

raises an interactive connect. The user will be asked for confirming the
connection data and supplying the password. Of course, this option cannot be
used in scripts which shall be executed fully automatically.

If no connection parameters are supplied wInst assumes that an existing
connection shall be reused.

If no connection parameters are given and not the interactive option is
specified (neither at this call nor at a call earlier in the script) it is assumed that
we are in a standard opsi boot process and, already having a connection to an
opsi service, we try to address it.

In the case that there we had a connection to a secondary opsi service we may
(re)set the connection to the standard opsi service via the option

- /preloginservice

7.13.2 Section Format
An opsiServiceCall is defined by its methodname and a list of parameters.

Both are defined in the section body. It has format
" met hod" : METHODNAME- STRI NG
"parans": |
JSON PARAMETER ENTRI ES
]

JSON PARAMETER ENTRIES is a (possibly empty) list of Strings or more
complicated Json items (as required by the specified method).

E.g. we may have a section call
opsi servi cecall _clientldsList

where the required methodname and the (empty) list of parameters is set by

[opsiservicecall _clientldsList]
"method":"getClientlds_list"

-87 -

"parans":[]

The section call produces the list of names (IDs) of all local opsi clients.

If the list shall be exploited to other than test purposes the section call can be
used in a String list expression:

Def StringList $resultList$
Set $resultList$=get ReturnListFronSection("opsiservicecall_clientldsList")

The usage of GetReturnListFromSection is documented in the String list
function chapter of this manual (section 6.4.5)

A hash - in this case a String list - where each item is a pair name=value - is
produced by the following opsi service call:
[opsi servicecal | _host Hash]
"“met hod": "getHost hash"
"paranms": |
"pcbon8. ui b. | ocal "

]

7.14 ExecPython Sections

ExecPython sections basically are Shell-Sections (like DosInAnIcon) which call
the - in the system installed - python script interpreter. It takes the section
content as python script, and the section call parameter as parameters for the
script.

Python as a full grown programming language gives definitely more coding
options than any internal wInst commands, and is as well far more powerful
than a command shell program. Therefore it can be recommended to use
python for complicated tasks. Especially if data objects shall be communicated
to the opsi service a python script is the natural approach since the opsi
service is written itself in python, and there has not to any translation of data
coding.

7.14.1 Example

The following example demonstrates a execPython call with a list of
parameters for that are printed by the python commands.

The call may look like

execpython_hello -a "option a" -b "option b" "there we are"

where the section shall be defined by:

-88 -

[execpyt hon_hel | 0]
i mport sys
print "we are working in path: ", a
if len(sys.argv) > 1 :
for arg in sys.argv[1:]
print arg

el se:

print "no argunents”

print "hello"

The print command output will be caught and written to the log file. So we get
in the log

option a

-b

option b
there we are
hell o

Observe that the loglevel must be set at least to Info (that is 1) if these outputs
shall really find their way to the log file.

7.14.2 Interweaving a Python Script with the winst Script

An execPython section is actually integrated with the surrounding wInst
script by four kinds of shared data:

- A parameter list is transferred to the python script.

- Everything which is printed by the python script is written into the wInst
log.

- The wInst script substitution mechanism for constants and variables when
entering a section does its expected work for the execPython section.

- The output of an execPython section can be caught into a StringList and
then used in the ongoing wInst script.

An example for the first two ways of interweaving the python script with the
wInst scriptis already given above. We extend it to retrieve the values of
some wInst constants or variables.

- 89 -

[execpyt hon_hel | 0]

i mport sys

a = "Yscriptpat h%

print "we are working in path: ", a
print "my host IDis ", "%ost|DW

if len(sys.argv) > 1 :
for arg in sys.argv[1:]

print arg
el se:
print "no argunents”
print "the current loglevel is ", "$loglevel $"

print "hello"

Of course, the $loglevel$ variable has to be set beforehand in the Aktionen
section:

Def Var $LoglLevel $
set $l ogl evel $ = getLogl evel

Finally, in order to being able to use of some results of the section output, we
produce it into a StringList variable by calling the execPython section in the
following way:

Def St ri ngLi st pythonresult
Set pythonResult = Get Qut StreanfrontSecti on(' execpython_hello -a "opt a“')

8 Cook Book

This chapter contains a growing collection of examples showing real wold
problems that can be mastered by simple or sophisticated pieces wInst
scripting.

8.1 Delete a File in all Subdirectories

Since wInst 4.2 there is an easy solution for this task: To remove a file
alt.txt from all subdirectories of the user profile directory the following
Files call can be used:

files delete At /all Nt UserProfiles

where we have got

[files delete Alt]
del ete "%JserProfileDir%alt.txt"

-90 -

Neverthelesse we document a workaround which could be used in older winst
versions. It demonstrates some techniques which may be helpful for other
purposes.

The following ingredients are needed:

- A DosInAnIcon section which produces a list of all directory names.
- AFiles section which deletes the file alt.txt in some directory.
- A String list processing that puts the parts together.

The complete script should look like:

: here we are in Aktionen section:

; variable for file name
Def Var $deleteFile$ = "alt.txt"

; String |ist declarations
Def StringList listO
Def StringList listl

; capture the lines produced by the dos dir comand
Set 1ist0 = getQutStreanfronBSection (' dosbatch_profiledir')

; Loop through the lines. Call a files section for each line.
for x in list0 do files_delete x

; Here are the two special sections
[dosbat ch_profil edir]
@ir "% rofileDir% /b

[files_del ete_x]
delete "%rofil eDir % x\ $del et eFi | e$"

8.2 List All Shares Available On a Domain Controller
We want to get the list of the shares on some domain controller.

The first aim is find the value of the variable environment variable USERDOMAIN
gesucht.

This is done by
- aDosBatch section which lists alle environment variables, followed by

- a Sub section that searches the variables and writes the wanted value to a
wInst Vvariable Suserdomains.

-01 -

Suserdomain$ is then used to construct a net view command in a DosBatch
section which returns the requested list.

Here is the piece of scripting. In order to avoid innecessary logging loglevel
is set to -1:

Def StringList listO
Def StringList listl
Def StringList list2
def var $userdonai n$

| ogl evel = -1
Set |istO=get SubLi st (2:, get Qut Streanfrontecti on(' DosBat ch_envi ronnment'))

for $a%$ in list0 do sub_getuserdonain
| ogl evel = 2

[sub_get user domai n]

set listl = splitString ("a", "=")
if takestring(0, listl) = "USERDOVAI N'
set $userdommi n$ = takestring(l, listl)
| ogl evel = 2
dosbat ch_show_shar es
| oglevel = -1
endi f

[dosbat ch_envi ronment]
set

[dosbat ch_show shar es]
net vi ew $user donmi n$

8.3 Script for Installations in the Context of a Local
Administrator

Sometimes it is necessary to run an installation script as an ordinary local user
and not in the context of the opsi service. For example, there are installations
that require a user context or use other services that are started after a user
login.

MSI installations which seem to need a local user can sometimes be configured
by the option ALLUSERS=2 to proceed without such a user:

-02 -

[Akti onen]

Def Var $LOG_LOCATI ON$

Set $LOG LOCATION$ = "c:\tnp\nmyproduct. | og"
wi nbatch_instal |l _myproduct

[w nbatch_install _nyproduct]
nei exec /qgb ALLUSERS=2 /|* $LOG LOCATION$ /i %SCRI PTPATH
% files\myproduct. nsi

In other case it is necessary to create a temporary administrative user in whose
context the installation takes place. This can be done as follows:

- Create a directory localsetup in the product directory (i.e. in
install\productname).

- Move all installation files into this directory.

- Rename the installation script from <productname>.ins to
local <productname>.ins

- Create a new <produktname>.ins in install\productname and write the
statements as below documented (with variables values adapted to your
situation) into it .

- Make sure that the script that is now named local <produktname>.ins
finishes with a reboot call: The last executed command in the Aktionen
section has to be the line
ExitWindows /Reboot

- Insert a call at the beginning of the script 1ocal <produktname>.ins that
removes the password of the temporary local administrator:

[Akt i onen]
Regi stry_del _autol ogin

[Regi stry_del _autol ogi n]
openkey [HKLM SOFTWARE\ M cr osof t \ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Nane"=""
set "Defaul t Password"

The wInst script template temporarily generates a user context, executes an
installation in it, then removes it. Before using the template the following
values are to be set adequately:

. the value for the variable $sProductnames

-03 -

the value of the variable $ProductSizes
$SLockKeyboard$ to "true".
The script proceeds as follows:
- It creates a local administrator opsiSetupAdmin;
- saves the autologon state;
- inserts opsiSetupAdmin as autologon user;

- copies the installation files to the client (as defined in $1ocalFilesPaths);
among them the installation script that is to be executed in the local user
context;

- creates a RunOnce entry in the registry that calls wInst with the local
script as argument;

- reboots in order to make the registry change work;

- when wInst runs again, it calls an ExitWindows /ImmediateLogout, and
the second scripting level begins to work:

- By autologon , opsisetupAdmin is logged on without user
interaction.

- Windows calls the RunOnce command, that is the wInst call.

- The wInst script should now regularly proceed. But at its end,
there must be a ExitWindows /ImmediateReboot command.
Otherwise the desktop would of the administratrive user
opsiSetupAdmin who is already logged at the moment would be
accessible.

- after the reboot, the main script works again cleaning everything (writing
back the old autologon state, deleting the local setup files, removing the
opsiSetupAdmin profile)

We call the two involved wInst scripts master scriptand local script. The first
one runs in a system service context, the second which does the specific
software installation runs in the context of a local administrator.

To observe:

- If the local script requires internal reboots then the master script must be
adapted to produce them. As long as the local script is not finished the

-94 -

master script hands over control to the local script by an ExitWindows
/ImmediateLogout. Of course the RunOnce entry has to be created for
each run. Since username and password for the autologon are removed at
the beginning of the local script they have to be reset each time as well.

There is no direct access from the local script to the product properties
(usually via the String function Inivar) . If there are values needed the
master script must retrieve them and e.g. save them temporarily in the
registry.

There may be product installations by external setup program calls which
change registry entries which are saved by the master script and usually
written back at the end of the installation. In this case the master script
must be adapted to avoid writing back.

The local script runs with an administrator logged in. You have to lock the
keyboard when testing is done. Otherwise anybody sitting at the client
could stop script execution and take over the session.

In the following example, the password of the tempory opsiSetupAdmin
user is set via the function rRandomstr, which is strongly recommended.

In order to avoid logging of passwords the loglevel is temporarily set to -2.

(A newer version of the following example can be found under

http://www.opsi.org/opsi wiki/TemplateForInstallationsAsTemporarylLocalAdmin

)

Copyright (c) uib ummelt informatik buro gnbh (www. ui b. de)
This sourcecode is owned by uib
and published under the Ternms of the General Public License.

[Initial]

LogLevel =2

Exi t OnError =f al se

Scri pt Error Messages=on
Tr aceMode=of f

[Akti onen]
Def Var $Pr oduct Narme$
Set $Product Nane$ = "soft prod"
Def Var $Product Si zeMB$
Set $Product Si zeMB$ = " 20"
Def Var $Local Set upScri pt$
Set $Local SetupScript$ = "l ocal _"+$Product Name$+".ins /batch”
Def Var $LockKeyboar d$
set $LockKeyboard$ to "true" to prevent user hacks while admin is logged in
Set $LockKeyboar d$="tr ue"

- 95 -

http://www.opsi.org/opsi_wiki/TemplateForInstallationsAsTemporaryLocalAdmin

; Set PasswdLoglLevel to -2 to prevent passwords to | ogged (not working yet)
Def Var $PasswdLogLevel $

Set $PasswdlLoglLevel $="-2"

Def Var $Opsi Admi nPass$

Def Stringlist $outlist$

; some variables for the sub sections
Def Var $SYSTEMROOT$

Def Var $SYSTEMDRI VE$

Def Var $Scri pt Pat h$

Def Var $ProgranFilesDir$

Def Var $HOST$

Def Var $AppDat aDi r $

Set $SYSTEMDRI VE$ = " USYSTENMDRI VE%
Set $SYSTEMROOT$ = " USYSTEMROOTY

set $Scri pt Pat h$="%Scri pt Pat h%

set $Progranfil esDi r $="9%°r ogranti | esDi r %
set $Host $="%Host %

set $AppDat aDi r $=" %AppDat aDi r %

; tenmp is always useful

Def Var $TEMPS$

Set $TEMP$= EnvVar (" TEMP")

Def Var Tnp

set $Tnmp$ = EnvVar ("TMP")

;Vari abl es for version of the operating system (OS)- Test
Def Var $0S$

Def Var $M nor OS$

set $0S$ = Get OS

set $M nor OS$ = Get NTVersi on

Def Var $Reboot Fl ag$

Def Var $W nst RegKey$
Def Var $Reboot RegVar $
Def Var $Aut oNarme$

Def Var $Aut oPass$

Def Var $Aut oDons

Def Var $Aut oLogon$

Def Var $Aut oBackupKey$
Def Var $Local Fi | esPat h$
Def Var $Local Wnst $

Set $W nst Regkey$ = " HKLM SOFTWARE\ opsi . or g\ wi nst "

Set $Reboot Fl ag$ = Get Regi stryStringVal ue("["+$W nst RegKey$+"]
"+" Reboot Fl ag")

Set $Aut oBackupKey$ = $W nst RegKey$+"\ Aut oLogonBackup"

Set $Local Fil esPath$ = "C:\opsi_local _inst"

Set $Local Wnst$ = "c:\opsi\util s\winst32. exe"

if ($0S$ = "W ndows_NT")

if not (($RebootFlag$ = "1") or ($RebootFlag$ = "2"))

; Anwei sungen vor Reboot

i f not(HasM ni nunSpace ("%SYSTEMDRI VE% , ""+$Product Si zeMB$+" MB"))
LogError "Not enough space left on C. . "+$ProductSi zeMB$+" MB on C
required for "+$Product Nane$+"."

- 906 -

el se

; show product picture

ShowBi t map /3 "%scri pt pat h% | ocal set up\ " +$Pr oduct Nane$+". bnp"
" $Pr oduct Narme$"

Message "Preparing "+$Product Nane$+" install "
sub_Prepar e_Aut oLogon

; we need to reboot now to be shure that the autol ogon work
: Reboot initialisieren ..

Set $Reboot Fl ag$ = "1"

Regi st ry_SaveReboot Fl ag

Exi t Wndows /| mmedi at eReboot

endi f ; genuegend platz
endif ; Rebootflag = not (1 or 2)
if ($RebootFlag$ = "1")

; Statenments after Reboot
; Set new Rebootfl ag
Set $Reboot Fl ag$ = "2"
Regi st ry_SaveReboot Fl ag
; the work statenents
Message "Preparing "+$Product Nane$+" install "
Regi st ry_enabl e_keyboard
Exi t Wndows /| mmedi at eLogout
; now | et the autol ogon work
; it will stop with a reboot
endif ; Rebootflag =1
i f ($RebootFlag$ = "2")

; statenments after second reboot

Set $Reboot Fl ag$ = "0"

Regi st ry_SaveReboot Fl ag

; This part mnmust be here even if nothing is done

; possibly we do sone cl eanup

Message "C eanup "+$Product Name$+" i nst al

sub_Rest ore_Aut oLogon

; This is the clean end of the installation
endif ; Rebootflag = 2
el se

LogError "W need W ndows 2000/ XP for installing with tenmporary |ocal user
endi f

[sub_Prepare_Aut oLogon]
; copy the setup script and files
Files_copy_Setup_files_| oca
; read actual Autol ogon val ues for backup
set $Aut oName$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t User Nane")
; i f AutolLogonNane is our setup adm n user, sonething bad happend
; then let us cleanup
i f ($Aut oName$="opsi Set upAdmi n")
set $Aut oNanme$=""
set $Aut oPass$=""

-97 -

set $Aut oDont=""

set $Aut oLogon$="0"
el se

set $Aut oPass$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t Password")

set $Aut oDons = Get Regi stryStringVval ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Def aul t Donmai nNane")

set $AutoLogon$ = Get Regi stryStringVal ue ("[HKLM SOFTWARE\ M cr osof t \ W ndows
NT\ Cur r ent Ver si on\ W nl ogon] Aut oAdmi nLogon")
endi f

; backup Aut oLogon val ues
Regi st ry_save_aut ol ogon

; prepare the adnmi n AutoLogon

; LogLevel =" $PasswdLoglLevel $"

LogLevel =-2
set $Opsi Adm nPass$= Randonttr

Regi st ry_aut ol ogon

; Create our setup admi n user

Dosl| nAnl con_nakeadnmi n

LogLevel =2

; remove c:\tnp\wi nst.bat with password

Fil es_renove w nst_bat

; store our setup script as run once

Regi stry_runOnce

; di sabl e keyboard and nouse while the autol ogi n admi n wor ks

i f ($LockKeyboard$="true")

Regi stry_di sabl e_keyboard
endi f

[sub_Rest ore_ Aut oLogon]

; read AutoLogon val ues from backup

set $Aut oName$ = Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Def aul t User Nane")

set $Aut oPass$ = Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Def aul t Passwor d")

set $Aut oDont= Get Regi stryStringVal ue("[" +$Aut oBackupKey$+"]
Def aul t Dormrai nNane")

set $Aut oLogon$= Get Regi stryStringVal ue("["+$Aut oBackupKey$+"]
Aut oAdmi nLogon")

; restore the val ues

; LogLevel =" $PasswdLoglLevel $"

LogLevel =-2
Regi stry_restore_aut ol ogon
LogLevel =2

; delete our setup adm n user

Dosl nAnl con_del et eadmi n

; cleanup setup script, files and profiledir
Files _delete Setup files_ |loca

; delete profiledir

Dosl nAnl con_del eteprofile

[Regi stry_save_aut ol ogon]

openkey [$Aut oBackupKey$]

set "Defaul t User Name" =" $Aut oNane$"

set "Defaul t Password"="$Aut oPass$"

set "Def aul t Domai nNanme" =" $Aut oDons"
set " Aut oAdm nLogon" ="$Aut oLogon$"

-08 -

[Regi stry_restore_autol ogon]

openkey [HKLM SOFTWARE\ M cr osof t\ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Name" =" $Aut oNane$"

set "Defaul t Password"="$Aut oPass$"

set "Def aul t Domai nNanme" =" $Aut oDons"

set " Aut oAdm nLogon" ="$Aut oLogon$"

[Dosl nAnl con_del et eadmi n]
NET USER opsi Set upAdni n / DELETE

[Regi stry_SaveReboot Fl ag]
openKey [$W nst RegKey$]
set "Reboot Fl ag" = "$Reboot Fl ag$"

[Files _copy_Setup files_|ocal]
copy -s %ScriptPath% | ocal setup*.* $Local Fil esPat h$

[Files delete Setup files_local]

del ete -sf $Local Fil esPat h$

; folgender Befehl funktioniert nicht vollstéandig, deshalb ist er zur Zeit
auskommrenti er

; der Befehl wird durch die Sektion "DoslnAnlcon_del eteprofile" ersetzt
(P.Onhler)

;del ete -sf "9Profil eDir% opsi Set upAdni n"

[Dosl nAnl con_del et eprofi |l e]
rdir /S /Q"%rofil eDir% opsi Set upAdmi n"

[Dosl nAnl con_makeadmi n]
NET USER opsi Set upAdni n $Opsi Adnmi nPass$ / ADD
NET LOCALGROUP Admi ni stratoren /ADD opsi Set upAdm n

[Regi stry_aut ol ogon]

openkey [HKLM SOFTWARE\ M cr osof t\ W ndows NT\ Cur r ent Ver si on\ W nl ogon]
set "Defaul t User Nanme" =" opsi Set upAdmi n"

set "Defaul t Password"="$0psi Adnmi nPass$"

set " Defaul t Domai nNane" =" ocal host "

set "Aut oAdm nLogon"="1"

[Regi stry _runonce]
openkey [HKLM SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ RunOnce]
set "opsi_autol ogon_setup"="$Local Wnst$ $Local Fi | esPat h$\ $Local Set upScri pt $"

[Regi stry_di sabl e_keyboar d]

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Ser vi ces\ Kbdcl ass]
; disable

set "Start"=REG DWORD: Ox4

; enabl e

;set "Start"=REG_DWORD: 0x1

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Moucl ass]
; disable

set "Start"=REG DWORD: 0x4

; enabl e

;set "Start"=REG_DWORD: 0x1

[Regi stry_enabl e_keyboar d]
openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Kbdcl ass]

- 99 -

; disable

;set "Start"=REG_DWORD: 0x4

; enabl e

set "Start"=REG DWORD: 0x1

openkey [HKEY_ LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces\ Moucl ass]
; disable

;set "Start"=REG_DWORD: 0x4

; enabl e

set "Start"=REG DWORD: 0x1

[Files_renove_w nst_bat]
delete -f c:\tnp_w nst. bat

8.4 XML File Patching: Setting Template Path for
OpenOffice.org 2
Setting the template path can be done by the following script pieces
[Akt i onen]

Def Var $oooTenpl ateDirectory$

;set path here:

Set $oooTenpl ateDirectory$ = "file://server/share/verzeichnis"

Def Var $sof fi cePat h$

Set $sof ficePat h$= Get Regi stryStri ngVal ue

(" [HKEY_LOCAL_MACHI NE\ SOFTWARE\ OpenOFfi ce. org\ OpenOf fice.org\2.0] Path")
Def Var $oooDirectory$

Set $oooDirectory$= SubstringBefore ($sofficePath$, "\program soffice.exe")
Def Var $oooShareDirectory$

Set $oooShareDirectory$ = $oooDirectory$ + "\share"

XM_.Pat ch_pat hs_xcu $oooShar eDi rect or y$+"\regi stry\ dat a\ or g\ openof fi ce\Of fi ce\
Pat hs. xcu"

[XMLPat ch_pat hs_xcu]

OpenNodeSet

- error_when_no_node_exi sting fal se

- war ni ng_when_no_node_exi sting true

- error_when_nodecount _greater_1 fal se
- war ni ng_when_nodecount _greater_1 true
- create_when_node_not_existing true

- attributes_strict fal se

docunent r oot

- 100 -

file://server/share/verzeichnis

all _childel ements_with:

el enent nane: "node"
attribute:"oor:nanme" val ue="Pat hs"

all _childel ements_with:

el enent nane: "node"

attribute: "oor:name" val ue="Tenpl ate"
all _childel ements_with:

el enent nane: "node"

attribute: "oor:nanme" val ue="Internal Pat hs"
all _childel ements_with:

el enent nane: "node"

end

Set Attri bute "oor:name" val ue="$oooTenpl at eDi rect ory$"

8.5 Retrieving Values From a XML File
As treated in chapter 7.7 , wInst can evaluate and modify XML files.

An example shall demonstrate how a value can be retrieved from a XML file.
We assume that the following XML file is read:

<?xm version="1.0" encoding="utf-16" ?>
<Col | ector xm ns="http://schenmas. m crosoft.com appx/ 2004/ 04/ Col | ector"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xs: schemaLocati on="Col | ect or. xsd" Ut cDat e="04/06/ 2006 12:28: 17"
Logl d="{693B0A32- 76A2- 4FA0- 979C- 611DEE852C2C}" Versi on="4. 1. 3790. 1641" >
<Opti ons>
<Depart nent ></ Depart nent >
<I ni Pat h></| ni Pat h>
<Cust onval ues>
</ Cust onVal ues>
</ Opti ons>
<SystenLi st >
<Chassi sl nfo Vendor =" Chassi s Manuf acture" Asset Tag="System Encl osure 0"
Seri al Nunmber =" EVAL"/ >
<Di rectxI nfo Major="9" M nor="0"/>
</ Syst enli st >
<Sof t war eLi st >
<Appli cation Nane="W ndows XP-Hotfix - KB873333" Conponent Type="Hot fi x"
Evi dencel d="256" Root Di r Pat h="C: \ W NDOAS\ $Nt Uni nst al | KB873333%$\ spuni nst "
GsConponent ="true" Vendor="M crosoft Corporation" Crc32="0x4235b909" >
<Evi dence>
<AddRerovePr ogram Di spl ayNarme="W ndows XP-Hotfix - KB873333"
ConpanyNane="M crosoft Corporation" Path="C:\ W NDOAS\
$Nt Uni nst al | KB873333$\ spuni nst "
Regi st ryPat h="HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Un
i nstal I\ KB873333" Uninstall String="C:\WNDOAS\ $\t Uni nst al | KB873333%\ spuni nst\
spuni nst . exe" GsConponent="true" Uni quel d="256"/>
</ BEvi dence>
</ Appl i cation>
<Appl i cation Nane="W ndows XP-Hotfix - KB873339" Conponent Type="Hot fi x"

- 101 -

Evi dencel d="257" Root Di r Pat h="C: \ W NDOAB\ $Nt Uni nst al | KB873339%$\ spuni nst "
GsConponent ="true" Vendor="M crosoft Corporation" Crc32="0x9c550c9c">
<Evi dence>
<AddRernovePr ogram Di spl ayNarme="W ndows XP-Hotfix - KB873339"
ConpanyNane="M crosoft Corporation" Path="C:\ W NDOAS\
$Nt Uni nst al | KB873339$\ spuni nst "
Regi st ryPat h="HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Un
i nstal I\ KB873339" Uninstall String="C:\ W NDOAS\ $Nt Uni nst al | KB873339%\ spuni nst\
spuni nst . exe" GsConponent="true" Uni quel d="257"/>
</ Bvi dence>
</ Appl i cation>
</ Sof t war eLi st >
</ Col | ect or>

To read the elements and get the values of all ,Application” nodes we may use
these pieces of code:

[Akt i onen]
Def StringList $list$

set $list$ = getReturnListFronBection (' XM.Patch_findProducts ' +$TEMP$
+' \test.xm")
for %ine%in $list$ do Sub_doSoret hi ng

[XMLPat ch_fi ndProduct s]
openNodeSet
; Node ,Collector” is docunentroot
documnent r oot
all _childelenents_with:
el enent nane: " Sof t war eLi st"
all _childelenents_with:
el enent nane: " Appl i cati on"
end
return el enents

[Sub_doSonet hi ng]
set $esclLine$ = EscapeString: % i ne%
; now we can work on the content of $escLine$

We encapsulate the retrieved Strings by setting their values as a whole into an
variable via an Escapestring call. Since the loop variable %1ine% is not a
common variable but behaves like a constant all special characters in it (as <
>$ % “ ') may cause difficulties.

8.6 Inserting a Name Space Definition Into a XML File

The wInst XMLPatch section requires fully declared XML name spaces (as is
postulated in the XML RFC). But there are XML configuration files which do not

- 102 -

declare ,,obvious” elements (and the interpreting programs insist that the file
looks this way). Especially patching the lots of XML/XCU configuration files of
OpenOffice.org proved to be a hard job. For solving this task, A. Pohl (many
thanks!) the functions XMLaddNamespace and XMLremoveNamespace. Its
usage is demonstrated by the following example:

Def Var $XM.Fi | e$
Def Var $XML_E!l erent $
Def Var $XM_NanmeSpace$
set $XM.File$ = "D:\Entw ckl ung\ OPSI\ wi nst\ Conmon. xcu3"
set $XMLEl enent$ = ' oor: component - dat a'
set $XM_NaneSpace$ = 'xm ns: xm ="http://ww. w3. org/ XM/ 1998/ nanespace"'
i f XM_LAddNamespace($XM.Fi | e$, $XMLEl emrent $, $XM_NaneSpace$)
set $NSMust Renpve$="1"
endi f

now t he XML Patch shoul d work
(comented out since not integrated in this exanple)

; XMLPat ch_Commmon $XM_.Fi | e$

; when finished we rebuild the original format
i f $NSMust Renove$="1"
if not (XMLRenpveNanmespace($XMLFil e$, $XMEl enent $, $XM_NaneSpace$))
LogError "XM.-Datei konnte nicht korrekt w ederhergestellt werden”
i sFat al Error
endi f
endi f

Please observe that the XML file must be formatted such that the element tags
do not contain line breaks.Special Error Messages

9 No Connection with the opsi Service

What the matter if wInst reports "... cannot connect to service"?

The information which is shown additionally may give a hint to the problem:

- Socket-Error #10061, Connection refused:
Perhaps the opsi service does not run.

- Socket-Fehler #10065, No route to host:
No network connection to server

- HTTP/1.1. 401 Unauthorized:
The service responds but the user/password combination is not
accepted.

- 103 -

http://www.w3.org/XML/1998/namespace

	1Windows Installer
	2Command Line Parameters
	3Additional Configurations
	3.1Central Logging of Error Messages

	4The wInst Script
	4.1An Example
	4.2Primary and Secondary Subprograms of a wInst script
	4.3String Expressions in a wInst Script

	5Definition and Use of Variables and Constants in a wInst Script
	5.1Overview
	5.2Global Text Constants
	5.2.1Usage
	5.2.2Example
	5.2.3List of Existing Constants
	(i)System Paths
	(ii)wInst Paths
	(iii)opsi service Data
	(iv)Network Information

	5.3String (or Text) Variables
	5.3.1Declaration
	5.3.2Value Assignment
	5.3.3Use of variables in String expressions
	5.3.4Secondary vs. primary sections

	5.4Stringlist Variables

	6Syntax and Meaning of Primary Sections of a wInst Script
	6.1Primary Sections
	6.2Parametrizing wInst
	6.2.1Example
	6.2.2Specification of Logging Level
	6.2.3Required wInst Version
	6.2.4Reacting on Errors
	6.2.5Staying On Top

	6.3String Expressions, String Values, and String Functions
	6.3.1Elementary String Values
	6.3.2Strings in Strings (Nested String Values)
	6.3.3String Concatenation
	6.3.4String Variables
	6.3.5String Functions which Return the OS Type
	6.3.6String Functions for Retrieving Environment or Command Line Parameters
	6.3.7Reading Values from the Windows Registry and Transforming Values into Registry Format
	6.3.8Reading Property Values
	6.3.9Retrieving Data from etc/hosts
	6.3.10String processing
	6.3.11Additional String Functions

	6.4String List Functions and String List Processing
	6.4.1Parameterless String List Functions
	6.4.2Producing String Lists from Strings
	6.4.3Loading the Lines of a Text File into a String List
	6.4.4Simple String Values generated from String Lists
	6.4.5Producing String Lists from wInst Sections
	6.4.6Transforming String Lists
	6.4.7Iterating through String Lists

	6.5Special Commands
	6.6Commands for User Information and User Interaction
	6.7Conditional Statements (if Statements)
	6.7.1Example
	6.7.2General Syntax
	6.7.3Boolean Expressions

	6.8Subprogram Calls
	6.8.1Syntax of Procedure Calling

	6.9Controlling Reboot
	6.10Keeping Track of Failed Installations

	7Secondary Sections
	7.1Files Sections
	7.1.1Example
	7.1.2Call Parameters
	7.1.3Commands

	7.2Patches-Sektionen
	7.2.1Example
	7.2.2Call Parameter
	7.2.3Commands

	7.3PatchHosts Sections
	7.4IdapiConfig Sections
	7.5PatchTextFile Sections
	7.5.1Example
	7.5.2Call Parameter
	7.5.3Commands

	7.6LinkFolder Sections
	7.6.1Windows
	7.6.2Linux

	7.7XMLPatch Sections
	7.7.1Structure of a XML Document
	7.7.2Options for Selection a Set of Elements
	(i)Explicit Syntax
	(ii)Short Syntax
	(iii)Selecting by Textual Content (only for explicit syntax)
	(iv)Parametrizing Search Strategy

	7.7.3Patch Actions
	7.7.4Returning Lists to the Caller

	7.8ProgmanGroups Sections
	7.9WinBatch Sections
	7.10DOSBatch/ShellBatch Sections
	7.10.1Windows
	7.10.2Linux

	7.11DOSInAnIcon/ShellInAnIcon Sections
	7.11.1Windows
	7.11.2Linux

	7.12Registry Sections
	7.12.1Example
	7.12.2Call Parameters
	7.12.3Commands
	7.12.4Registry Sections to Patch "All NTUser.dat"
	7.12.5Registry Sections in Regedit Format
	7.12.6Registry Sections in AddReg Format

	7.13OpsiServiceCall Sections
	7.13.1Call Parameters
	7.13.2Section Format

	7.14ExecPython Sections
	7.14.1Example
	7.14.2Interweaving a Python Script with the wInst Script

	8Cook Book
	8.1Delete a File in all Subdirectories
	8.2List All Shares Available On a Domain Controller
	8.3Script for Installations in the Context of a Local Administrator
	8.4XML File Patching: Setting Template Path for OpenOffice.org 2
	8.5Retrieving Values From a XML File
	8.6Inserting a Name Space Definition Into a XML File

	9No Connection with the opsi Service

